74LVC4T3144 4-bit dual supply buffer/line driver; 3-state Rev. 1 — 14 August 2017

Product data sheet

1 General description

The 74LVC4T3144 is a 4-bit, dual-supply level translating buffer with 3-state outputs. It features four data inputs (An and B4), four data outputs (YBn and YA4), and an output enable input (\overline{OE}) . The device is configured to translate three inputs from $V_{CC(A)}$ to $V_{CC(B)}$ and one input from $V_{CC(B)}$ to $V_{CC(A)}$. \overline{OE} , An and YA4 are referenced to $V_{CC(A)}$ and YBn and B4 are referenced to V_{CC(B)}. A HIGH on \overline{OE} causes the outputs to assume a highimpedance OFF-state.

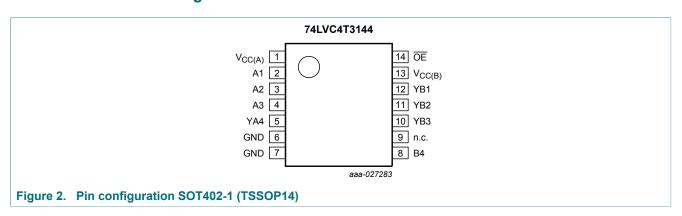
The device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables outputs, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, all outputs are in the high-impedance OFF-state.

2 Features and benefits

- Wide supply voltage range:
 - V_{CC(A)}: 1.2 V to 5.5 V
 - V_{CC(B)}: 1.2 V to 5.5 V
- High noise immunity
- · Complies with JEDEC standards:
 - JESD8-11A (1.4 V to 1.6 V)
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8C (3.0 V to 3.6 V)
 - JESD12-6 (4.5 V to 5.5 V)
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 4000 V
 - CDM JESD22-C101E exceeds 1000 V
- · Maximum data rates:
 - 200 Mbps (3.3 V to 5.0 V translation)
 - 140 Mbps (translate to 3.3 V))
 - 100 Mbps (translate to 2.5 V)
 - 75 Mbps (translate to 1.8 V)
 - 60 Mbps (translate to 1.5 V)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78B Class II
- ±24 mA output drive (V_{CC} = 3.0 V)
- Inputs accept voltages up to 5.5 V
- Low power consumption: 30 μA maximum I_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3 Ordering information

Table 1. Ordering information


Type number	Package	Package						
	Temperature range	Name	Description	Version				
74LVC4T3144PW	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1				

4 Functional diagram

5 Pinning information

5.1 Pinning

74LVC4T3144

All information provided in this document is subject to legal disclaimers.

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
V _{CC(A)}	1	supply voltage A (An inputs, YA4 output and $\overline{\text{OE}}$ input are referenced to $V_{\text{CC(A)}}$)
A1, A2, A3	2, 3, 4	data input
YA4	5	data output
GND	6, 7	ground (0 V)
B4	8	data input
n.c.	9	not connected
YB3, YB2, YB1	10, 11, 12	data output
V _{CC(B)}	13	supply voltage B (YBn outputs and B4 input are referenced to $V_{\text{CC}(B)}$)
ŌĒ	14	output enable input (active LOW)

Functional description

Table 3. Function table [1]

Supply voltage	Control	Input	Output					
V _{CC(A)} , V _{CC(B)}	OE ^[2]	An, B4 ^[2]	YBn, YA4 ^[2]					
1.2 V to 5.5 V	L	L	L					
1.2 V to 5.5 V	L	Н	Н					
1.2 V to 5.5 V	Н	X	Z					
GND ^[3]	X	X	Z					

- H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state. The An inputs, YA4 output and \overline{OE} input are referenced to $V_{CC(A)}$; The YBn outputs and B4 input are referenced to $V_{CC(B)}$. If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

7 Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			-0.5	+6.5	V
V _{CC(B)}	supply voltage B			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
V _I	input voltage		[1]	-0.5	+6.5	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode	1] [2] [3]	-0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	[1]	-0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CCO}$	[2]	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)} ; per V _{CC} pin		-	100	mA
I _{GND}	ground current	per GND pin		-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[4]	-	500	mW

The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

8 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		1.2	5.5	V
V _{CC(B)}	supply voltage B		1.2	5.5	V
V _I	input voltage		0	5.5	V
Vo	output voltage	Active mode [1]	0	V _{CCO}	V
		Suspend or 3-state mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CCI} = 1.2 V [2]	-	20	ns/V
		V _{CCI} = 1.4 V to 1.95 V	-	20	ns/V
		V _{CCI} = 2.3 V to 2.7 V	-	20	ns/V
		V _{CCI} = 3 V to 3.6 V	-	10	ns/V
		V _{CCI} = 4.5 V to 5.5 V	-	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

74LVC4T3144

All information provided in this document is subject to legal disclaimers.

^[2] V_{CCO} is the supply voltage associated with the output port.

 $V_{CCO} + 0.5 \text{ V}$ should not exceed 6.5 V.

^[4] For TSSOP14 package: P_{tot} derates linearly at 7.0 mW/K above 75 °C.

^{2]} V_{CCI} is the supply voltage associated with the input port.

Static characteristics

Table 6. Typical static characteristics at T_{amb} = 25 °C

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	YBn, YA4; V _I = V _{IH} or V _{IL}	[1]				
		I _O = -3 mA; V _{CCO} = 1.2 V		-	1.09	-	V
V _{OL}	LOW-level output voltage	YBn, YA4; V _I = V _{IH} or V _{IL}					
		I _O = 3 mA; V _{CCO} = 1.2 V	[1]	-	0.07	-	V
lı	input leakage current	An, B4 and \overline{OE} input; V _I = 0 V to 5.5 V; V _{CCI} = 1.2 V to 5.5 V	[2]	-	-	±1	μΑ
l _{OZ}	OFF-state output current	YBn, YA4; V _O = 0 V or V _{CCO} ; V _{CCO} = 1.2 V to 5.5 V	[1]	-	-	±1	μΑ
		YBn, YA4; suspend mode; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 5.5 \text{ V}; V_{CC(B)} = 0 \text{ V}$	[1]	-	-	±1	μΑ
		YBn, YA4; suspend mode; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 5.5 \text{ V}$	[1]	-	-	±1	μA
I _{OFF}	power-off leakage current	A port; V_1 or $V_0 = 0$ V to 5.5 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 1.2$ V to 5.5 V		-	-	±1	μΑ
		B port; V_1 or V_0 = 0 V to 5.5 V; $V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 1.2 V to 5.5 V		-	-	±1	μΑ
Cı	input capacitance	An, B4 and \overline{OE} input; V _I = 0 V or 3.3 V; V _{CC(A)} = 3.3 V; V _{CC(B)} = 3.3 V		-	3	-	pF
Co	output capacitance	YBn, YA4 output; $V_O = 0 \text{ V or } 3.3 \text{ V};$ $\overline{\text{OE}} \text{ input} = 3.3 \text{ V}; V_{CC(A)} = 3.3 \text{ V};$ $V_{CC(B)} = 3.3 \text{ V}$		-	6.5	-	pF

 V_{CCO} is the supply voltage associated with the output port. V_{CCI} is the supply voltage associated with the input port.

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
V _{IH}	HIGH-level	data input [1]					
	input voltage	V _{CCI} = 1.2 V	0.8V _{CCI}	-	0.8V _{CCI}	-	V
		V _{CCI} = 1.4 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.7	-	1.7	-	V
		V _{CCI} = 3.0 V to 3.6 V	2.0	-	2.0	-	V
		V _{CCI} = 4.5 V to 5.5 V	0.7V _{CCI}	-	0.7V _{CCI}	-	V
		OE input					
		V _{CCI} = 1.2 V	0.8V _{CC(A)}	-	0.8V _{CC(A)}	-	V
		V _{CCI} = 1.4 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.7	-	1.7	-	V
		V _{CCI} = 3.0 V to 3.6 V	2.0	-	2.0	-	V
		V _{CCI} = 4.5 V to 5.5 V	0.7V _{CC(A)}	-	0.7V _{CC(A)}	-	V
V _{IL}	LOW-level	data input [1]					
	input voltage	V _{CCI} = 1.2 V	-	0.2V _{CCI}	-	0.2V _{CCI}	V
		V _{CCI} = 1.4 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		V _{CCI} = 4.5 V to 5.5 V	-	0.3V _{CCI}	-	0.3V _{CCI}	V
		OE input					
		V _{CCI} = 1.2 V	-	0.2V _{CC(A)}	-	0.2V _{CC(A)}	V
		V _{CCI} = 1.4 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		V _{CCI} = 4.5 V to 5.5 V	-	0.3V _{CC(A)}	-	0.3V _{CC(A)}	V

Symbol	Parameter	Conditions		-40 °C to	+85 °C	-40 °C to	+125 °C	Unit
				Min	Max	Min	Max	
V _{OH}	HIGH-level	$V_I = V_{IH}$						
	output voltage	I _O = -100 μA; V _{CCO} = 1.2 V to 4.5 V	[2]	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		I _O = -6 mA; V _{CCO} = 1.4 V		1.0	-	1.0	-	V
		I _O = -8 mA; V _{CCO} = 1.65 V		1.2	-	1.2	-	V
		I_{O} = -12 mA; V_{CCO} = 2.3 V		1.9	-	1.9	-	V
		I _O = -24 mA; V _{CCO} = 3.0 V		2.4	-	2.4	-	V
	I _O = -24 mA; V _{CCO} = 4.5 V		3.85	-	3.85	-	V	
		I_{O} = -32 mA; V_{CCO} = 4.5 V		3.8	-	3.8	-	V
V _{OL}	LOW-level	$V_I = V_{IL}$	[2]					
0	output voltage	I _O = 100 μA; V _{CCO} = 1.2 V to 4.5 V		-	0.1	-	0.1	V
		I _O = 6 mA; V _{CCO} = 1.4 V		-	0.3	-	0.3	V
		I _O = 8 mA; V _{CCO} = 1.65 V		-	0.45	-	0.45	V
		I _O = 12 mA; V _{CCO} = 2.3 V		-	0.3	-	0.3	V
		I _O = 24 mA; V _{CCO} = 3.0 V		-	0.55	-	0.55	V
		I _O = 24 mA; V _{CCO} = 4.5 V		-	0.50	-	0.50	V
		I _O = 32 mA; V _{CCO} = 4.5 V		-	0.55	-	0.55	V
l _l	input leakage current	V _I = 0 V to 5.5 V; V _{CCI} = 1.2 V to 5.5 V		-	±2	-	±10	μA
l _{OZ}	OFF-state output current	$V_O = 0 \text{ V or } V_{CCO};$ $V_{CCO} = 1.2 \text{ V to } 5.5 \text{ V}$	[2]	-	±2	-	±10	μA
		suspend mode; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 5.5 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	[2]	-	±2	-	±10	μA
		suspend mode; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 5.5 \text{ V}$	[2]	-	±2	-	±10	μA
l _{OFF}	power-off leakage	A port; V_1 or $V_0 = 0$ V to 5.5 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 1.2$ V to 5.5 V		-	±2	-	±10	μA
	current	B port; V _I or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 1.2 V to 5.5 V		-	±2	-	±10	μΑ

Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
I _{CC}	supply current	A port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$ [1]					
		V _{CC(A)} , V _{CC(B)} = 1.2 V to 5.5 V	-	15	-	20	μA
		V _{CC(A)} = 5.5 V; V _{CC(B)} = 0 V	-	15	-	20	μA
		V _{CC(A)} = 0 V; V _{CC(B)} = 5.5 V	-2	-	-4	-	μA
		B port; V _I = 0 V or V _{CCI} ; I _O = 0 A					
		V _{CC(A)} , V _{CC(B)} = 1.2 V to 5.5 V	-	15	-	20	μA
		V _{CC(B)} = 0 V; V _{CC(A)} = 5.5 V	-2	-	-4	-	μA
		V _{CC(B)} = 5.5 V; V _{CC(A)} = 0 V	-	15	-	20	μA
		A plus B port (I _{CC(A)} + I _{CC(B)}); I _O = 0 A; V _I = 0 V or V _{CCI}					
		V _{CC(A)} , V _{CC(B)} = 1.2 V to 5.5 V	-	25	-	30	μA
ΔI _{CC}	additional supply current	per input; V _{CC(A)} , V _{CC(B)} = 3.0 V to 5.5 V					
		OE input; OE input at V _{CC(A)} - 0.6 V; A port at V _{CC(A)} or GND; B port = open	-	50	-	75	μΑ
		A port; A port at V _{CC(A)} - 0.6 V; B port = open	-	50	-	75	μA
		B port; B port at V _{CC(B)} - 0.6 V; A port = open	-	50	-	75	μA

 V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.

10 Dynamic characteristics

Table 8. Typical dynamic characteristics at $V_{CC(A)}$ = 1.2 V and T_{amb} = 25 °C ^[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 5; for waveforms see Figure 3 and Figure 4.

Symbol	Parameter	Conditions	$V_{CC(B)}$						
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{pd}	propagation delay	An to YBn	15.6	11.6	9.8	7.8	6.9	6.3	ns
		B4 to YA4	15.6	14.5	14.0	13.5	13.3	13.8	ns
t _{dis}	disable time	OE to YA4	8.7	8.7	8.7	8.7	8.7	8.7	ns
		OE to YBn	11.9	9.2	8.7	7.4	7.7	6.8	ns
t _{en}	enable time	OE to YA4	17.5	17.5	17.5	17.5	17.5	17.5	ns
		OE to YBn	18.3	13.6	11.5	9.5	8.8	8.5	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 9. Typical dynamic characteristics at $V_{CC(B)} = 1.2 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 5; for waveforms see Figure 3 and Figure 4.

Symbol	Parameter	Conditions	V _{CC(A)}						
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{pd} pro	propagation delay	An to YBn	15.6	14.5	14.0	13.5	13.3	13.1	ns
		B4 to YA4	15.6	11.6	9.8	7.8	6.9	6.3	ns
t _{dis}	disable time	OE to YA4	8.7	6.1	5.5	3.9	4.1	2.9	ns
		OE to YBn	11.9	10.5	9.9	9.2	8.9	8.4	ns
t _{en}	enable time	OE to YA4	17.5	11.6	9.0	5.7	4.6	3.8	ns
		OE to YBn	18.3	17.0	16.4	15.8	15.6	15.4	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 10. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \, ^{\circ}C^{[1][2]}$

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	eter Conditions		Conditions $V_{CC(A)}$ and $V_{CC(B)}$					
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
C _{PD} power dissipatio capacitance	power dissipation	inputs An, B4	0.5	0.5	0.5	0.7	0.9	1.3	pF
	capacitance	outputs YBn, YA4	12	12	12	12	12	12	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

[2] $f_i = 10 \text{ MHz}$; $V_i = \text{GND to } V_{CC}$; $t_r = t_f = 1 \text{ ns}$; $C_L = 0 \text{ pF}$; $R_L = \infty \Omega$.

74LVC4T3144

All information provided in this document is subject to legal disclaimers.

Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C $^{[1]}$

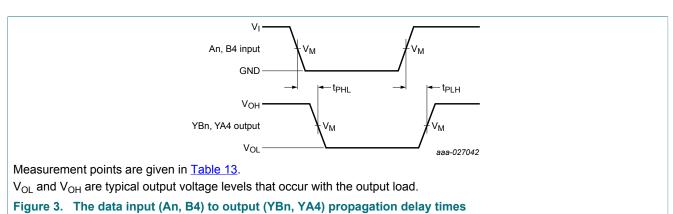
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 5; for waveforms see Figure 3 and Figure 4.

delay B4 to YA4 1.7 20.7 1.6 19.8 1.6 19.0 1.5 18.5 1.5 18.3 1.6 1.5 18.5 1.5 18.3 1.6 1.3 11.6 1.2 1.3 11.6 1.3 11.6 1.2 11.8 12.5 1.2 11.8 12.5 1.2 11.4 1.4 1.5 14.2 1.3 12.5 1.2 11.4 1.4	Symbol	Parameter	Conditions					Vcc	(B)	,	,			Unit
Voc(A) = 1.5 ∨ ± 0.1 ∨ tpd propagation delay An to YBn 1.7 20.7 1.6 17.1 1.3 12.9 1.1 11.1 1.0 9.5 t total stable time OE to YA4 1.7 20.7 1.6 19.8 1.6 19.0 1.5 18.5 1.5 18.3 total stable time OE to YA4 1.3 11.6 1.2 11.8 2.1 21.8 <th< th=""><th></th><th></th><th></th><th>1.5 V:</th><th>£0.1 V</th><th>1.8 V±</th><th>0.15 V</th><th>2.5 V:</th><th>±0.2 V</th><th>3.3 V:</th><th>±0.3 V</th><th>5.0 V:</th><th>±0.5 V</th><th></th></th<>				1.5 V:	£0.1 V	1.8 V±	0.15 V	2.5 V:	±0.2 V	3.3 V:	±0.3 V	5.0 V:	±0.5 V	
tpd propagation delay An to YBn 1.7 20.7 1.6 17.1 1.3 12.9 1.1 11.1 1.0 9.5 I tqis delay B4 to YA4 1.7 20.7 1.6 19.8 1.6 19.0 1.5 18.5 1.5 18.3 1 tqis disable time DE to YA4 1.3 11.6 1.1 1.1 1.1 1.1				Min	Max									
tdis delay	$V_{CC(A)} = 1$	1.5 V ± 0.1 V							'	'	'			
t _{dis} disable time	t _{pd}	propagation	An to YBn	1.7	20.7	1.6	17.1	1.3	12.9	1.1	11.1	1.0	9.5	ns
ten enable time		delay	B4 to YA4	1.7	20.7	1.6	19.8	1.6	19.0	1.5	18.5	1.5	18.3	ns
$ \begin{array}{c} \operatorname{ten} \\ \operatorname{ten} \\ \operatorname{ten} \\ \operatorname{enable time} \\ \operatorname{enable time} \\ \operatorname{o} \\ \operatorname{De to YAA} \\ \operatorname{OE to YBn} \\ \operatorname{2.1} \\ \operatorname{2.12} \\ \operatorname{2.18} \\ \operatorname{2.11} \\ \operatorname{2.18} \\ \operatorname{1.18} \\ \operatorname{1.10} \\ \operatorname{0Propagation} \\ \operatorname{delay} \\ \operatorname{OE to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{OE to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{0Propagation} \\ \operatorname{0E to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{0Propagation} \\ \operatorname{0E to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{0Propagation} \\ \operatorname{0E to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{0Propagation} \\ \operatorname{0E to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{1.10} \\ \operatorname{0Propagation} \\ \operatorname{0E to YAA} \\ \operatorname{1.10} \\ \operatorname{1.10}$	t _{dis}	disable time	OE to YA4	1.3	11.6	1.3	11.6	1.3	11.6	1.3	11.6	1.3	11.6	ns
No No No No No No No No			OE to YBn	1.5	14.4	1.6	13.2	1.3	10.4	1.5	10.7	1.2	9.4	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{en}	enable time	OE to YA4	2.1	21.8	2.1	21.8	2.1	21.8	2.1	21.8	2.1	21.8	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			OE to YBn	2.1	22.2	1.8	18.4	1.5	14.2	1.3	12.5	1.2	11.4	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{CC(A)} = 1$	I.8 V ± 0.15 V												
$t_{dis} = \begin{cases} $	t_{pd}		An to YBn	1.6	19.8	1.4	16.2	1.2	11.9	1.0	10.2	0.9	8.5	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		delay	B4 to YA4	1.6	17.1	1.4	16.2	1.3	15.3	1.2	14.9	1.2	14.5	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{dis}	disable time	OE to YA4	1.4	10.1	1.4	10.1	1.4	10.1	1.4	10.1	1.4	10.1	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			OE to YBn	1.4	13.7	1.5	12.3	1.2	9.5	1.4	9.7	1.1	8.2	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{en}	enable time	OE to YA4	1.8	17.2	1.8	17.2	1.8	17.2	1.8	17.2	1.8	17.2	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			OE to YBn	2.0	21.4	1.7	17.4	1.4	12.9	1.2	11.1	1.1	9.8	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{CC(A)} = 2$	2.5 V ± 0.2 V												
$t_{dis} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	t_{pd}	propagation	An to YBn	1.6	19.0	1.3	15.3	1.0	11.0	0.9	9.1	0.7	7.2	ns
		delay	B4 to YA4	1.3	12.9	1.2	11.9	1.0	11.0	0.9	10.6	0.9	10.2	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{dis}	disable time	OE to YA4	0.9	7.2	0.9	7.2	0.9	7.2	0.9	7.2	0.9	7.2	ns
			OE to YBn	1.3	12.8	1.4	11.3	1.1	8.4	1.3	8.5	1.0	6.9	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{en}	enable time	OE to YA4	1.4	11.7	1.4	11.7	1.4	11.7	1.4	11.7	1.4	11.7	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OE to YBn	2.0	20.8	1.6	16.6	1.3	11.9	1.2	9.9	1.0	8.2	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{CC(A)} = 3$	3.3 V ± 0.3 V												
t _{dis} disable time OE to YA4 1.1 7.2 1.	t _{pd}		An to YBn	1.5	18.5	1.2	14.9	0.9	10.6	0.8	8.5	0.7	6.6	ns
OE to YBn 1.2 12.3 1.3 10.9 1.0 8.0 1.2 8.0 0.9 6.3 r ten enable time OE to YA4 1.2 9.3		delay	B4 to YA4	1.1	11.1	1.0	10.2	0.9	9.1	0.8	8.5	0.7	8.1	ns
t _{en} enable time	t _{dis}	disable time	OE to YA4	1.1	7.2	1.1	7.2	1.1	7.2	1.1	7.2	1.1	7.2	ns
			OE to YBn	1.2	12.3	1.3	10.9	1.0	8.0	1.2	8.0	0.9	6.3	ns
OE to VPn 2.0 204 1.7 16.5 1.4 14.5 1.2 0.4 1.0 7.5	t _{en}	enable time	OE to YA4	1.2	9.3	1.2	9.3	1.2	9.3	1.2	9.3	1.2	9.3	ns
OE W 1011 2.0 20.4 1.7 10.5 1.4 11.5 1.2 9.4 1.0 7.5 1			OE to YBn	2.0	20.4	1.7	16.5	1.4	11.5	1.2	9.4	1.0	7.5	ns

Symbol	Parameter	Conditions		$V_{CC(B)}$								Unit	
			1.5 V±0.1 V		1.8 V±0.15 V		2.5 V±0.2 V		3.3 V±0.3 V		5.0 V±0.5 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} = 5$	5.0 V ± 0.5 V						<u>'</u>	-	1	-			
t _{pd} propagation	An to YBn	1.5	18.3	1.2	14.5	0.9	10.2	0.7	8.1	0.6	6.3	ns	
	delay	B4 to YA4	1.0	9.5	0.9	8.5	0.7	7.2	0.7	6.6	0.6	6.3	ns
t _{dis}	disable time	OE to YA4	0.7	5.3	0.7	5.3	0.7	5.3	0.7	5.3	0.7	5.3	ns
		OE to YBn	1.2	12.0	1.3	10.5	0.9	7.6	1.2	7.6	0.8	5.8	ns
t _{en} enable time	OE to YA4	1.1	7.0	1.1	7.0	1.1	7.0	1.1	7.0	1.1	7.0	ns	
	OE to YBn	2.0	20.5	1.7	16.4	1.4	11.4	1.2	9.2	1.0	7.2	ns	

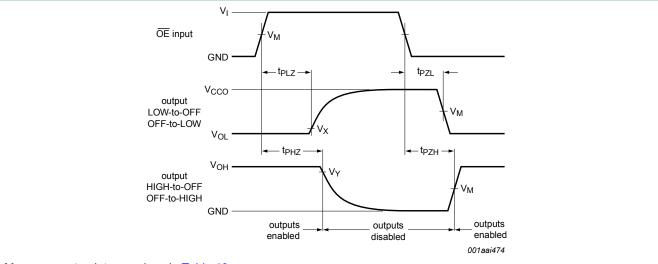
 $^{[1] \}hspace{0.5cm} t_{pd} \hspace{0.1cm} \text{is the same as } t_{PLH} \hspace{0.1cm} \text{and} \hspace{0.1cm} t_{PHL}; \hspace{0.1cm} t_{dis} \hspace{0.1cm} \text{is the same as } t_{PLZ} \hspace{0.1cm} \text{and} \hspace{0.1cm} t_{PHZ}; \hspace{0.1cm} t_{en} \hspace{0.1cm} \text{is the same as } t_{PZL} \hspace{0.1cm} \text{and} \hspace{0.1cm} t_{PZH}.$

Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C [1]


Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 5; for waveforms see Figure 3 and Figure 4.

•		,,	•			_				•		•	
Symbol	Parameter	Conditions					Vcc	(B)					Unit
				1.5 V±0.1 V 1.8 V±0.15 V 2.5 V±0.2 V				3.3 V±0.3 V 5.0 V±0.5 V					
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.5 V ± 0.1 V						'	1		1	1	-	
t _{pd}	propagation	An to YBn	1.7	22.0	1.6	18.3	1.3	14.0	1.1	12.2	1.0	10.5	ns
	delay	B4 to YA4	1.7	22.0	1.6	21.0	1.6	20.1	1.5	19.5	1.5	19.4	ns
t _{dis}	disable time	OE to YA4	1.3	12.8	1.3	12.8	1.3	12.8	1.3	12.8	1.3	12.8	ns
		OE to YBn	1.5	15.8	1.6	14.5	1.3	11.5	1.5	11.1	1.2	9.7	ns
t _{en}	enable time	OE to YA4	2.1	23.2	2.1	23.2	2.1	23.2	2.1	23.2	2.1	23.2	ns
		OE to YBn	2.1	23.6	1.8	19.6	1.5	15.4	1.3	13.7	1.2	12.6	ns
$V_{CC(A)} = $	1.8 V ± 0.15 V					·				,	,		
t _{pd}	propagation	An to YBn	1.6	21.0	1.4	17.4	1.2	13.0	1.0	11.2	0.9	9.3	ns
	delay	B4 to YA4	1.6	18.3	1.4	17.4	1.3	16.4	1.2	16.0	1.2	15.6	ns
t _{dis}	disable time	OE to YA4	1.4	11.2	1.4	11.2	1.4	11.2	1.4	11.2	1.4	11.2	ns
		OE to YBn	1.4	15.2	1.5	13.5	1.2	10.5	1.4	10.0	1.1	8.5	ns
t _{en}	enable time	OE to YA4	1.8	18.4	1.8	18.4	1.8	18.4	1.8	18.4	1.8	18.4	ns
		OE to YBn	2.0	22.7	1.7	18.7	1.4	14.1	1.2	12.2	1.1	10.8	ns

Symbol	Parameter	Conditions	V _{CC(B)}									Unit	
			1.5 V:	±0.1 V	1.8 V±	0.15 V	2.5 V±0.2 V		3.3 V±0.3 V		5.0 V	±0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} = 2$	2.5 V ± 0.2 V												
t _{pd}	propagation delay	An to YBn	1.6	20.1	1.3	16.4	1.0	11.9	0.9	9.9	0.7	7.9	ns
		B4 to YA4	1.3	14.0	1.2	13.0	1.0	11.9	0.9	11.5	0.9	11.1	ns
t _{dis}	disable time	OE to YA4	0.9	8.0	0.9	8.0	0.9	8.0	0.9	8.0	0.9	8.0	ns
		OE to YBn	1.3	14.0	1.4	12.5	1.1	9.3	1.3	9.3	1.0	7.5	ns
t _{en}	enable time	OE to YA4	1.4	12.7	1.4	12.7	1.4	12.7	1.4	12.7	1.4	12.7	ns
		OE to YBn	2.0	22.0	1.6	17.9	1.3	13.0	1.2	10.8	1.0	9.0	ns
$V_{CC(A)} = 3$	3.3 V ± 0.3 V	<u>'</u>	'	,						'	,	'	
t _{pd}	propagation	An to YBn	1.5	19.5	1.2	16.0	0.9	11.5	8.0	9.3	0.7	7.3	ns
	delay	B4 to YA4	1.1	12.2	1.0	11.2	0.9	9.9	8.0	9.3	0.7	8.8	ns
t _{dis}	disable time	OE to YA4	1.1	7.8	1.1	7.8	1.1	7.8	1.1	7.8	1.1	7.8	ns
		OE to YBn	1.2	13.6	1.3	12.1	1.0	8.8	1.2	8.3	0.9	6.5	ns
t _{en}	enable time	OE to YA4	1.2	10.1	1.2	10.1	1.2	10.1	1.2	10.1	1.2	10.1	ns
		OE to YBn	2.0	21.6	1.7	17.5	1.4	12.6	1.2	10.3	1.0	8.3	ns
$V_{CC(A)} = 5$	5.0 V ± 0.5 V		•						•	'	'		
t _{pd}	propagation	An to YBn	1.5	19.4	1.2	15.6	0.9	11.1	0.7	8.8	0.6	6.8	ns
	delay	B4 to YA4	1.0	10.5	0.9	9.3	0.7	7.9	0.7	7.3	0.6	6.8	ns
t _{dis}	disable time	OE to YA4	0.7	5.7	0.7	5.7	0.7	5.7	0.7	5.7	0.7	5.7	ns
		OE to YBn	1.2	13.3	1.3	11.7	0.9	8.4	1.2	7.9	0.8	6.0	ns
t _{en}	enable time	OE to YA4	1.1	7.7	1.1	7.7	1.1	7.7	1.1	7.7	1.1	7.7	ns
		OE to YBn	2.0	21.7	1.7	17.4	1.4	12.5	1.2	10.1	1.0	7.9	ns


^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

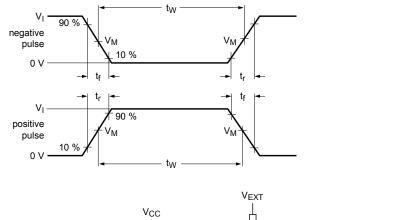
10.1 Waveforms and test circuit

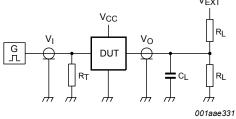
74LVC4T3144

All information provided in this document is subject to legal disclaimers.

Measurement points are given in Table 13.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Figure 4. Enable and disable times


Table 13. Measurement points

rabio ro. mododromont po	Jiito						
Supply voltage	Input ^[1]	Output [2]					
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y			
1.2 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} - 0.1 V			
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} - 0.15 V			
3.0 V to 5.5 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} - 0.3 V			

^[1] V_{CCI} is the supply voltage associated with the input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

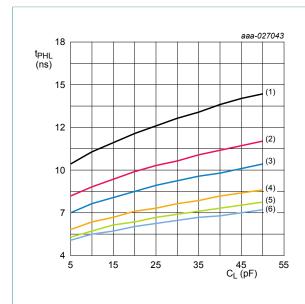
Test data is given in Table 14.

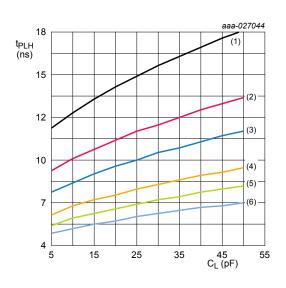
R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

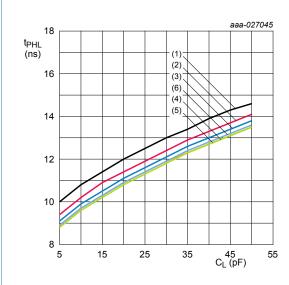
 R_T = Termination resistance.

V_{EXT} = External voltage for measuring switching times.

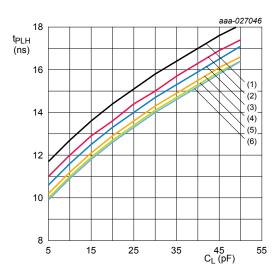

Figure 5. Test circuit for measuring switching times


Table 14. Test data

Supply voltage	Input		Load		V _{EXT}			
$V_{CC(A)}, V_{CC(B)}$	V _I ^[1]	Δt/ΔV ^[2]	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]	
1.2 V to 5.5 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2 x V _{CCO}	


- $\ensuremath{V_{\text{CCI}}}$ is the supply voltage associated with the input port.
- [2] [3] dV/dt ≥ 1.0 V/ns.
- $\ensuremath{V_{\text{CCO}}}$ is the supply voltage associated with the output port.

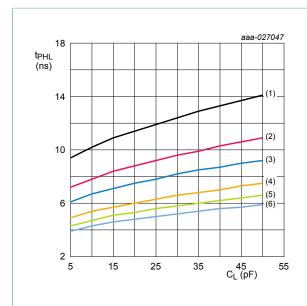
10.2 Typical propagation delay characteristics



a. HIGH to LOW propagation delay (An to YBn)

b. LOW to HIGH propagation delay (An to YBn)

d. LOW to HIGH propagation delay (B4 to YA4)


c. HIGH to LOW propagation delay (B4 to YA4)

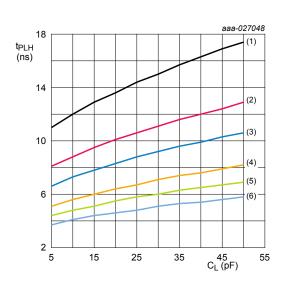
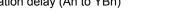
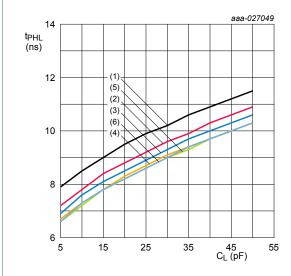
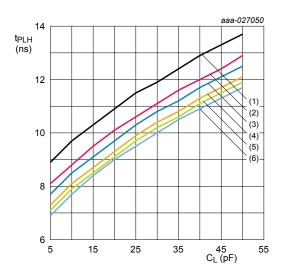

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$
- (6) $V_{CC(B)} = 5.0 \text{ V}$

Figure 6. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; $V_{CC(A)}$ = 1.2 V


74LVC4T3144

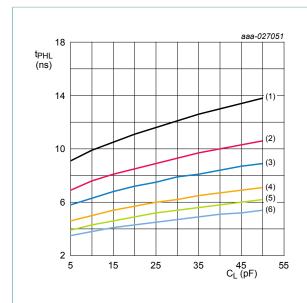

All information provided in this document is subject to legal disclaimers.



a. HIGH to LOW propagation delay (An to YBn)

b. LOW to HIGH propagation delay (An to YBn)

d. LOW to HIGH propagation delay (B4 to YA4)


c. HIGH to LOW propagation delay (B4 to YA4)

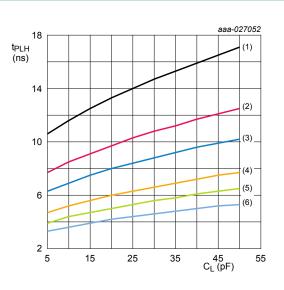
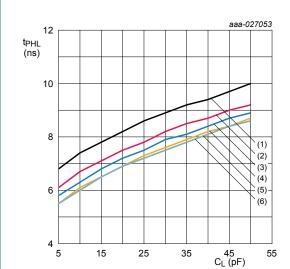
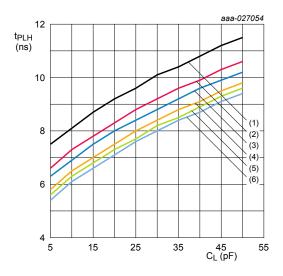

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$
- (6) $V_{CC(B)} = 5.0 \text{ V}$

Figure 7. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; $V_{CC(A)}$ = 1.5 V


74LVC4T3144

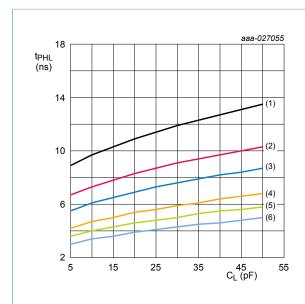
All information provided in this document is subject to legal disclaimers.



a. HIGH to LOW propagation delay (An to YBn)

b. LOW to HIGH propagation delay (An to YBn)

d. LOW to HIGH propagation delay (B4 to YA4)


c. HIGH to LOW propagation delay (B4 to YA4)

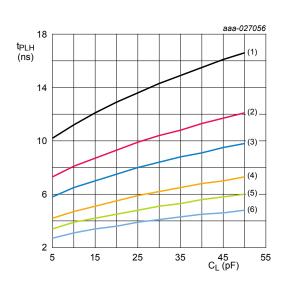
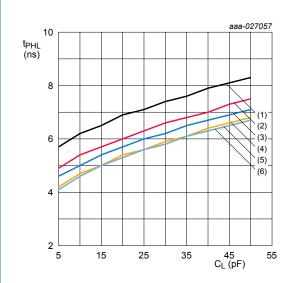
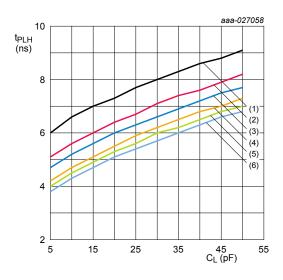

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$
- (6) $V_{CC(B)} = 5.0 \text{ V}$

Figure 8. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; V_{CC(A)} = 1.8 V


74LVC4T3144

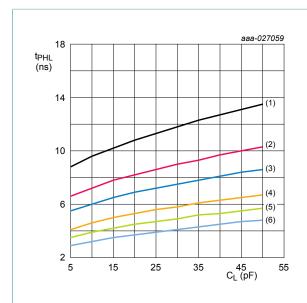
All information provided in this document is subject to legal disclaimers.



a. HIGH to LOW propagation delay (An to YBn)

b. LOW to HIGH propagation delay (An to YBn)

d. LOW to HIGH propagation delay (B4 to YA4)


c. HIGH to LOW propagation delay (B4 to YA4)

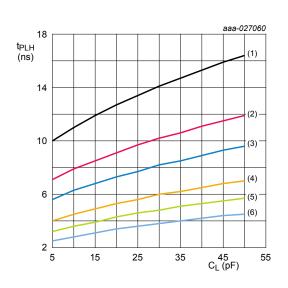
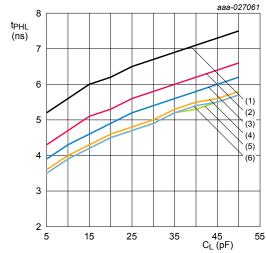
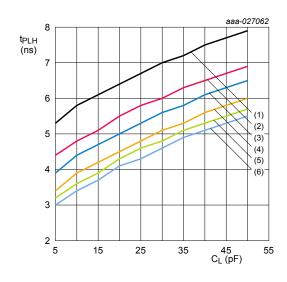

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$
- (6) $V_{CC(B)} = 5.0 \text{ V}$

Figure 9. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; $V_{CC(A)}$ = 2.5 V

74LVC4T3144

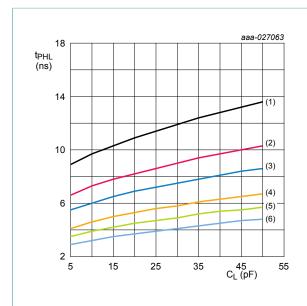
All information provided in this document is subject to legal disclaimers.

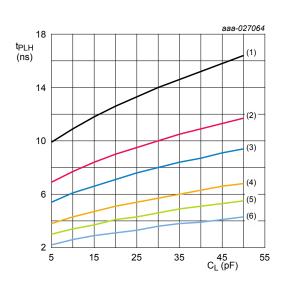




a. HIGH to LOW propagation delay (An to YBn)

b. LOW to HIGH propagation delay (An to YBn)




c. HIGH to LOW propagation delay (B4 to YA4)

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$
- (6) $V_{CC(B)} = 5.0 \text{ V}$

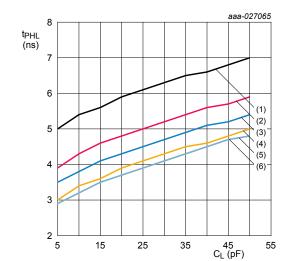
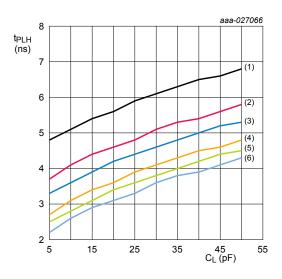

d. LOW to HIGH propagation delay (B4 to YA4)

Figure 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; V_{CC(A)} = 3.3 V



a. HIGH to LOW propagation delay (An to YBn)

b. LOW to HIGH propagation delay (An to YBn)

d. LOW to HIGH propagation delay (B4 to YA4)

c. HIGH to LOW propagation delay (B4 to YA4)

- (1) $V_{CC(B)} = 1.2 \text{ V}$
- (2) $V_{CC(B)} = 1.5 \text{ V}$
- (3) $V_{CC(B)} = 1.8 \text{ V}$
- (4) $V_{CC(B)} = 2.5 \text{ V}$
- (5) $V_{CC(B)} = 3.3 \text{ V}$
- (6) $V_{CC(B)} = 5.0 \text{ V}$

Figure 11. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; $V_{CC(A)}$ = 5 V

11 Application information

11.1 Unidirectional logic level-shifting application

The circuit given in <u>Figure 12</u> is an example of the 74LVC4T3144 being used in an unidirectional logic level-shifting application.

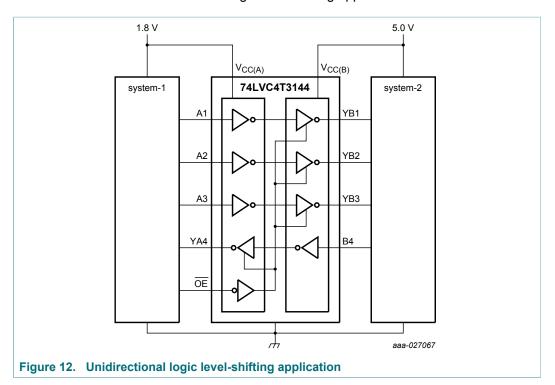


Table 15. Description unidirectional logic level-shifting application

Name	Description
V _{CC(A)}	supply voltage of system-1 (1.2 V to 5.5 V)
$V_{CC(B)}$	supply voltage of system-2 (1.2 V to 5.5 V)
A1, A2, A3	input level depends on V _{CC(A)} voltage
YA4	output level depends on V _{CC(A)} voltage
YB1, YB2, YB3	output level depends on V _{CC(B)} voltage
B4	input level depends on V _{CC(B)} voltage
ŌĒ	input level depends on V _{CC(A)} voltage
GND	device GND

11.2 Power-up considerations

The device is designed such that no special power-up sequence is required other than GND being applied first.

Table 16. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

V _{CC(A)}	V _{CC(B)}	/ _{CC(B)}						
	0 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
0 V	0	< 1	< 1	< 1	< 1	< 1	< 1	μΑ
1.2 V	< 1	< 1	< 1	< 1	< 1	< 1	1	μΑ
1.5 V	< 1	< 1	< 1	< 1	< 1	< 1	< 1	μΑ
1.8 V	< 1	< 1	< 1	< 1	< 1	< 1	< 1	μΑ
2.5 V	< 1	< 1	< 1	< 1	< 1	< 1	< 1	μΑ
3.3 V	< 1	< 1	< 1	< 1	< 1	< 1	< 1	μΑ
5.0 V	< 1	1	< 1	< 1	< 1	< 1	< 1	μΑ

12 Package outline

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1 = v M A Q pin 1 index detail X - (w (M) е 5 mm **DIMENSIONS** (mm are the original dimensions) UNIT $D^{(1)}$ $E^{(2)}$ H_{E} Q $Z^{(1)}$ θ L С е у max. 1.1 0.65 0.2 0.13 mm 0.25 0.80 0.19

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	ES EUROPEAN					
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE			
SOT402-1		MO-153				-99-12-27- 03-02-18			

Figure 13. Package outline SOT402-1 (TSSOP14)

LVC4T3144 All information provided in this document is subject to legal disclaimers.

13 Abbreviations

Table 17. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model

14 Revision history

Table 18. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC4T3144 v.1	20170814	Product data sheet	-	-

15 Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions". [2] [3]
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

All information provided in this document is subject to legal disclaimers.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	2
4	Functional diagram	2
5	Pinning information	
5.1	Pinning	
5.2	Pin description	
6	Functional description	3
7	Limiting values	4
8	Recommended operating conditions	4
9	Static characteristics	5
10	Dynamic characteristics	9
10.1	Waveforms and test circuit	12
10.2	Typical propagation delay characteristics	15
11	Application information	21
11.1	Unidirectional logic level-shifting application	21
11.2	Power-up considerations	22
12	Package outline	23
13	Abbreviations	24
14	Revision history	24
15	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Nexperia B.V. 2017.

All rights reserved.