ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

20-bit buffer/line driver; non-inverting; 3-state

Rev. 03 — 2 June 2005

Product data sheet

1. General description

The 74ALVT16827 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive. It is designed for V_{CC} operation at 2.5 V or 3.3 V with I/O compatibility to 5 V.

The 74ALVT16827 20-bit buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. They have NOR Output Enables ($n\overline{OE1}$ and $n\overline{OE2}$) for maximum control flexibility.

2. Features

- Multiple V_{CC} and GND pins minimize switching noise
- 5 V I/O compatible
- Live insertion and extraction permitted
- 3-state output buffers
- Power-up 3-state
- Output capability: +64 mA and –32 mA
- Latch-up protection:
 - JESD 78 exceeds 500 mA
- ElectroStatic Discharge (ESD) protection:
 - MIL STD 883 Method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V
- Bus hold data inputs eliminate need for external pull-up resistors to hold unused inputs

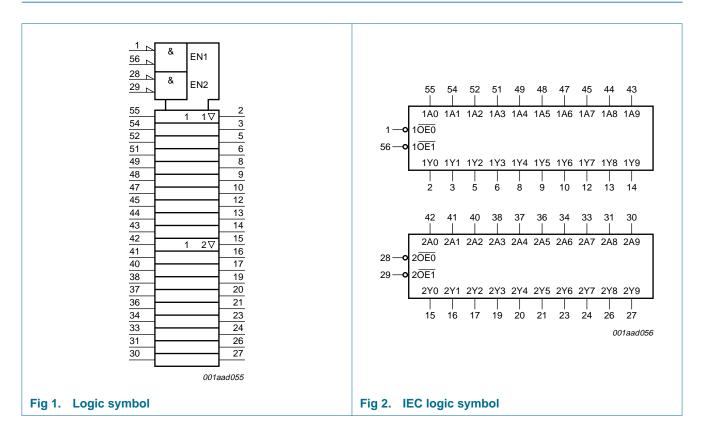
3. Quick reference data

Table 1: Quick reference data

 $GND = 0 V; T_{amb} = 25 \circ C.$

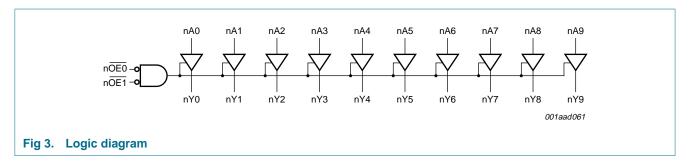
0						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PLH}	H propagation delay nAx to nYx	$C_{L} = 50 \text{ pF}; V_{CC} = 2.5 \text{ V}$	1.0	2.0	2.9	ns
		$C_{L} = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	0.7	1.5	2.2	ns
t _{PHL}	IL propagation delay nAx to nYx	$C_{L} = 50 \text{ pF}; V_{CC} = 2.5 \text{ V}$	1.0	2.0	3.0	ns
		$C_{L} = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	0.8	1.6	2.3	ns
CI	input capacitance on DIR, \overline{OE}	$V_{I} = 0 V \text{ or } V_{CC}$	-	3	-	pF

20-bit buffer/line driver; non-inverting; 3-state

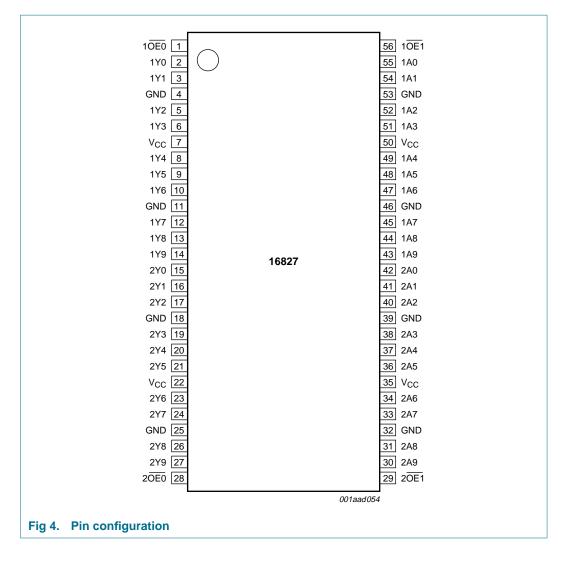

Table 1:	Quick reference data continued
CND = 0.17	$T = 25 \circ C$

GND = 0	$V; T_{amb} = 25 ^{\circ}C.$					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Co	output capacitance	$V_{I/O} = 0 V \text{ or } V_{CC}$	-	9	-	pF
I _{CC}	total supply current	outputs disabled; V_{CC} = 2.5 V	-	40	-	μA
		outputs disabled; $V_{CC} = 3.3 V$	-	70	-	μΑ

4. Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74ALVT16827DL	–40 °C to +85 °C	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1				
74ALVT16827DGG	–40 °C to +85 °C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1				

5. Functional diagram


Philips Semiconductors

20-bit buffer/line driver; non-inverting; 3-state

6. Pinning information

6.1 Pinning

20-bit buffer/line driver; non-inverting; 3-state

6.2 Pin description

Table 3:	Pin description	
Symbol	Pin	Description
1OE0	1	output enable input (active-LOW)
1Y0	2	data output
1Y1	3	data output
GND	4	ground (0 V)
1Y2	5	data output
1Y3	6	data output
V _{CC}	7	positive voltage supply
1Y4	8	data output
1Y5	9	data output
1Y6	10	data output
GND	11	ground (0 V)
1Y7	12	data output
1Y8	13	data output
1Y9	14	data output
2Y0	15	data output
2Y1	16	data output
2Y2	17	data output
GND	18	ground (0 V)
2Y3	19	data output
2Y4	20	data output
2Y5	21	data output
V _{CC}	22	positive voltage supply
2Y6	23	data output
2Y7	24	data output
GND	25	ground (0 V)
2Y8	26	data output
2Y9	27	data output
2OE0	28	output enable input (active-LOW)
2OE1	29	output enable input (active-LOW)
2A9	30	data input
2A8	31	data input
GND	32	ground (0 V)
2A7	33	data input
2A6	34	data input
V _{CC}	35	positive voltage supply
2A5	36	data input
2A4	37	data input
2A3	38	data input
GND	39	ground (0 V)

9397 750 15122

Product data sheet

20-bit buffer/line driver; non-inverting; 3-state

Table 3:	Pin description	continued
Symbol	Pin	Description
2A2	40	data input
2A1	41	data input
2A0	42	data input
1A9	43	data input
1A8	44	data input
1A7	45	data input
GND	46	ground (0 V)
1A6	47	data input
1A5	48	data input
1A4	49	data input
V _{CC}	50	positive voltage supply
1A3	51	data input
1A2	52	data input
GND	53	ground (0 V)
1A1	54	data input
1A0	55	data input
1OE1	56	output enable input (active-LOW)

7. Functional description

7.1 Function table

Function table^[1] Table 4:

Input		Output	Operating mode
nOEx	nAx	nYx	
L	L	L	transparent
L	Н	Н	transparent
Н	Х	Z	High-impedance

[1] X = don't care;

Z = High-impedance OFF-state;

- H = HIGH voltage level;
- L = LOW voltage level.

Limiting values 8.

Table 5: **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).^[1] Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input diode current	V _I < 0 V	–18	-	mA
VI	input voltage		[2] -1.2	+7.0	V
I _{OK}	output diode current	V _O < 0 V	-50	-	mA
9397 750 15122			© Koninkliji	e Philips Electronics	N.V. 2005. All rights reserved.

Product data sheet

20-bit buffer/line driver; non-inverting; 3-state

Table 5: Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).^[1] Voltages are referenced to GND (ground = 0 V).

			-		· · · · · · · · · · · · · · · · · · ·
Symbol	Parameter	Conditions	Min	Max	Unit
Vo	output voltage	output in OFF or HIGH-state	2 -0.5	+5.5	V
Ι _Ο	output current	output in LOW-state	-	128	mA
Tj	junction temperature		-	150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. Exceed 150 °C.

[2] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6:	Recommended operat	ng conditions				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC} = 3.3	$V \pm 0.3 V$					
V _{CC}	supply voltage		3.0	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output		-	-	32	mA
	current	current duty cycle \leq 50 %; f \geq 1 kHz	-	-	64	mA
$\Delta t / \Delta v$	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature		-40	-	+85	°C
V _{CC} = 2.5	$V \pm 0.2 V$					
V _{CC}	supply voltage		2.3	-	2.7	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		1.7	-	-	V
V _{IL}	input voltage		-	-	0.7	V
I _{OH}	HIGH-level output current		-	-	-8	mA
I _{OL}	LOW-level output		-	-	8	mA
	current	current duty cycle \leq 50 %; f \geq 1 kHz	-	-	24	mA
$\Delta t/\Delta v$	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature		-40	-	+85	°C

Table 6: Recommended operating conditions

9397 750 15122 Product data sheet

20-bit buffer/line driver; non-inverting; 3-state

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referred to GND (ground = 0 V). $T_{amb} = -40 \degree C$ to +85 $\degree C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC} = 3.3	V ± 0.3 V [1]						
V _{IK}	input clamp voltage	$V_{CC} = 3.0 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$		-	-0.85	-1.2	V
V _{OH}	HIGH-level output	V_{CC} = 3.0 V to 3.6 V; I_{OH} = $-100 \ \mu A$		$V_{CC}-0.2$	V _{CC}	-	V
	voltage	$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -32 \text{ mA}$		2.0	2.3	-	V
V _{OL}	LOW-level output	$V_{CC} = 3.0 V$					
	voltage	I _{OL} = 100 μA	[2]	-	0.07	0.2	V
		I _{OL} = 16 mA	[2]	-	0.25	0.4	V
		I _{OL} = 32 mA	[2]	-	0.3	0.5	V
		I _{OL} = 64 mA	[2]	-	0.4	0.55	V
ILI	input leakage current						
	control pins	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND		-	0.1	±1	μA
		$V_{CC} = 0 \text{ V or } 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$		-	0.1	10	μA
	I/O data pins	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC}$	[2]	-	0.5	1	μA
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	[2]	-	+0.1	-5	μA
I _{OFF}	off current	V_{CC} = 0 V; V _I or V _O = 0 V to 4.5 V		-	0.1	±100	μA
I _{HOLD}	bus hold current data	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 0.8 \text{ V}$	[3]	75	130	-	μA
	inputs	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 2.0 \text{ V}$	[3]	-75	-140	-	μA
		$V_{CC} = 0 V$ to 3.6 V; $V_{CC} = 3.6 V$	[3]	±500	-	-	μA
I _{EX}	current into an output in the HIGH-state when $V_O > V_{CC}$	V _O = 5.5 V; V _{CC} = 3.0 V		-	10	125	μA
I _{PU} , I _{PD}	power-up/down 3-state output current	$\begin{array}{l} V_{CC} \leq 1.2 \ V; \ V_{O} = 0.5 \ V \ to \ V_{CC}; \\ V_{I} = GND \ or \ V_{CC}; \ n \overline{OEx} = don't \ care \end{array}$	<u>[4]</u>	-	1	±100	μA
l _{oz}	3-state output	V_{CC} = 3.6 V; V_I = V_{IL} or V_{IH}					
	current	output HIGH; $V_0 = 3.0 V$		-	0.5	5	μA
		output LOW; $V_0 = 0.5 V$		-	+0.5	-5	μA
Icc	quiescent supply	V_{CC} = 3.6 V; V_I = GND or V_{CC} ; I_O = 0 A	۱.				
	current	outputs HIGH		-	0.07	0.1	mA
		outputs LOW		-	4.2	6	mA
		outputs disabled	[5]	-	0.07	0.1	mA
Δl _{CC}	additional supply current per input pin	V_{CC} = 3 V to 3.6 V; one input at V_{CC} – 0.6 V, other inputs at V_{CC} or GND	[6]	-	0.04	0.4	mA
CI	input capacitance	$V_I = 0 V \text{ or } V_{CC}$		-	3	-	pF
Co	output capacitance	$V_{I/O} = 0 V \text{ or } V_{CC}$		-	9	-	pF

20-bit buffer/line driver; non-inverting; 3-state

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$V_{\rm CC} = 2.5$	V ± 0.2 V [7]						
V _{IK}	input clamp voltage	$V_{CC} = 2.3 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$		-	-0.85	-1.2	V
V _{OH}	HIGH-level output	V_{CC} = 2.3 V to 2.7 V; I_{OH} = $-100~\mu A$		$V_{CC}-0.2$	V _{CC}	-	V
	voltage	$V_{CC} = 2.3 \text{ V}; I_{OH} = -8 \text{ mA}$		1.8	2.1	-	V
V _{OL}	LOW-level output	V _{CC} = 2.3 V					
	voltage	I _{OL} = 100 μA		-	0.07	0.2	V
		I _{OL} = 24 mA		-	0.3	0.5	V
		I _{OL} = 100 μA		-	0.07	0.2	V
ILI	input leakage current	V _{CC} = 2.3 V; I _{OL} = 24 mA		-	0.3	0.5	V
	control pins	V_{CC} = 2.7 V; V_{I} = V_{CC} or GND		-	0.1	±1	μA
	I/O data pins	$V_{CC} = 0 V \text{ or } 2.7 V; V_1 = 5.5 V$	[2]	-	0.1	10	μA
		$V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = V_{CC}$	[2]	-	0.1	1	μA
		$V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	[2]	-	+0.1	-5	μA
I _{OFF}	off current	$V_{CC} = 0 \text{ V}; \text{ V}_{1} \text{ or } \text{ V}_{0} = 0 \text{ V to } 4.5 \text{ V}$		-	0.1	±100	μA
I _{HOLD}	bus hold current data	$V_{CC} = 2.5 \text{ V}; \text{ V}_{I} = 0.8 \text{ V}$	[3]	-	115	-	μA
	inputs	V _{CC} = 2.5 V; V _I = 2.0 V	[3]	-	-10	-	μA
I _{EX}	current into an output in the HIGH-state when $V_O > V_{CC}$	$V_0 = 5.5 \text{ V}; V_{CC} = 2.3 \text{ V}$		-	10	125	μΑ
I _{PU} , I _{PD}	power-up/down 3-state output current	$V_{CC} \le 1.2 \text{ V}; V_O = 0.5 \text{ V} \text{ to } V_{CC};$ $V_I = GND \text{ or } V_{CC}; n\overline{OEx} = don't \text{ care}$	[4]	-	1	100	μA
l _{oz}	3-state output	V_{CC} = 2.7 V; V_O = 2.3 V; V_I = V_{IL} or V_{IH}					
	current	output HIGH; V_0 = 2.3 V		-	0.5	5	μA
		output LOW; $V_0 = 0.5 V$		-	+0.5	-5	μA
I _{CC}	quiescent supply	V_{CC} = 2.7 V; V_I = GND or V_{CC} ; I_O = 0 A					
	current	outputs HIGH		-	0.04	0.1	mA
		outputs LOW		-	3.6	5.0	mA
		outputs disabled	[5]	-	0.04	0.1	mA
ΔI_{CC}	additional supply current per input pin	V_{CC} = 2.3 V to 2.7 V; one input at V_{CC} – 0.6 V, other inputs at V_{CC} or GND	<u>[6]</u>	-	0.04	0.4	mA

Static characteristics ... continued Table 7:

[1] All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.

[2] Unused pins at V_{CC} or GND.

[3] This is the bus hold overdrive current required to force the input to the opposite logic state.

This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V [4] a transition time of 100 μs is permitted. This parameter is valid for T_{amb} = 25 °C only.

I_{CC} is measured with outputs pulled up to V_{CC} or pulled down to ground. [5]

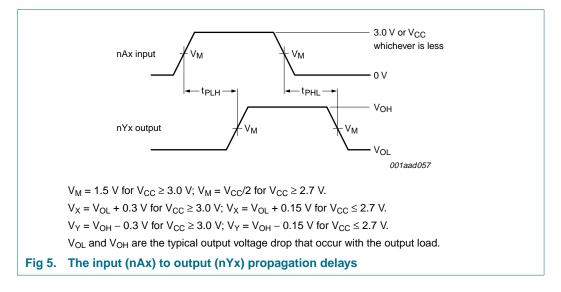
[6] This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

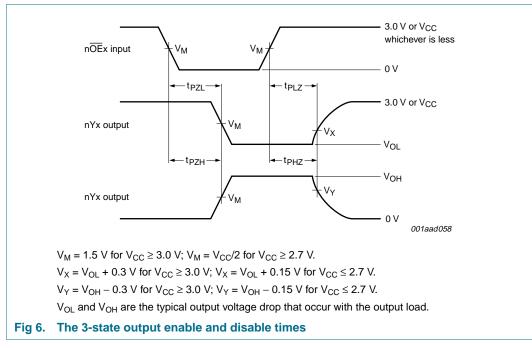
[7] All typical values are at V_{CC} = 2.5 V and T_{amb} = 25 °C.

9397 750 15122

20-bit buffer/line driver; non-inverting; 3-state

11. Dynamic characteristics


Table 8: Dynamic characteristics


GND = 0 V; $t_r = t_f = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$; $T_{amb} = -40 \circ C$ to $+85 \circ C$; for test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{CC} = 3.3 V$	± 0.3 V					
t _{PLH}	propagation delay nAx to nYx	see Figure 5	0.7	1.5	2.2	ns
t _{PHL}	propagation delay nAx to nYx	see Figure 5	0.8	1.6	2.3	ns
t _{PZH}	output enable time to HIGH-level	see Figure 6	1.6	2.6	3.8	ns
t _{PZL}	output enable time to LOW-level	see Figure 6	1.4	2.3	3.2	ns
t _{PHZ}	output disable time from HIGH-level	see Figure 6	2.3	3.2	4.8	ns
t _{PLZ}	output disable time from LOW-level	see Figure 6	1.5	2.5	3.8	ns
$V_{CC} = 2.5 V$	± 0.2 V					
t _{PLH}	propagation delay nAx to nYx	see Figure 5	1.0	2.0	2.9	ns
t _{PHL}	propagation delay nAx to nYx	see Figure 5	1.0	2.0	3.0	ns
t _{PZH}	output enable time to HIGH-level	see Figure 6	2.0	3.2	5.5	ns
t _{PZL}	output enable time to LOW-level	see Figure 6	1.7	2.9	4.3	ns
t _{PHZ}	output disable time from HIGH-level	see Figure 6	1.8	2.8	5.1	ns
t _{PLZ}	output disable time from LOW-level	see Figure 6	1.4	2.3	3.9	ns

20-bit buffer/line driver; non-inverting; 3-state

12. AC waveforms

20-bit buffer/line driver; non-inverting; 3-state

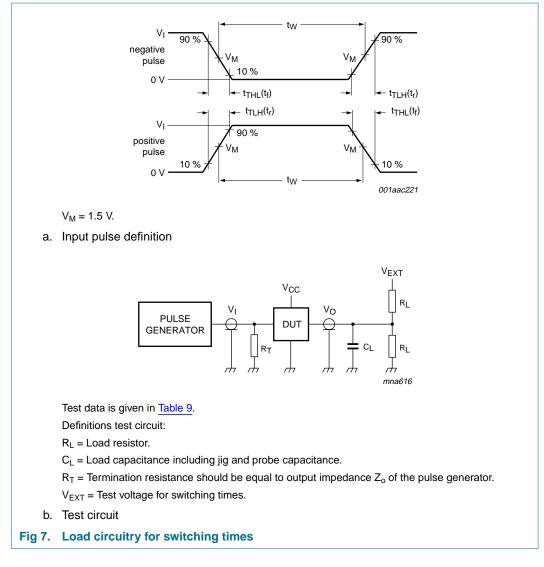
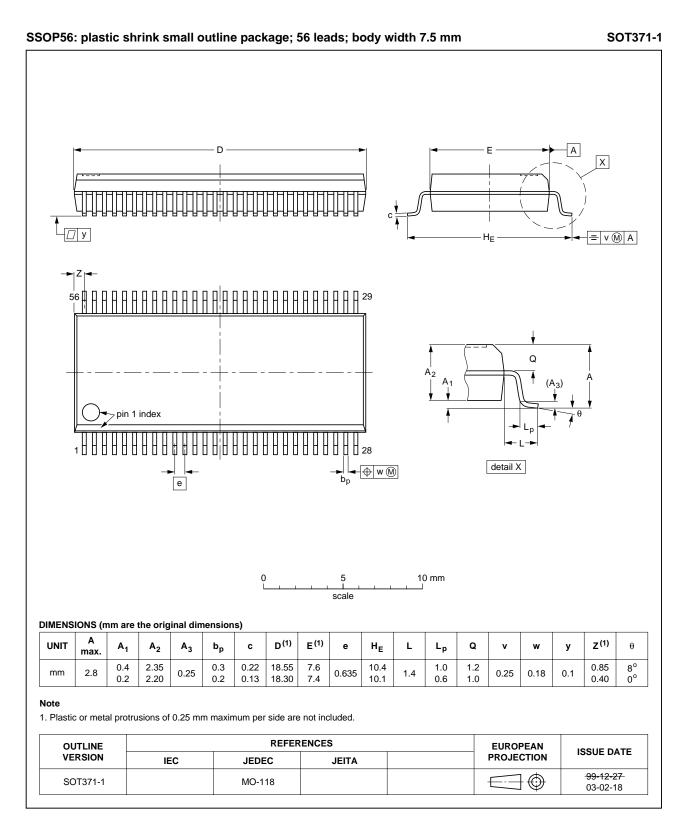


Table 9: Test data


Input			Load		V _{EXT}			
VI	f _i	tw	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
3.0 V or V _{CC} whichever is less	≤ 10 MHz	500 ns	≤ 2.5 ns	50 pF	500 Ω	6 V or $V_{CC} \times 2$	open	GND

Philips Semiconductors

74ALVT16827

20-bit buffer/line driver; non-inverting; 3-state

13. Package outline

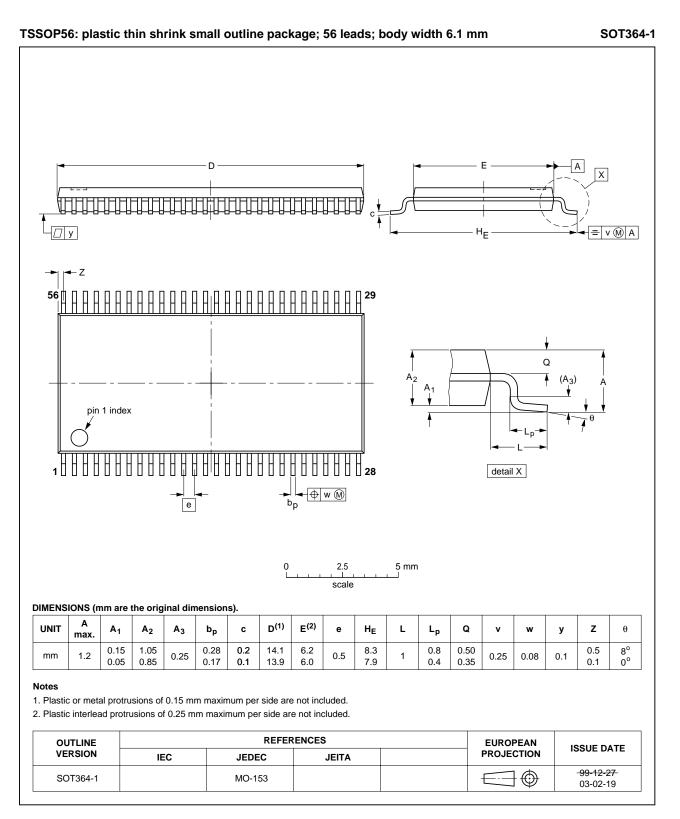


Fig 8. Package outline SOT371-1 (SSOP56)

9397 750 15122

Product data sheet

20-bit buffer/line driver; non-inverting; 3-state

Fig 9. Package outline SOT364-1 (TSSOP56)

9397 750 15122

Product data sheet

20-bit buffer/line driver; non-inverting; 3-state

14. Revision history

Table 10: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74ALVT16827_3	20050602	Product data sheet	-	9397 750 15122	74ALVT16827_2
 Modifications: The format of this data sheet has been redesigned to comply with the new presentation a information standard of Philips Semiconductors. <u>Section 2 "Features"</u>: modified 'JEDEC Std 17' into 'JESD78'. <u>Section 11 "Dynamic characteristics"</u>: changed values in column 'min' 					

20-bit buffer/line driver; non-inverting; 3-state

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

19. Contact information

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners.

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

74ALVT16827

20-bit buffer/line driver; non-inverting; 3-state

20. Contents

1	General description 1
2	Features 1
3	Quick reference data 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 3
6.1 6.2	Pinning
7	Functional description 5
7.1	Function table
8	Limiting values 5
9	Recommended operating conditions
10	Static characteristics7
11	Dynamic characteristics
12	AC waveforms 10
13	Package outline 12
14	Revision history 14
15	Data sheet status 15
16	Definitions 15
17	Disclaimers 15
18	Trademarks 15
19	Contact information 15

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Published in The Netherlands

Date of release: 2 June 2005 Document number: 9397 750 15122