

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PH1875L

N-channel TrenchMOS logic level FET Rev. 01 — 29 November 2005

Product data sheet

Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology.

1.2 Features

- Logic level threshold
- Low thermal resistance
- Very low on-state resistance
- Surface-mounted package

1.3 Applications

- DC motor control
- DC-to-DC converters

General purpose power switching

1.4 Quick reference data

- $V_{DS} \le 75 \text{ V}$
- \blacksquare R_{DSon} \leq 16.5 m Ω

- $I_D \le 45.8 \text{ A}$
- $Q_{GD} = 15.3 \text{ nC (typ)}$

Pinning information

Pinning Table 1:

Pin	Description	Simplified outline	Symbol	
1, 2, 3	source (S)		_	
4	gate (G)	mb	D	
mb	mounting base; connected to drain (D)		mbb076 S	
		SOT669 (LFPAK)		

3. Ordering information

Table 2: Ordering information

Type number	Package		
	Name	Description	Version
PH1875L	LFPAK	plastic single-ended surface mounted package; 4 leads	SOT669

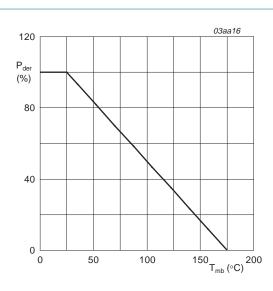
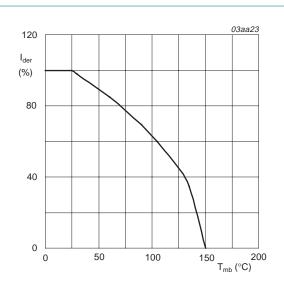

4. Limiting values

Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 150 °C	-	75	V
V_{DGR}	drain-gate voltage (DC)	25 °C \leq T _j \leq 150 °C; R _{GS} = 20 k Ω	-	75	V
V _{GS}	gate-source voltage		-	±15	V
I _D	drain current	$T_{mb} = 25 ^{\circ}\text{C}$; $V_{GS} = 10 \text{V}$; see Figure 2 and 3	-	45.8	Α
		$T_{mb} = 100 ^{\circ}\text{C}; V_{GS} = 10 \text{V}; \text{see} \frac{\text{Figure 2}}{}$	-	29	Α
I _{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \mu s$; see Figure 3	-	183	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 1</u>	-	62.5	W
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		-55	+150	°C
Source-c	Irain diode				
Is	source current	T _{mb} = 25 °C	-	45.8	Α
I _{SM}	peak source current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \mu s$	-	183	Α
Avalance	ne ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I_D = 26 A; t_p = 0.11 ms; $V_{DS} \le 75$ V; R_{GS} = 50 Ω ; V_{GS} = 10 V; starting at T_j = 25 °C	-	165	mJ

N-channel TrenchMOS logic level FET

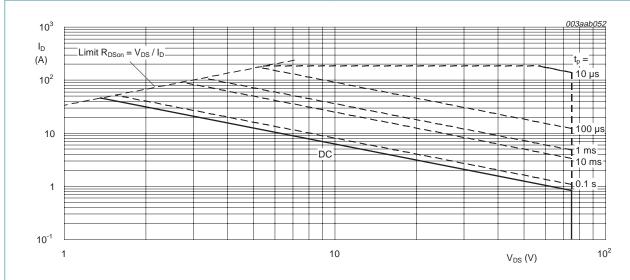
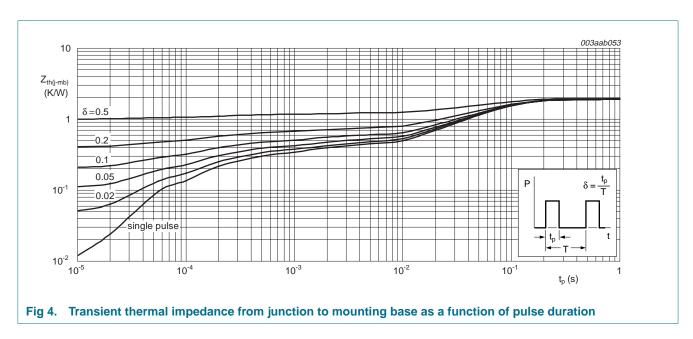

$$P_{der} = \frac{P_{tot}}{P_{tot(25\ ^{\circ}C)}} \times 100\ \%$$

Fig 1. Normalized total power dissipation as a function of mounting base temperature

$$I_{der} = \frac{I_D}{I_{D(25\,^{\circ}C)}} \times 100\,\%$$

Fig 2. Normalized continuous drain current as a function of mounting base temperature

 T_{mb} = 25 °C; I_{DM} is single pulse


Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

5. Thermal characteristics

Table 4: Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	2	K/W

6. Characteristics

Table 5: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

	Parameter	Conditions	Min	Тур	Max	Unit
Static ch	naracteristics					
$V_{(BR)DSS}$ drain-source breakdown		$I_D = 250 \mu\text{A}; V_{GS} = 0 \text{V}$				
	voltage	T _j = 25 °C	75	-	-	V
		$T_j = -55 ^{\circ}C$	68	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; see <u>Figure 9</u> and <u>10</u>				
		T _j = 25 °C	1	1.5	2	V
		T _j = 150 °C	0.5	-	-	V
		$T_j = -55 ^{\circ}\text{C}$	-	-	2.2	V
I _{DSS}	drain leakage current	V _{DS} = 75 V; V _{GS} = 0 V				
		T _j = 25 °C	-	-	1	μΑ
		T _j = 150 °C	-	-	500	μΑ
I _{GSS}	gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0 \text{ V}$	-	10	100	nA
R _G	gate resistance	f = 1 MHz	-	1	-	Ω
R _{DSon}	drain-source on-state	$V_{GS} = 10 \text{ V}; I_D = 20 \text{ A}; \text{ see } \frac{\text{Figure 6}}{\text{1}} \text{ and } \frac{8}{\text{1}}$				
	resistance	T _j = 25 °C	-	13.3	16.5	mΩ
		T _j = 150 °C	-	24.2	30	mΩ
		$V_{GS} = 4.5 \text{ V}$; $I_D = 20 \text{ A}$; see Figure 6 and 8	-	14.6	20	mΩ
		V _{GS} = 5 V; I _D = 20 A; see Figure 6 and 8	-	14.2	18	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}$; $V_{DS} = 60 \text{ V}$; $V_{GS} = 5 \text{ V}$; see Figure 11 and 12		33.4	-	nC
Q_{GS}	gate-source charge			6.7	-	nC
Q _{GS1}	pre-V _{GS(th)} gate-source charge			3.3	-	nC
Q _{GS2}	post-V _{GS(th)} gate-source charge		-	3.4	-	nC
Q_{GD}	gate-drain charge		-	15.3	-	nC
V _{GS(pl)}	gate-source plateau voltage		-	3	-	V
Q _{G(tot)}	total gate charge	I _D = 0 A; V _{DS} = 0 V; V _{GS} = 4.5 V	-	23	-	nC
C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 25 V; f = 1 MHz; see	-	2600	-	pF
C _{oss}	output capacitance	Figure 14	-	285	-	pF
C _{rss}	reverse transfer capacitance	-	-	150	-	pF
C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 0 V; f = 1 MHz	-	4000	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; R_L = 1.2 \Omega; V_{GS} = 5 \text{ V}; R_G = 10 \Omega$	-	23	-	ns
t _r	rise time		-	80	-	ns
t _{d(off)}	turn-off delay time		-	92	-	ns
t _f	fall time		-	60	-	ns
ч						
	drain diode					
Source-		$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see Figure 13	-	0.85	1.2	V
	drain diode source-drain voltage reverse recovery time	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see Figure 13 $I_S = 20 \text{ A}$; $d_{IS}/dt = -100 \text{ A/}\mu\text{s}$; $d_{IS}/dt = 0 \text{ V}$;	-	0.85 107	1.2	V

PH1875L_

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

N-channel TrenchMOS logic level FET

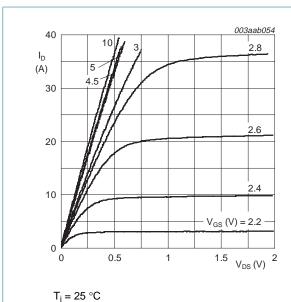
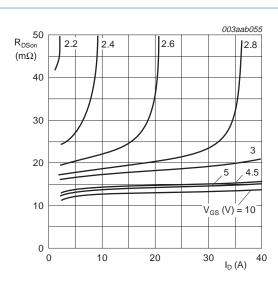
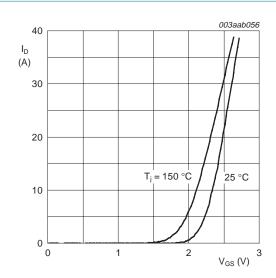




Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

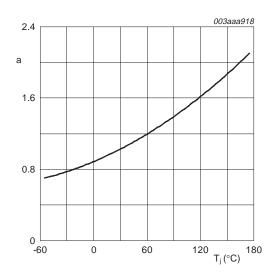
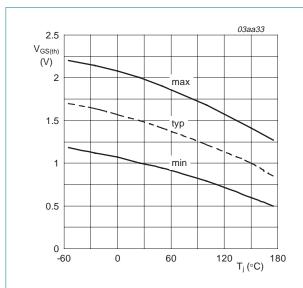
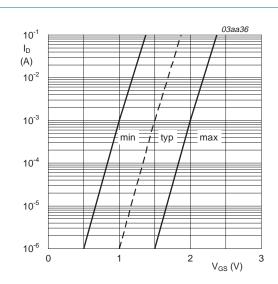

T_j = 25 °C

Fig 6. Drain-source on-state resistance as a function of drain current; typical values

 T_{j} = 25 °C and 150 °C; V_{DS} > $I_{D} \times R_{DSon}$



$$a = \frac{R_{DSon}}{R_{DSon(25 \, {}^{\circ}C)}}$$


Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature

N-channel TrenchMOS logic level FET

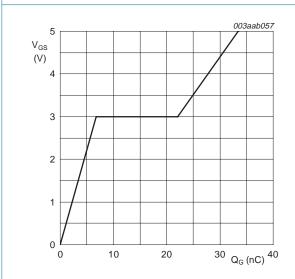

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

Fig 9. Gate-source threshold voltage as a function of junction temperature

 T_j = 25 °C; V_{DS} = 5 V

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 $I_D = 25 \text{ A}; V_{DS} = 60 \text{ V}$

Fig 11. Gate-source voltage as a function of gate charge; typical values

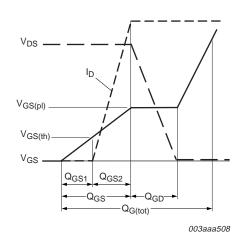


Fig 12. Gate charge waveform definitions

N-channel TrenchMOS logic level FET

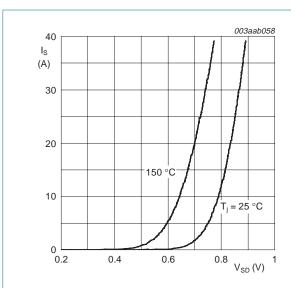
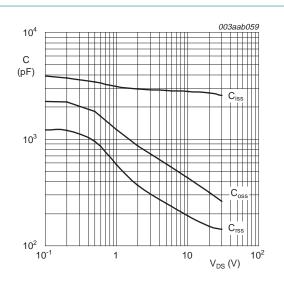
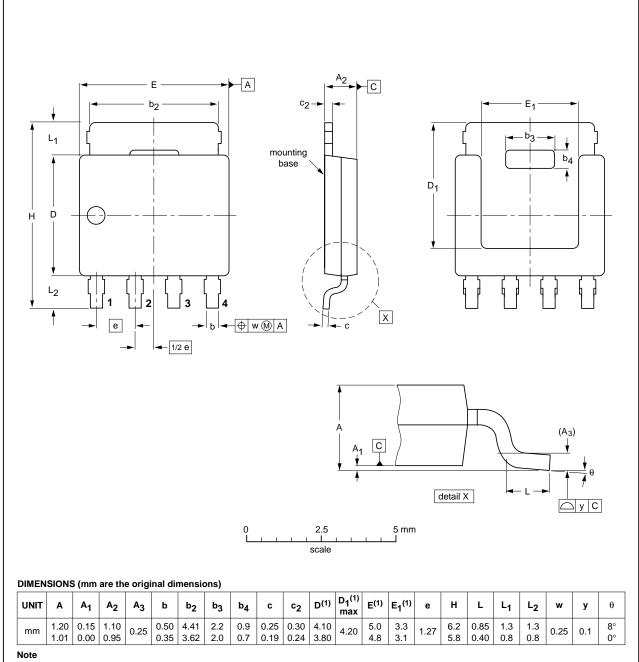



Fig 13. Source current as a function of source-drain voltage; typical values

 T_i = 25 °C and 150 °C; V_{GS} = 0 V

 $V_{GS} = 0 V$; f = 1 MHz


Fig 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Package outline

Plastic single-ended surface mounted package (LFPAK); 4 leads

SOT669

9 of 12

Product data sheet

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ICCUIT DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT669		MO-235			03-09-15 04-10-13	

Fig 15. Package outline SOT669 (LFPAK)

© Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 29 November 2005

N-channel TrenchMOS logic level FET

8. Revision history

Table 6: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
PH1875L_1	20051129	Product data sheet	-	-	-

N-channel TrenchMOS logic level FET

9. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

10. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

11. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

12. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners. **TrenchMOS** — is a trademark of Koninklijke Philips Electronics N.V.

13. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

PH1875L_

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

N-channel TrenchMOS logic level FET

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 1
3	Ordering information
4	Limiting values
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history
9	Data sheet status
10	Definitions
11	Disclaimers 11
12	Trademarks 11
13	Contact information 11

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 29 November 2005 Document number: PH1875L_1

