DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4066B gates
 Quadruple bilateral switches

Product specification
File under Integrated Circuits, IC04

Quadruple bilateral switches

DESCRIPTION

The HEF4066B has four independent bilateral analogue switches (transmission gates). Each switch has two input/output terminals (Y/Z) and an active HIGH enable input (E). When E is connected to V_{DD} a low impedance bidirectional path between Y and Z is established (ON condition). When E is connected to $\mathrm{V}_{\text {SS }}$ the switch is
disabled and a high impedance between Y and Z is established (OFF condition).

The HEF4066B is pin compatible with the HEF4016B but exhibits a much lower ON resistance. In addition the ON resistance is relatively constant over the full input signal range.

Fig. 2 Pinning diagram.

PINNING

E_{0} to E_{3} enable inputs
Y_{0} to Y_{3} input/output terminals
Z_{0} to $Z_{3} \quad$ input/output terminals

APPLICATION INFORMATION

An example of application for the HEF4066B is:

- Analogue and digital switching

Fig. 3 Schematic diagram (one switch).

Quadruple bilateral switches

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Power dissipation per switch
P max. 100 mW
For other RATINGS see Family Specifications

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	$\mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right)$		CONDITIONS
			$-40+25$ MAX. MAX.	+85 MAX.	
Quiescent device current	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	I_{DD}	1,0 1,0 2,0 2,0 4,0 4,0	$\begin{array}{r} 7,5 \mu \mathrm{~A} \\ 15,0 \quad \mu \mathrm{~A} \\ 30,0 \quad \mu \mathrm{~A} \end{array}$	$\mathrm{V}_{\mathrm{SS}}=0$; all valid input combinations; $V_{I}=V_{S S}$ or $V_{D D}$
Input leakage current at E_{n}	15	$\pm \mathrm{I}_{\mathrm{IN}}$	300	1000 nA	E_{n} at $V_{S S}$ or $V_{D D}$

Quadruple bilateral switches

Fig. 4 Test set-up for measuring R_{ON}.
E_{n} at $V_{D D}$
$\mathrm{l}_{\text {is }}=200 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Fig. 5 Typical R_{ON} as a function of input voltage.

NOTE

To avoid drawing $V_{D D}$ current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed $0,4 \mathrm{~V}$. If the switch current flows into terminal Z , no V_{DD} current will flow out of terminals Y , in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed $V_{D D}$ or $V_{S S}$.

Quadruple bilateral switches

AC CHARACTERISTICS ${ }^{(1), ~(2)}$
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	TYP.	MAX.		
Propagation delays $\mathrm{V}_{\text {is }} \rightarrow \mathrm{V}_{\text {os }}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$	ns ns ns	note 3
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$	ns ns ns	note 3
Output disable times $\mathrm{E}_{\mathrm{n}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tPHZ	$\begin{aligned} & 80 \\ & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 160 \\ & 130 \\ & 120 \end{aligned}$	ns ns ns	note 4
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLZ }}$	$\begin{aligned} & 80 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 140 \\ & 140 \end{aligned}$	ns ns ns	note 4
Output enable times $\mathrm{E}_{\mathrm{n}} \rightarrow \mathrm{~V}_{\text {os }}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PZH }}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	ns ns ns	note 4
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PZL }}$	$\begin{aligned} & 45 \\ & 20 \\ & 15 \end{aligned}$	90 40 30	ns ns ns	note 4
Distortion, sine-wave response	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{aligned} & \hline 0,25 \\ & 0,04 \\ & 0,04 \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$	note 5
Crosstalk between any two channels	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{aligned} & - \\ & 1 \\ & - \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	note 6
Crosstalk; enable input to output	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		50		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	note 7
OFF-state feed-through	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		- 1 -		MHz MHz MHz	note 8
ON-state frequency response	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{array}{r} - \\ 90 \\ - \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	note 9

Quadruple bilateral switches

	$\mathbf{V}_{\mathbf{D D}}$ \mathbf{V}	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$800 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$3500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{C}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$10100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
			$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Notes

1. $V_{i s}$ is the input voltage at a Y or Z terminal, whichever is assigned as input.
2. $V_{o s}$ is the output voltage at a Y or Z terminal, whichever is assigned as output.
3. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{S S} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{S S} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); see Figs 6 and 10 .
4. $R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave);
$V_{\text {is }}=V_{D D}$ and R_{L} to $V_{S S}$ for $t_{P H Z}$ and $t_{P Z H}$;
$V_{\text {is }}=V_{S S}$ and R_{L} to $V_{D D}$ for $t_{P L Z}$ and $t_{P Z L}$; see Figs 6 and 11.
5. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=15 \mathrm{pF} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}$; see Fig. 7 .
6. $R_{L}=1 \mathrm{k} \Omega ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$);
$20 \log \frac{V_{0 s}(B)}{V_{\text {is }}(A)}=-50 d B ; E_{n}(A)=V_{S S} ; E_{n}(B)=V_{D D} ;$ see Fig. 8.
7. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); crosstalk is $\left|\mathrm{V}_{\mathrm{os}}\right|$ (peak value); see Fig.6.
8. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF} ; \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig. 7.
9. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 p F ; E_{n}=V_{D D} ; V_{i s}=1 / 2 V_{D D(p-p)}$ (sine-wave, symmetrical about $1 / 2 V_{D D}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-3 \mathrm{~dB}$; see Fig. 7.

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Quadruple bilateral switches

Fig. 10 Waveforms showing propagation delays from $V_{\text {is }}$ to V_{os}.

(1) $V_{\text {is }}$ at $V_{D D}$
(2) $V_{\text {is }}$ at $V_{S S}$.

Fig. 11 Waveforms showing output disable and enable times.

