

. :eescale Semiconductor Technical Data

Document Number: AFT26H200W03S

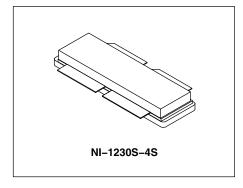
Rev. 0, 8/2013

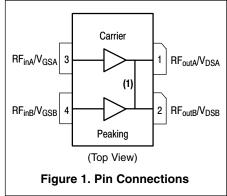
RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 45 watt asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2496 to 2690 MHz.

Typical Doherty Single–Carrier W–CDMA Performance: V_{DD} = 28 Volts, I_{DQA} = 500 mA, V_{GSB} = 0.3 Vdc, P_{out} = 45 Watts Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2496 MHz	14.1	45.2	7.8	-31.1
2590 MHz	14.2	44.0	7.8	-35.6
2690 MHz	13.9	44.1	7.6	-37.5


Features

- Advanced High Performance In–Package Doherty
- Designed for Wide Instantaneous Bandwidth Applications
- Greater Negative Gate–Source Voltage Range for Improved Class C Operation
- Designed for Digital Predistortion Error Correction Systems
- In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel.

AFT26H200W03SR6

2496-2690 MHz, 45 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR

1. Pin connections 1 and 2 are DC coupled and RF independent.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +125	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.46	°C/W
Case Temperature 76°C, 45 W–CDMA, 28 Vdc, I _{DQA} = 500 mA, V _{GSB} = 0.3 Vdc, 2590 MHz			

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	III

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (4)			II.	•	•
Zero Gate Voltage Drain Leakage Current (5) (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (5) (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current (6) (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics – Side A ^(4,6) (Carrier)	<u> </u>				
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 100 \mu \text{Adc})$	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DA} = 500 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.4	1.8	2.2	Vdc
Drain-Source On-Voltage (V _{GS} = 6 Vdc, I _D = 1.0 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc
On Characteristics – Side B ^(4,6) (Peaking)	•		1		•
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 180 \mu\text{Adc})$	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 6 Vdc, I _D = 1.8 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 4. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.
- Side A and Side B are tied together for these measurements.
- 6. Each side of device measure separately.

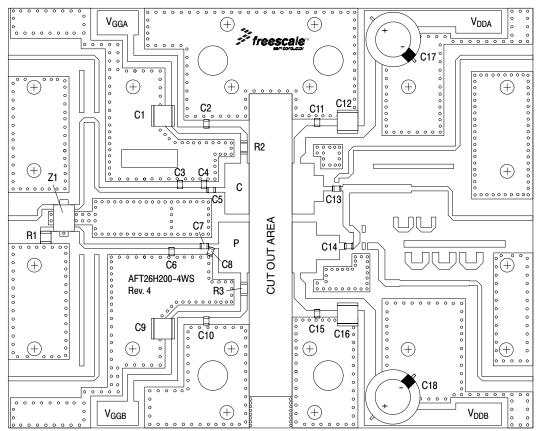
Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

Functional Tests $^{(1,2,3)}$ (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQA} = 500$ mA, $V_{GSB} = 0.3$ Vdc, $P_{out} = 45$ W Avg., f = 2496 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	13.0	14.1	16.0	dB
Drain Efficiency	η_{D}	42.0	45.2	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.5	7.8	_	dB
Adjacent Channel Power Ratio	ACPR	_	-31.1	-28.0	dBc

Load Mismatch (In Freescale Test Fixture, 50 ohm system) $I_{DQA} = 500$ mA, $V_{GSB} = 0.3$ Vdc, f = 2590 MHz, 10 μ sec Pulse Width, 10% Duty Cycle, <100 ns Input Rise Time


VSWR 10:1 at 30 Vdc, 280 W Pulse Output Power	No Device Degradation
(3 dB Input Overdrive from 250 W Pulse Rated Power)	

Typical Performances $^{(3)}$ (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQA} = 500$ mA, $V_{GSB} = 0.3$ Vdc, 2496–2690 MHz Bandwidth

P _{out} @ 1 dB Compression Point, CW	P1dB	_	200	_	W
P _{out} @ 3 dB Compression Point (4)	P3dB	_	280	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 2496–2690 MHz frequency range)		_	-13	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	220	_	MHz
Gain Flatness in 194 MHz Bandwidth @ Pout = 45 W Avg.	G _F	_	0.3	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.019	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.0377	_	dB/°C

- 1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.
- 2. Part internally matched both on input and output.
- 3. Measurements made with device in an asymmetrical Doherty configuration.
- 4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W–CDMA single–carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

Note: $V_{\mbox{\scriptsize DDA}}$ and $V_{\mbox{\scriptsize DDB}}$ must be tied together and powered by a single DC power supply.

Figure 2. AFT26H200W03SR6 Test Circuit Component Layout

Table 5. AFT26H200W03SR6 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C9, C12, C16	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C2, C5, C7, C10, C11, C14, C15	6.8 pF Chip Capacitors	ATC600F6R8BT250XT	ATC
C3, C4	0.7 pF Chip Capacitors	ATC600F0R7BT250XT	ATC
C6, C8	0.5 pF Chip Capacitors	ATC600F0R5BT250XT	ATC
C13	2.0 pF Chip Capacitor	ATC600F2R0BT250XT	ATC
C17, C18	220 μF, 50 V Electrolytic Capacitors	227CKS050M	Illinois Capacitor
R1	50 Ω, 4 W Chip Resistor	CW12010T0050GBK	ATC
R2, R3	3.0 Ω, 1/4 W Chip Resistors	CRCW12063R00FNEA	Vishay
Z1	2300–2700 MHz, 5 dB, Directional Coupler	X3C25P1-05S	Anaren
PCB	$0.020'', \epsilon_r = 3.5$	RO4350B	Rogers

TYPICAL CHARACTERISTICS

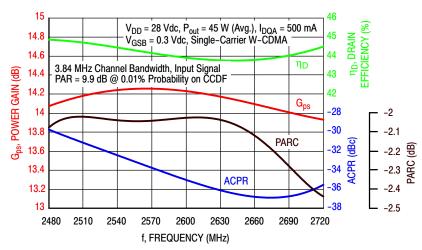


Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 45 Watts Avg.

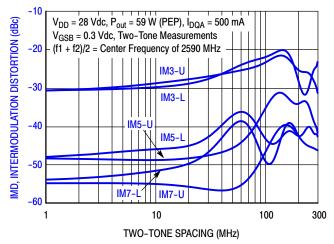


Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

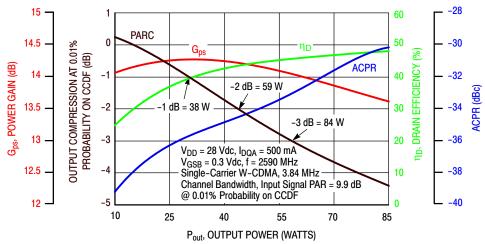


Figure 5. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS

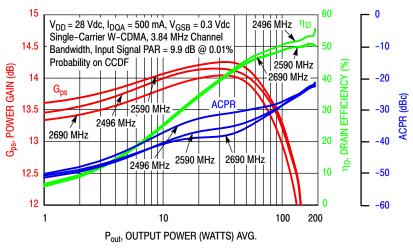


Figure 6. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

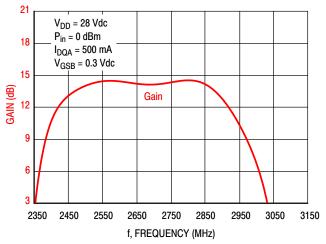


Figure 7. Broadband Frequency Response

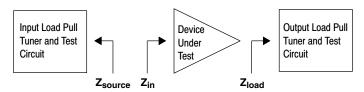
 V_{DD} = 28 Vdc, I_{DQA} = 494 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power					
			P1dB					
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
2496	9.09 - j14.0	8.87 + j13.4	4.40 - j8.11	17.3	50.3	107	53.1	-12
2590	16.1 - j13.2	15.2 + j12.7	4.32 - j8.14	17.5	50.3	107	53.6	-13
2690	22.9 - j0.41	20.5 + j1.37	4.28 - j8.80	17.5	50.2	104	52.2	-13

			Max Output Power						
				P3dB					
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
2496	9.09 - j14.0	9.41 + j14.6	4.15 - j8.72	15.1	51.0	127	53.7	-17	
2590	16.1 - j13.2	17.5 + j13.6	4.16 - j8.90	15.2	51.0	127	53.7	-18	
2690	22.9 - j0.41	22.2 - j1.34	4.21 - j9.41	15.2	50.9	123	52.3	-18	

⁽¹⁾ Load impedance for optimum P1dB power.

Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning


 V_{DD} = 28 Vdc, I_{DQA} = 494 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

		Max Drain Efficiency								
				P1dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2496	9.09 - j14.0	8.65 + j14.2	9.14 - j5.50	19.4	48.7	74	63.1	-20		
2590	16.1 - j13.2	15.2 + j14.1	7.18 - j4.60	19.5	48.8	74	63.2	-21		
2690	22.9 - j0.41	22.1 + j2.44	6.06 - j4.93	19.5	48.7	74	61.6	-21		

Max Drain Efficiency											
				P3dB							
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
2496	9.09 - j14.0	8.89 + j15.2	8.01 - j6.15	17.1	49.8	95	63.7	-26			
2590	16.1 - j13.2	17.2 + j15.2	6.92 - j5.30	17.3	49.6	92	63.4	-27			
2690	22.9 - j0.41	23.6 - j0.47	6.02 - j6.43	17.0	49.9	98	61.6	-25			

⁽¹⁾ Load impedance for optimum P1dB efficiency.

Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning

⁽²⁾ Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

⁽²⁾ Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

 V_{DD} = 28 Vdc, V_{GSB} = 0.3 Vdc, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power							
				P1dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2496	5.24 - j10.6	5.15 + j9.87	2.61 - j5.59	11.6	52.6	181	52.5	-19		
2590	10.3 - j9.81	9.38 + j9.30	2.63 - j5.84	12.0	52.5	176	51.9	-20		
2690	12.7 - j0.94	12.0 + j1.20	2.68 - j6.10	12.3	52.1	164	49.8	-20		

			Max Output Power							
				P3dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2496	5.24 - j10.6	5.51 + j10.5	2.57 - j5.91	9.4	53.2	211	52.7	-25		
2590	10.3 - j9.81	10.7 + j9.63	2.68 - j6.12	9.4	53.1	205	52.3	-25		
2690	12.7 - j0.94	12.2 - j0.26	2.79 - j6.48	10.2	52.8	190	49.7	-25		

⁽¹⁾ Load impedance for optimum P1dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

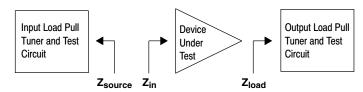
 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, V_{GSB} = 0.3 Vdc, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

				Max	x Drain Efficie	ency				
				P1dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2496	5.24 - j10.6	4.66 + j10.2	5.91 - j4.19	12.8	51.1	129	61.3	-27		
2590	10.3 - j9.81	8.53 + j10.5	4.92 - j2.75	13.2	50.6	116	61.2	-30		
2690	12.7 - j0.94	13.2 + j3.53	3.52 - j2.21	13.1	49.7	93	59.0	-35		

				Max	Drain Efficie	ency				
				P3dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2496	5.24 - j10.6	5.08 + j10.8	5.29 - j4.65	10.7	52.0	160	61.9	-34		
2590	10.3 - j9.81	10.2 + j10.5	4.64 - j4.15	11.1	52.0	158	61.2	-34		
2690	12.7 - j0.94	13.3 + j1.00	3.85 - j3.19	11.2	51.0	127	58.2	-38		

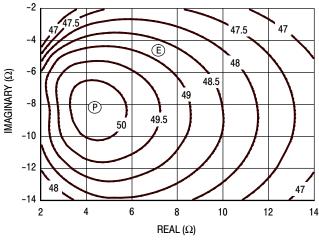

⁽¹⁾ Load impedance for optimum P1dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning



⁽²⁾ Load impedance for optimum P3dB power.

⁽²⁾ Load impedance for optimum P3dB efficiency.

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz

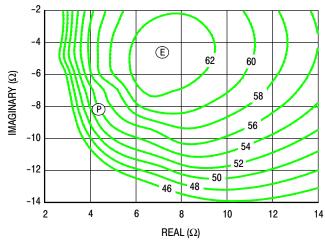
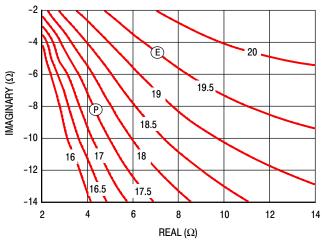



Figure 12. P1dB Load Pull Output Power Contours (dBm)

Figure 13. P1dB Load Pull Efficiency Contours (%)

-26

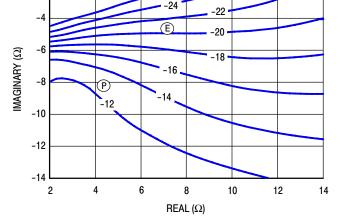
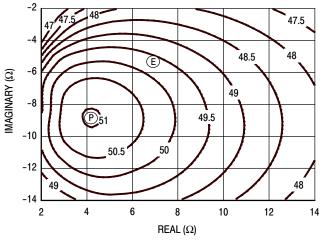


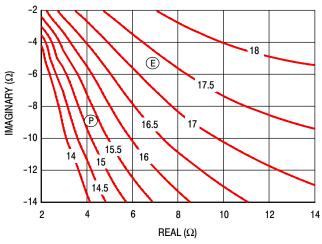
Figure 14. P1dB Load Pull Gain Contours (dB)

Figure 15. P1dB Load Pull AM/PM Contours (°)


NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

-2


P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz

60 E -6 IMAGINARY (Ω) 58 -8 56 54 -12 50 -14 2 10 12 14 REAL (Ω)

Figure 16. P3dB Load Pull Output Power Contours (dBm)

Figure 17. P3dB Load Pull Efficiency Contours (%)

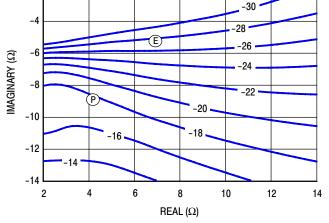
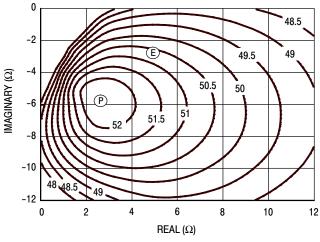


Figure 18. P3dB Load Pull Gain Contours (dB)

Figure 19. P3dB Load Pull AM/PM Contours (°)


NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

-2

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz

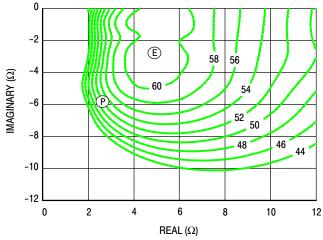
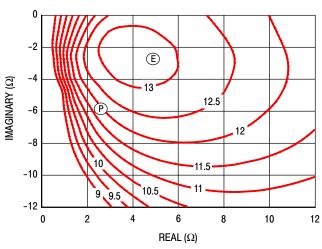



Figure 20. P1dB Load Pull Output Power Contours (dBm)

Figure 21. P1dB Load Pull Efficiency Contours (%)

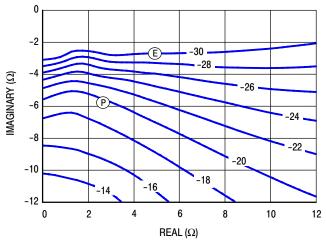
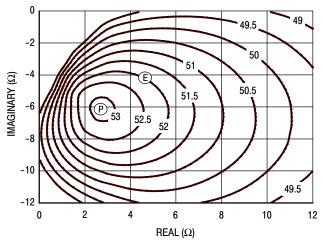


Figure 22. P1dB Load Pull Gain Contours (dB)


Figure 23. P1dB Load Pull AM/PM Contours (°)

NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz

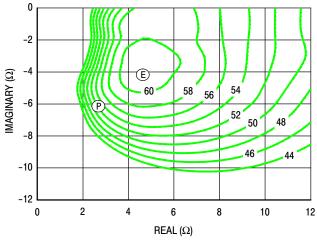


Figure 24. P3dB Load Pull Output Power Contours (dBm)

Figure 25. P3dB Load Pull Efficiency Contours (%)

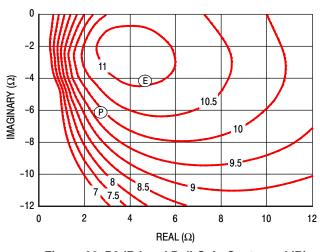
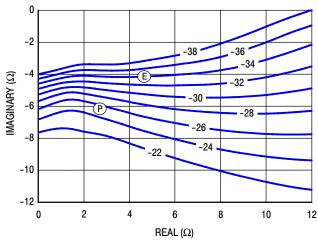
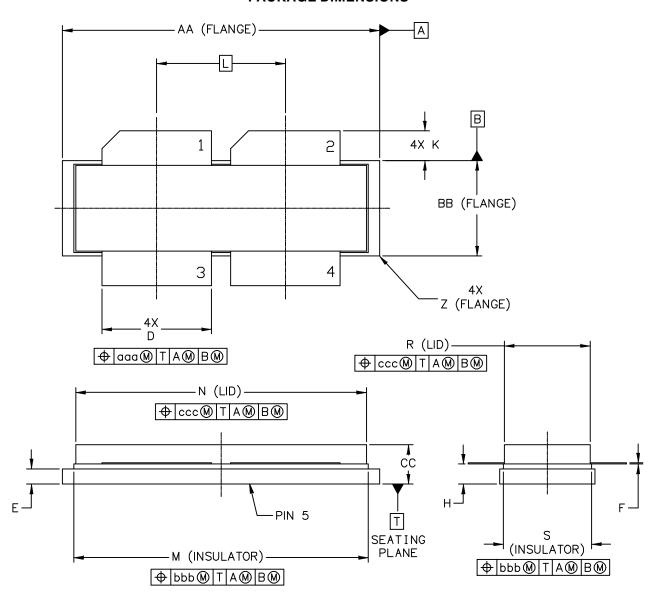


Figure 26. P3dB Load Pull Gain Contours (dB)




Figure 27. P3dB Load Pull AM/PM Contours (°)

NOTE: P = Maximum Output Power

(E) = Maximum Drain Efficiency

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT	VERSION NOT	TO SCA	LE
TITLE:		DOCUMEN	NT NO: 9	8ARB18247C	REV:	G
NI-1230-4S		STANDAF	RD: NON-	JEDEC		
				01	MAR 20)13

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

	INC	HES	MIL	LIMETERS		IN.	ICHES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX	DIM	MIN MAX		MIN	MAX		
AA	1.265	1.275	32.13	32.39	R	.355 .365		9.02	9.27		
BB	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53		
СС	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02		
D	.455	.465	11.56	11.81							
E	.062	.066	1.57	1.68	aaa		.013	0.	.33		
F	.004	.007	0.10	0.18	bbb		.010		.010 0.25		.25
Н	.082	.090	2.08	2.29	ссс		.020		.020 0.51		.51
K	.117	.137	2.97	3.48							
L	.540	BSC	13.	.72 BSC							
М	1.219	1.241	30.96	31.52							
N	1.218	1.242	30.94	31.55							
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL C					LINE	PRINT VER	RSION NOT	TO SCALE		
TITLE:	TITLE:						DOCUMENT NO: 98ARB18247C REV: G				
		NI-1230)-4S			STANDARD: NON-JEDEC					
								01	MAR 2013		

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2013	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

