DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4016B gates
 Quadruple bilateral switches

Product specification
File under Integrated Circuits, IC04

Quadruple bilateral switches

DESCRIPTION

The HEF4016B has four independent analogue switches (transmission gates). Each switch has two input/output terminals (Y/Z) and an active HIGH enable input (E). When E is connected to $V_{D D}$ a low impedance bidirectional path between Y and Z is established (ON condition). When E is connected to V_{SS} the switch is disabled and a high
impedance between Y and Z is established (OFF condition). Current through a switch will not cause additional V_{DD} current provided the voltage at the terminals of the switch is maintained within the supply voltage range; $\mathrm{V}_{\mathrm{DD}} \geq\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}}\right) \geq \mathrm{V}_{\mathrm{SS}}$. Inputs Y and Z are electrically equivalent terminals.

Fig. 1 Functional diagram.

PINNING

E_{0} to E_{3}	enable inputs
Y_{0} to Y_{3}	input/output terminals
Z_{0} to Z_{3}	input/output terminals

APPLICATION INFORMATION

Some examples of applications for the HEF4016B are:

- Signal gating
- Modulation
- Demodulation
- Chopper

Fig. 2 Pinning diagram.

HEF4016BP(N): 14-lead DIL; plastic (SOT27-1)
HEF4016BD(F): 14-lead DIL; ceramic (cerdip) (SOT73)
HEF4016BT(D): 14-lead SO; plastic (SOT108-1)
(): Package Designator North America

Fig. 3 Schematic diagram (one switch).

7Z69694.3

Quadruple bilateral switches

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Power dissipation per switch P max. 100 mW

For other RATINGS see Family Specifications

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (unless otherwise specified)

PARAMETER	$V_{\text {DD }}$ \mathbf{V}		SYMBOL	TYP.	MAX.	UNIT

Fig. 4 Test set-up for measuring R_{ON}.

Quadruple bilateral switches

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	TYP.	MAX.		
Propagation delays $\mathrm{V}_{\text {is }} \rightarrow \mathrm{V}_{\text {os }}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 25 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & 50 \\ & 20 \\ & 10 \end{aligned}$	ns ns ns	note 1
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tplH	$\begin{array}{r} \hline 20 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & 40 \\ & 20 \\ & 10 \end{aligned}$	ns ns ns	note 1
Output disable times $\begin{gathered} \mathrm{E}_{\mathrm{n}} \rightarrow \mathrm{~V}_{\mathrm{os}} \\ \text { HIG } \end{gathered}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & 90 \\ & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 130 \\ & 110 \\ & 100 \end{aligned}$	ns ns ns	note 2
LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tplz	$\begin{aligned} & 85 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \\ & 100 \end{aligned}$	ns ns ns	note 2
Output enable times $E_{n} \rightarrow V_{o s}$ HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PZH }}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	ns ns ns	note 2
LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PZL }}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	ns ns ns	note 2
Distortion, sine-wave response	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{array}{r} - \\ 0,08 \\ 0,04 \end{array}$		$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$	note 3
Crosstalk between any two channels	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{gathered} - \\ 1 \\ - \end{gathered}$		MHz MHz MHz	note 4
Crosstalk; enable input to output	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		50		$\begin{aligned} & \hline \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	note 5
OFF-state feed-through	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		1		MHz MHz MHz	note 6
ON-state frequency response	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		90 \qquad		MHz MHz MHz	note 7

Quadruple bilateral switches

Notes

$V_{\text {is }}$ is the input voltage at a Y or Z terminal, whichever is assigned as input.
$V_{o s}$ is the output voltage at a Y or Z terminal, whichever is assigned as output.

1. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{S S} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{S S} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); see Figs 6 and 10 .
2. $R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave);
$V_{i s}=V_{D D}$ and R_{L} to $V_{S S}$ for $t_{P H Z}$ and $t_{P Z H}$;
$V_{\text {is }}=V_{S S}$ and R_{L} to $V_{D D}$ for $t_{P L Z}$ and $t_{P Z L}$; see Figs 6 and 11.
3. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=15 \mathrm{pF} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}$; see Fig. 7 .
4. $R_{L}=1 \mathrm{k} \Omega ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$);
$20 \log \frac{V_{0 S}(B)}{V_{\text {is }}(A)}=-50 d B ; E_{n}(A)=V_{S S} ; E_{n}(B)=V_{D D}$; see Fig. 8.
5. $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); crosstalk is $\left|\mathrm{V}_{\text {os }}\right|$ (peak value); see Fig. 6.
6. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$);
$20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig. 7.
7. $R_{L}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$);
$20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-3 \mathrm{~dB}$; see Fig. 7.

	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$550 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{f}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$2600 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{C}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package $(\mathrm{P})^{(1)}$	15	$6500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
			$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Note

1. All enable inputs switching.

Quadruple bilateral switches

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Quadruple bilateral switches

Fig. 10 Waveforms showing propagation delays from $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$.

(1) $V_{\text {is }}$ at $V_{D D}$
(2) $V_{\text {is }}$ at $V_{S S}$

Fig. 11 Waveforms showing output disable and enable times.

