

RF Power LDMOS Transistors High Ruggedness N-Channel

Enhancement-Mode Lateral MOSFETs

Designed for mobile two-way radio applications with frequencies from 136 to 520 MHz. The high gain, ruggedness and broadband performance of these devices make them ideal for large-signal, common source amplifier applications in mobile radio equipment.

Typical Performance: (13.6 Vdc, T_A = 25°C, CW)

Frequency (MHz)	G _{ps} (dB)	η _D (%)	P1dB (W)
136-174 (1,4)	23.2	62.0	31
380-450 (2,4)	18.3	64.1	31
450-520 (3,4)	17.7	62.0	31
520 (5)	17.7	71.4	33

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
155 (1)	CW	>65:1 at all Phase Angles	0.55 (3 dB Overdrive)	17	No Device Degradation
420 (2)			1.6 (3 dB Overdrive)		
490 (3)			2.0 (3 dB Overdrive)		
520 (5)			1.1 (3 dB Overdrive)		

1. Measured in 136-174 MHz VHF broadband reference circuit.

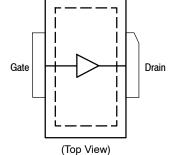
- 2. Measured in 380-450 MHz UHF broadband reference circuit.
- 3. Measured in 450-520 MHz UHF broadband reference circuit.
- 4. The values shown are the minimum measured performance numbers across the indicated frequency range.
- 5. Measured in 520 MHz narrowband test circuit.

Features

- · Characterized for Operation from 136 to 520 MHz
- Unmatched Input and Output Allowing Wide Frequency Range Utilization
- Integrated ESD Protection
- Integrated Stability Enhancements
- Wideband Full Power Across the Band:
 - 136-174 MHz
 - 380-450 MHz
 - 450-520 MHz
- 225°C Capable Plastic Package
- Exceptional Thermal Performance
- High Linearity for: TETRA, SSB, LTE
- · Cost-effective Over-molded Plastic Packaging
- In Tape and Reel. R1 Suffix = 500 Units, 24 mm Tape Width, 13 inch Reel.

Typical Applications

- Output Stage VHF Band Mobile Radio
- Output Stage UHF Band Mobile Radio


Document Number: AFT05MS031N Rev. 1, 4/2013

VRoHS

AFT05MS031NR1 AFT05MS031GNR1

136-520 MHz, 31 W, 13.6 V WIDEBAND RF POWER LDMOS TRANSISTORS

Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating			Va	lue	Unit	
Drain-Source Voltage			-0.5	, +40	Vdc	
Gate-Source Voltage			-6.0	, +12	Vdc	
Operating Voltage	V _{DD}	17,	+0	Vdc		
Storage Temperature Range		T _{stg}	-65 to	o +150	°C	
Case Operating Temperature Range		Т _С	-40 to	o +150	°C	
Operating Junction Temperature Range (1,2)		ТJ	-40 to	+225	°C	
Total Device Dissipation @ T _C = 25°CPD294Derate above 25°C1.47					W W/°C	
able 2. Thermal Characteristics		L				
Characteristic		Symbol	Valu	e ^(2,3)	Unit	
Thermal Resistance, Junction to Case Case Temperature 79°C, 31 W CW, 13.6 Vdc, I _{DQ} = 10 mA, 520 MHz		$R_{ extsf{ heta}JC}$	0.67		°C/W	
able 3. ESD Protection Characteristics						
Test Methodology			Class			
Human Body Model (per JESD22-A114)			2, passes 2500 V			
Machine Model (per EIA/JESD22-A115)			A, passes 100 V			
Charge Device Model (per JESD22-C101)		IV, passes 2000 V				
able 4. Moisture Sensitivity Level						
Test Methodology	Rating	Package	Peak Temp	perature	Unit	
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260			°C	
able 5. Electrical Characteristics (T _A = 25°C unless otherwise noted)					
Characteristic	Symbol	Min	Тур	Max	Unit	
Off Characteristics						
Zero Gate Voltage Drain Leakage Current (V _{DS} = 40 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	2	μAdd	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 13.6 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—		1	μAdo	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)		—	—	600	nAdo	
On Characteristics		·		L		
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 115 μ Adc)	V _{GS(th)}	1.6	2.1	2.6	Vdc	
Drain-Source On-Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 1.2 \text{ Adc})$	V _{DS(on)}	—	0.13	_	Vdc	
Forward Transconductance	9 _{fs}		5.8		S	

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

>65:1 at all Phase Angles

CW

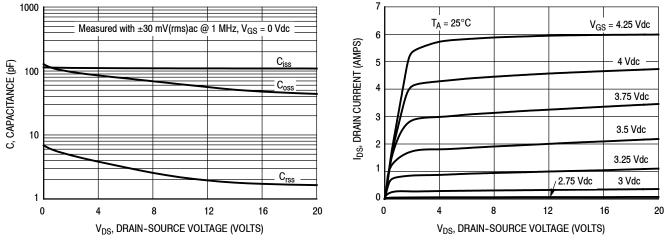
520

Characteristic				Symbol	Min	Тур	Max	Unit
Dynamic Characteristics								
Reverse Transfer Capacitance (V _{DS} = 13.6 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)				C _{rss}	_	1.6	-	pF
Output Capacitance (V _{DS} = 13.6 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)				C _{oss}		49.5	-	pF
Input Capacitance (V _{DS} = 13.6 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)			C _{iss}	_	109	—	pF	
Functional Test	Functional Tests ⁽¹⁾ (In Freescale Narrowband Test Fixture, 50 ohm system) V _{DD} = 13.6 Vdc, I _{DQ} = 10 mA, P _{out} = 31 W, f = 520 MHz							
Common-Source Amplifier Power Gain			G _{ps}	16.5	17.7	19.0	dB	
Drain Efficiency			η_{D}	70.0	71.4	_	%	
Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) I _{DQ} = 10 mA								
Frequency (MHz)	Signal Type	VSWR	P (V		Test Voltag	e, V _{DD}	Resu	lt

1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

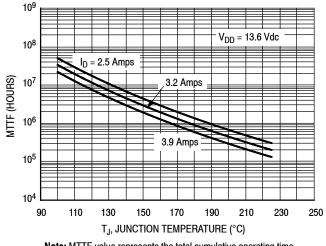
1.1

(3 dB Overdrive)


17

No Device Degradation

3



TYPICAL CHARACTERISTICS

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

520 MHz NARROWBAND PRODUCTION TEST FIXTURE

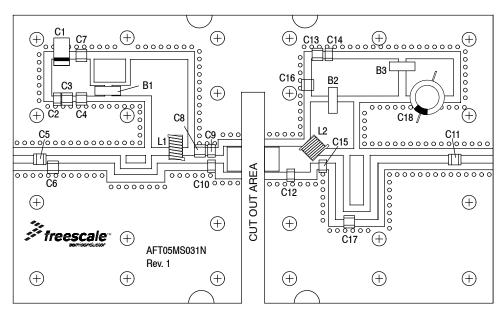


Figure 5. AFT05MS031NR1 Narrowband Test Circuit Component Layout — 520 MHz

Part	Description	Part Number	Manufacturer
B1, B2, B3	RF Beads, Long	2743021447	Fair-Rite
C1	22 µF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C2, C14	0.01 μF Chip Capacitors	C0805C103K5RAC	Kemet
C3, C13	0.1 μF Chip Capacitors	CDR33BX104AKWS	Kemet
C4	200 pF Chip Capacitor	ATC100B201JT300XT	ATC
C5	6.2 pF Chip Capacitor	ATC100B6R2JT500XT	ATC
C6	3.9 pF Chip Capacitor	ATC100B3R9JT500XT	ATC
C7, C16	180 pF Chip Capacitors	ATC100B181JT200XT	ATC
C8	10 pF Chip Capacitor	ATC100B100JT500XT	ATC
C9, C10, C11, C12	36 pF Chip Capacitors	ATC100B360JT500XT	ATC
C15	27 pF Chip Capacitor	ATC100B270JT500XT	ATC
C17	7.5 pF Chip Capacitor	ATC100B7R5JT500XT	ATC
C18	470 μF, 63 V Electrolytic Capacitor	SME63V471M12X25LL	United Chemi-Cor
L1	43 nH, 10 Turn Inductor	B10TJLC	Coilcraft
L2	56 nH Inductor	1812SMS-56NJLC	Coilcraft
PCB	0.030″, ε _r = 2.55	AD255A	Arlon

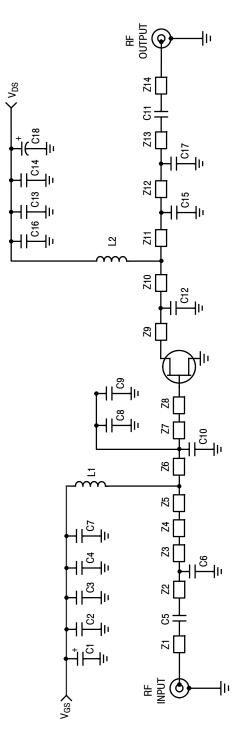
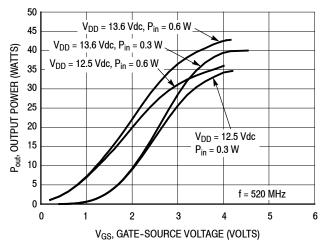
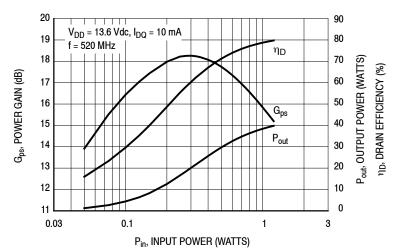
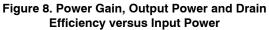
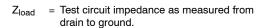



Figure 6. AFT05MS031NR1 Narrowband Test Circuit Schematic — 520 MHz


Table 7. AF	Table 7. AFT05MS031NR1 Narrowband Test Circuit Microstrips — 520 MHz	Test Circuit	Microstrips — 520 MHz
Microstrip	Description	Microstrip	Description
Z1	0.199" × 0.082" Microstrip	Z8	0.190" × 0.270" Microstrip
Z2	0.017" × 0.082" Microstrip	Z9	0.257" × 0.275" Microstrip
Z3*	0.670" × 0.082" Microstrip	Z10	0.145" × 0.275" Microstrip
Z4*	0.560" × 0.060" Microstrip	Z11	0.091" × 0.082" Microstrip
Z5*	0.370" × 0.082" Microstrip	Z12*	0.1322" × 0.082" Microstrip
Z6	0.079" × 0.082" Microstrip	Z13*	0.1420" × 0.082" Microstrip
Z7	0.352" × 0.082" Microstrip	Z14	0.315" × 0.082" Microstrip
* Line lenath	* Line length includes microstrip bends		



TYPICAL CHARACTERISTICS — 520 MHz



V_{DD} = 13.6 Vdc, I_{DQ} = 10 mA, P_{out} = 31 W Avg.				
f MHz	Z _{source} Ω	Z _{load} Ω		
520	0.72 + j1.77	1.54 + j0.80		
	est circuit impedance ate to ground.	as measured from		

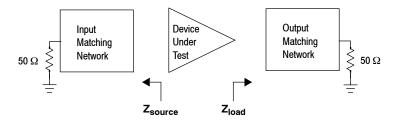


Figure 9. Narrowband Series Equivalent Source and Load Impedance — 520 MHz

RF Device Data Freescale Semiconductor, Inc.

136-174 MHz VHF BROADBAND REFERENCE CIRCUIT

Table 8. 136–174 MHz VHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system) V_{DD} = 13.6 Volts, I_{DQ} = 100 mA, T_A = 25°C, CW

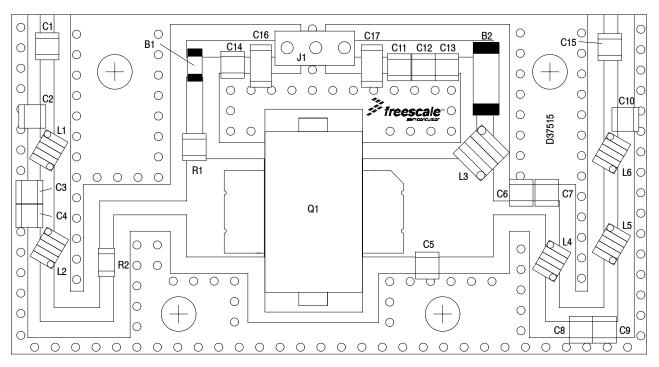
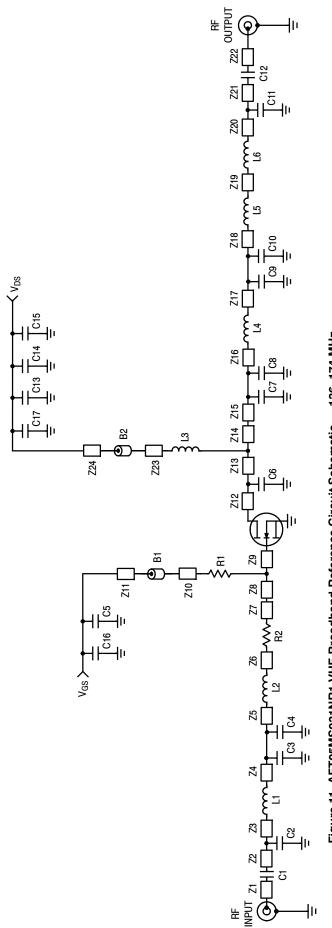

Frequency (MHz)	G _{ps} (dB)	η _D (%)	P1dB (W)
136	25.0	64.0	31
155	23.2	63.0	31
174	23.2	62.0	31

Table 9. Load Mismatch/Ruggedness (In Freescale Reference Circuit)


Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
155	CW	>65:1 at all Phase Angles	0.55 (3 dB Overdrive)	17	No Device Degradation

136-174 MHz VHF BROADBAND REFERENCE CIRCUIT

Part	Description	Part Number	Manufacturer
B1	Low Current Ferrite Bead	2508051107Y0	Fair-Rite
B2	High Current Ferrite Bead	2518065007Y6	Fair-Rite
C1	68 pF Chip Capacitor	ATC600F680JT250XT	ATC
C2	47 pF Chip Capacitor	ATC600F470BT250XT	ATC
C3, C4, C6, C7	100 pF Chip Capacitors	ATC600F101JT250XT	ATC
C5	20 pF Chip Capacitor	ATC600F200JT250XT	ATC
C8, C9	56 pF Chip Capacitors	ATC600F560JT250XT	ATC
C10	27 pF Chip Capacitor	ATC600F270JT250XT	ATC
C11	0.1 µF Chip Capacitor	GRM21BR71H104KA01B	Murata
C12	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata
C13, C14, C15	240 pF Chip Capacitors	ATC600F241JT250XT	ATC
C16, C17	10 μF Chip Capacitors	GRM31CR61H106KA12L	Murata
J1	3 Pin Connector	AMP-9-146305-0	TE Connectivity
L1	19 nH Inductor	0806SQ-19NGLC	Coilcraft
L2	6.9 nH Inductor	0807SQ-6N9GLC	Coilcraft
L3	27 nH Inductor	0908SQ-27NGLC	Coilcraft
L4	6 nH Inductor	0806SQ-6N0GLC	Coilcraft
L5	14 nH Inductor	0807SQ-14NGLC	Coilcraft
L6	10 nH Inductor	0807SQ-10NGLC	Coilcraft
Q1	RF Power LDMOS Transistor	AFT05MS031NR1	Freescale
R1	62 Ω, 1/4 W Chip Resistor	RG2012N-620-BT1	Susumu
R2	0 Ω, 1/4 W Chip Resistor	CWCR08050000Z0EA	Vishay
PCB	0.020″, ε _r = 4.9	S1000-2	Shengyi

Table 11. A	Table 11. AFT05MS031NR1 VHF Broadband Reference Circuit Microstrips — 136-174 MHz	and Refere	nce Circuit Microstrips — 13	36-174 MHz	
Microstrip	Description	Microstrip	Description	Microstrip	Description
Z1	0.034″ × 0.060″ Microstrip	Z9	0.240" × 0.170" Microstrip	Z17	0.034" × 0.230" Microstrip
Z2	0.034" × 0.120" Microstrip	Z10	0.034" × 0.130" Microstrip	Z18	0.034" × 0.200" Microstrip
Z3	0.034″ × 0.057″ Microstrip	Z11	0.034" × 0.080" Microstrip	Z19	0.034" × 0.190" Microstrip
Z4	0.034" × 0.120" Microstrip	Z12	0.240" × 0.155" Microstrip	Z20	0.034" × 0.050" Microstrip
Z5	0.034″ × 0.075″ Microstrip	Z13	0.240" × 0.115" Microstrip	Z21	0.034" × 0.150" Microstrip
Z6	0.034″ × 0.431″ Microstrip	Z14	0.240" × 0.050" Microstrip	Z22	0.034" × 0.060" Microstrip
Z7	0.034" × 0.309" Microstrip	Z15	0.034" × 0.065" Microstrip	Z23	0.034" × 0.130" Microstrip
Z8	0.240″ × 0.020″ Microstrip	Z16	0.034" × 0.140" Microstrip	Z24	0.034" × 0.080" Microstrip

TYPICAL CHARACTERISTICS — 136-174 MHz VHF BROADBAND REFERENCE CIRCUIT

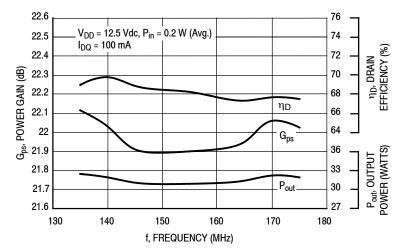
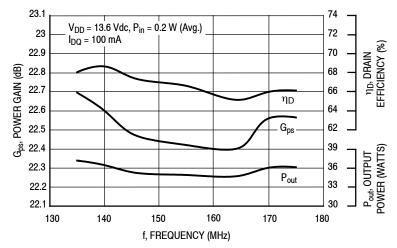
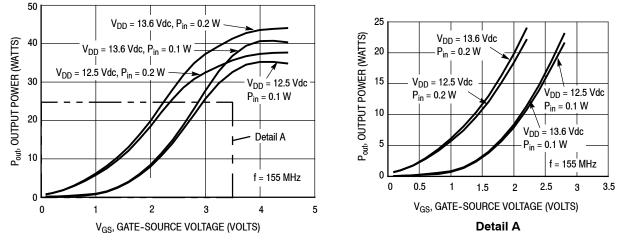
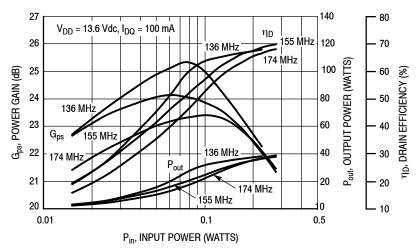
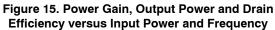


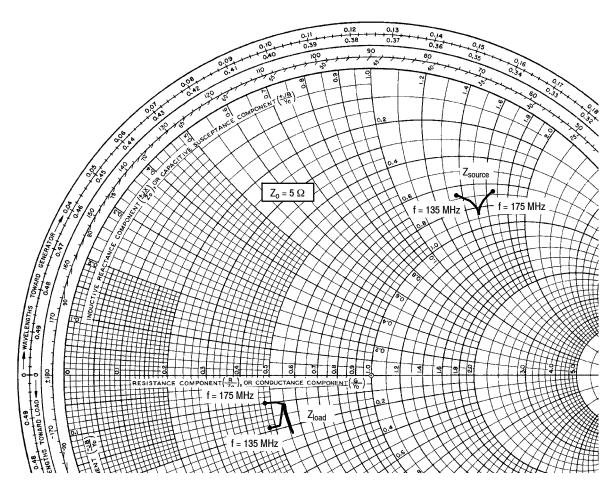
Figure 12. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 12.5 V

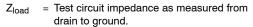

Figure 13. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 13.6 V



TYPICAL CHARACTERISTICS — 136-174 MHz VHF BROADBAND REFERENCE CIRCUIT



12


136-174 MHz VHF BROADBAND REFERENCE CIRCUIT

Vpp =	13.6 Vdc		100 mA	Pout =	31 W Avg
\mathbf{v}	10.0 vuc	, u)() –	100 1117,		

f MHz	Z _{source} Ω	Z _{load} Ω
135	3.33 + j6.92	2.42 - j0.95
140	3.66 + j7.23	2.59 - j0.96
145	3.97 + j7.44	2.71 - j1.03
150	4.21 + j7.53	2.78 - j1.13
155	4.31 + j7.54	2.77 - j1.23
160	4.21 + j7.54	2.71 - j1.31
165	3.94 + j7.65	2.61 - j1.34
170	3.58 + j7.94	2.50 - j1.32
175	3.24 + j8.42	2.41 - j1.24

Z_{source} = Test circuit impedance as measured from gate to ground.

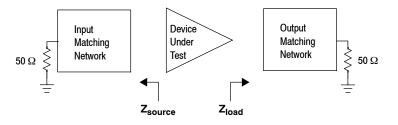


Figure 16. VHF Broadband Series Equivalent Source and Load Impedance — 136-174 MHz

RF Device Data Freescale Semiconductor, Inc.

Frequency (MHz)	G _{ps} (dB)	η _D (%)	P1dB (W)
380	18.7	64.1	31
420	18.6	67.0	31
450	18.3	68.1	31

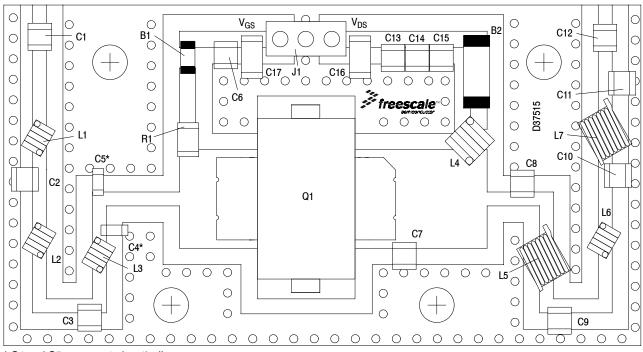

Table 12. 380-450 MHz UHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system) $V_{DD} = 13.6$ Volts, $I_{DQ} = 100$ mA, $T_A = 25^{\circ}$ C, CW

Table 13. Load Mismatch/Ruggedness (In Freescale Reference Circuit)

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
420	CW	>65:1 at all Phase Angles	1.6 (3 dB Overdrive)	17	No Device Degradation

380-450 MHz UHF BROADBAND REFERENCE CIRCUIT

* C4 and C5 are mounted vertically.

Part	Description	Part Number	Manufacturer
B1	Low Current Ferrite Bead	2508051107Y0	Fair-Rite
B2	High Current Ferrite Bead	2518065007Y6	Fair-Rite
C1, C5	56 pF Chip Capacitors	ATC600F560JT250XT	ATC
C2	3.9 pF Chip Capacitor	ATC600F3R9BT250XT	ATC
C3	18 pF Chip Capacitor	ATC600F180JT250XT	ATC
C4	47 pF Chip Capacitor	ATC600F470JT250XT	ATC
C6, C12, C15	240 pF Chip Capacitors	ATC600F241JT250XT	ATC
C7	24 pF Chip Capacitor	ATC600F240JT250XT	ATC
C8	68 pF Chip Capacitor	ATC600F680JT250XT	ATC
C9	27 pF Chip Capacitor	ATC600F270JT250XT	ATC
C10	8.2 pF Chip Capacitor	ATC600F8R2BT250XT	ATC
C11	3.0 pF Chip Capacitor	ATC600F3R0BT250XT	ATC
C13	0.1 μF Chip Capacitor	GRM21BR71H104KA01B	Murata
C14	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata
C16, C17	10 μF Chip Capacitors	GRM31CR61H106KA12L	Murata
J1	3 Pin Connector	AMP-9-146305-0	TE Connectivity
L1, L2, L3, L6	5.5 nH Inductors	0806SQ-5N5GLC	Coilcraft
L4	17 nH Inductor	0908SQ-17NGLC	Coilcraft
L5	1.65 nH Inductor	0906-2KLC	Coilcraft
L7	2.55 nH Inductor	0906-3JLC	Coilcraft
Q1	RF Power LDMOS Transistor	AFT05MS031NR1	Freescale
R1	62 Ω, 1/4 W Chip Resistor	RG2012N-620-BT1	Susumu
PCB	0.020″, ε _r = 4.9	S1000-2	Shengyi

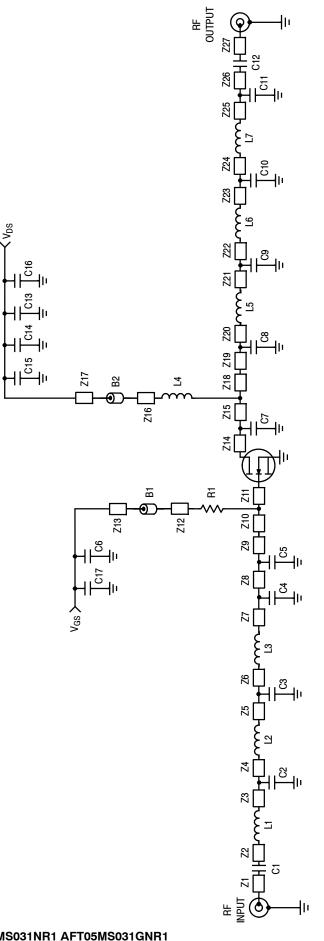


Figure 18. AFT05MS031NR1 UHF Broadband Reference Circuit Schematic — 380-450 MHz

					:
Microstrip	Description	Microstrip	Description	Microstrip	Description
Z1	0.034" × 0.060" Microstrip	Z10	0.240" × 0.048" Microstrip	Z19	0.034" × 0.057" Microstrip
Z2	0.034" × 0.200" Microstrip	Z11	0.240" × 0.142" Microstrip	Z20*	0.034" × 0.201" Microstrip
Z3	0.034″ × 0.056″ Microstrip	Z12	0.034" × 0.149" Microstrip	Z21*	0.034" × 0.110" Microstrip
Z4	0.034" × 0.154" Microstrip	Z13*	0.034" × 0.085" Microstrip	Z22*	0.034" × 0.361" Microstrip
Z5*	0.034″ × 0.237″ Microstrip	Z14	0.240" × 0.090" Microstrip	Z23	0.034" × 0.112" Microstrip
Z6*	0.034" × 0.234" Microstrip	Z15	0.240" × 0.186" Microstrip	Z24	0.034" × 0.083" Microstrip
Z7	0.034" × 0.010" Microstrip	Z16	0.034" × 0.149" Microstrip	Z25	0.034" × 0.073" Microstrip
Z8	0.034" × 0.083" Microstrip	Z17*	0.034" × 0.085" Microstrip	Z26	0.034" × 0.077" Microstrip
Z9	0.034" × 0.178" Microstrip	Z18	0.240" × 0.044" Microstrip	Z27	0.034" × 0.060" Microstrip
	· · ·				

* Line length includes microstrip bends

16

TYPICAL CHARACTERISTICS — 380-450 MHz UHF BROADBAND REFERENCE CIRCUIT

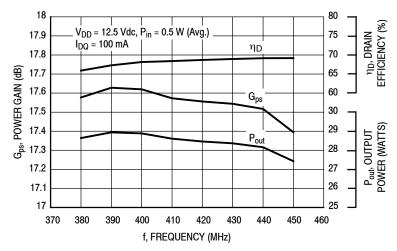


Figure 19. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 12.5 V

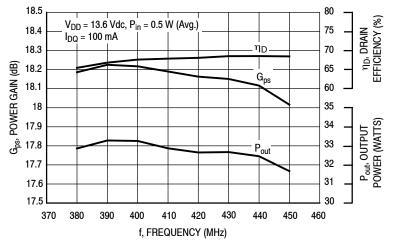
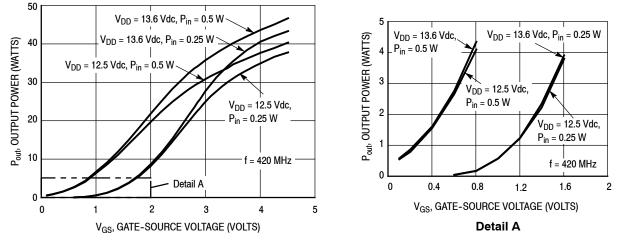



Figure 20. Power Gain, Drain Effiency and Output Power versus Frequency at a Constant Input Power — 13.6 V

TYPICAL CHARACTERISTICS — 380-450 MHz UHF BROADBAND REFERENCE CIRCUIT

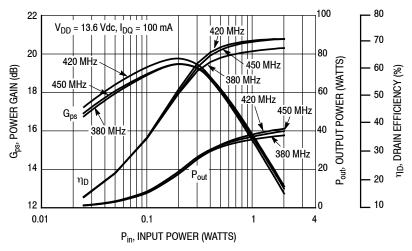
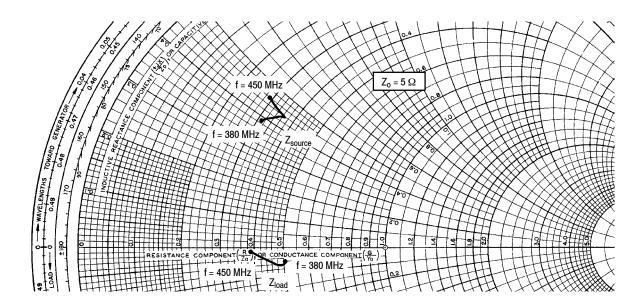



Figure 22. Power Gain, Output Power and Drain Efficiency versus Input Power and Frequency

18

380-450 MHz UHF BROADBAND REFERENCE CIRCUIT

f MHz	Z _{source} Ω	Z _{load} Ω
380	1.57 + j1.94	2.53 - j0.27
390	1.66 + j2.07	2.53 - j0.26
400	1.74 + j2.16	2.56 - j0.27
410	1.79 + j2.20	2.49 - j0.29
420	1.79 + j2.21	2.38 - j0.28
430	1.74 + j2.21	2.26 - j0.24
440	1.62 + j2.23	2.11 - j0.16
450	1.45 + j2.29	1.95 - j0.05

 V_{DD} = 13.6 Vdc, I_{DQ} = 100 mA, P_{out} = 31 W Avg.

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

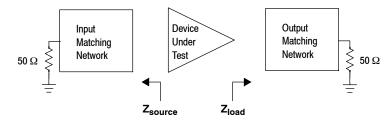


Figure 23. UHF Broadband Series Equivalent Source and Load Impedance — 380-450 MHz

450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

Table 16. 450-520 MHz UHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system) V_{DD} = 13.6 Volts, I_{DQ} = 100 mA, T_A = 25°C, CW

Frequency (MHz)	G _{ps} (dB)	η _D (%)	P1dB (W)
450	17.7	62.0	31
490	18.7	63.8	31
520	17.9	67.0	31

Table 17. Load Mismatch/Ruggedness (In Freescale Reference Circuit)

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
490	CW	>65:1 at all Phase Angles	2.0 (3 dB Overdrive)	17	No Device Degradation

450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

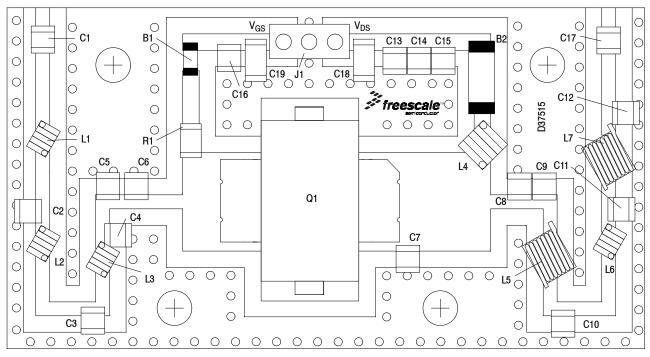
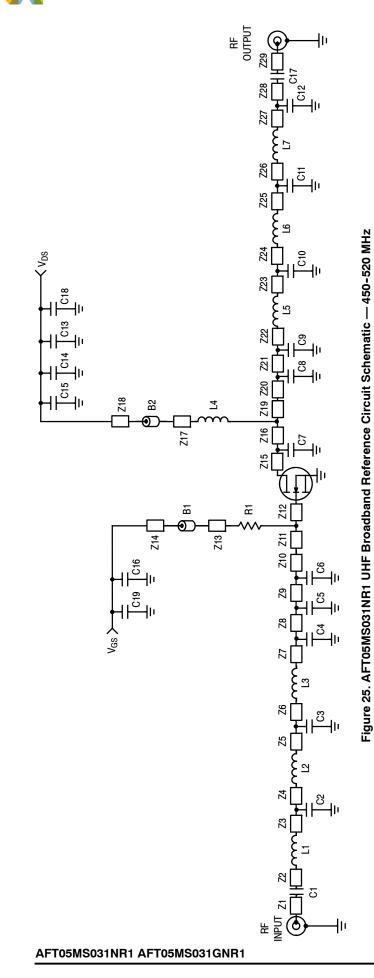



Figure 24. AFT05MS031NR1 UHF Broadband Reference Circuit Component Layout — 450-520 MHz

Part	Description	Part Number	Manufacturer
B1	Low Current Ferrite Bead	2508051107Y0	Fair-Rite
B2	High Current Ferrite Bead	2518065007Y6	Fair-Rite
C1	56 pF Chip Capacitor	ATC600F560JT250XT	ATC
C2	2.7 pF Chip Capacitor	ATC600F2R7BT250XT	ATC
C3	12 pF Chip Capacitor	ATC600F120JT250XT	ATC
C4, C9	27 pF Chip Capacitors	ATC600F270JT250XT	ATC
C5, C8	33 pF Chip Capacitors	ATC600F330JT250XT	ATC
C6	39 pF Chip Capacitor	ATC600F390JT250XT	ATC
C7, C10	18 pF Chip Capacitors	ATC600F180JT250XT	ATC
C11	8.2 pF Chip Capacitor	ATC600F8R2BT250XT	ATC
C12	1.8 pF Chip Capacitor	ATC600F1R8BT250XT	ATC
C13	0.1 μF Chip Capacitor	GRM21BR71H104KA01B	Murata
C14	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata
C15, C16, C17	240 pF Chip Capacitors	ATC600F241JT250XT	ATC
C18, C19	10 μF Chip Capacitors	GRM31CR61H106KA12L	Murata
J1	3 Pin Connector	AMP-9-146305-0	TE Connectivity
L1, L3	6.0 nH Inductors	0806SQ-6N0GLC	Coilcraft
L2, L6	5.5 nH Inductors	0806SQ5N5GLC	Coilcraft
L4	17 nH Inductor	0908SQ-17NGLC	Coilcraft
L5, L7	1.65 nH Inductors	0906-2KLC	Coilcraft
Q1	RF Power LDMOS Transistor	AFT05MS031NR1	Freescale
R1	62 Ω, 1/4 W Chip Resistor	RG2012N-620-BT1	Susumu
PCB	0.020″, ε _r = 4.9	S1000-2	Shengyi

Table 18. AFT05MS031NR1 UHF Broadband Reference Circuit Component Designations and Values — 450-520 MHz

450-520 MHz
4
crostrips -
Ĕ
Circui
Reference
Broadband I
UHF
Table 19. AFT05MS031NR1 UHF I
19. AFT(
Table ⁻

Microstrip	Description	Microstrip	Description	Microstrip	Description
Z1	0.034" × 0.060" Microstrip	Z11	0.240" × 0.010" Microstrip	Z21	0.034" × 0.010" Microstrip
Z2	0.034" × 0.200" Microstrip	Z12	0.240" × 0.180" Microstrip	Z22	0.034" × 0.176" Microstrip
Z3	0.034" × 0.128" Microstrip	Z13	0.034" × 0.149" Microstrip	Z23*	0.034" × 0.118" Microstrip*
Z4	0.034" × 0.054" Microstrip	Z14	0.034" × 0.084" Microstrip	Z24*	0.034" × 0.295" Microstrip*
Z5*	0.034" × 0.202" Microstrip	Z15	0.240" × 0.054" Microstrip	Z25	0.034" × 0.018" Microstrip
Z6*	0.034" × 0.160" Microstrip	Z16	0.240" × 0.170" Microstrip	Z26	0.034" × 0.177" Microstrip
Z7	0.034" × 0.010" Microstrip	Z17	0.034" × 0.149" Microstrip	Z27	0.034" × 0.022" Microstrip
Z8	0.034" × 0.115" Microstrip	Z18	0.034" × 0.184" Microstrip	Z28	0.034" × 0.188" Microstrip
Z9	0.034" × 0.060" Microstrip	Z19	0.240" × 0.044" Microstrip	Z29	0.034" × 0.060" Microstrip
Z10	0.034" × 0.150" Microstrip	Z20	0.034" × 0.057" Microstrip		

* Line length includes microstrip bends

TYPICAL CHARACTERISTICS — 450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

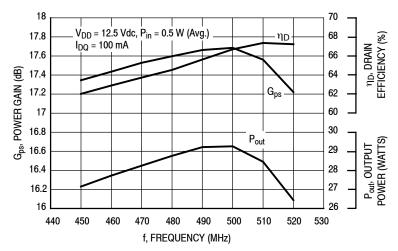


Figure 26. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 12.5 V

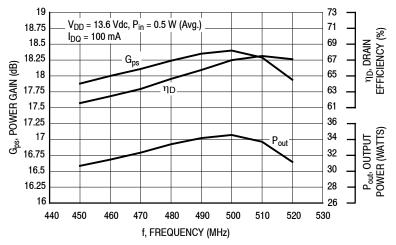


Figure 27. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 13.6 V

TYPICAL CHARACTERISTICS — 450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

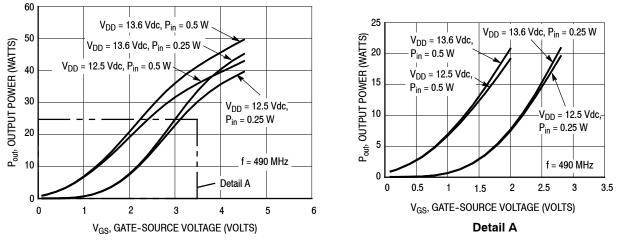


Figure 28. Output Power versus Gate-Source Voltage

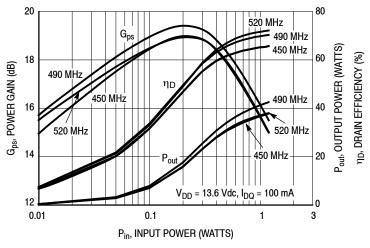
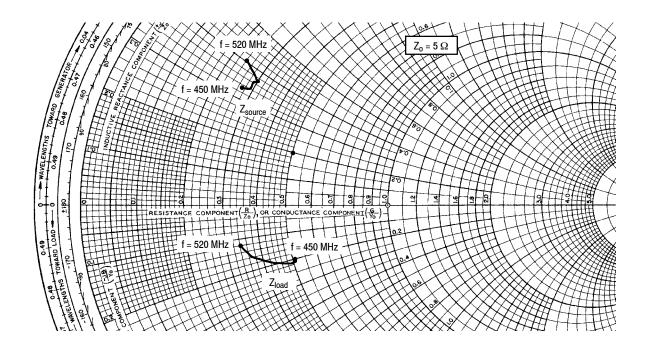
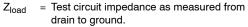



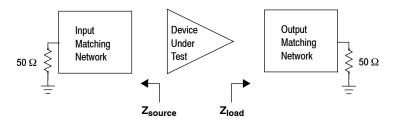
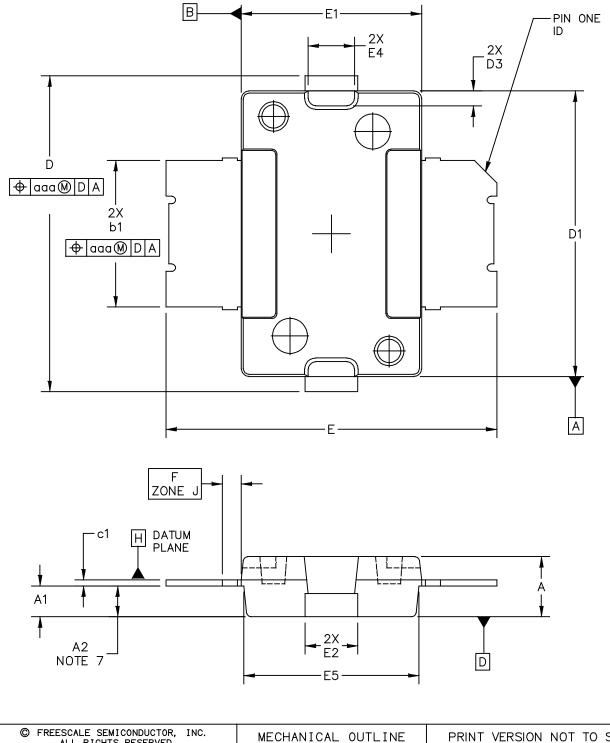
Figure 29. Power Gain, Output Power and Drain Efficiency versus Input Power and Frequency

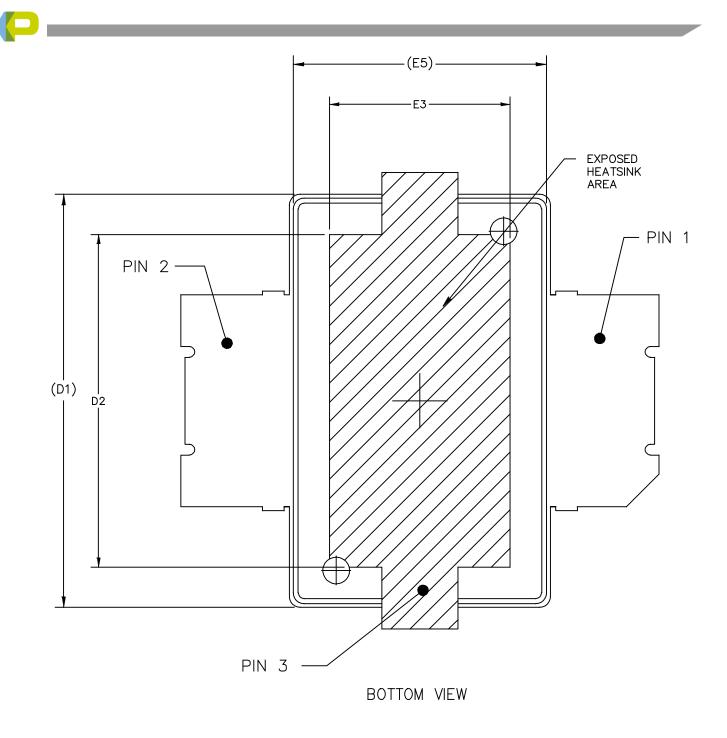

450-520 MHz UHF BROADBAND REFERENCE CIRCUIT

f MHz	Z _{source} Ω	Z _{load} Ω
450	1.37 + j1.64	2.57 - j1.01
460	1.43 + j1.72	2.49 - j1.03
470	1.47 + j1.79	2.38 - j1.03
480	1.49 + j1.83	2.26 - j1.01
490	1.47 + j1.86	2.11 - j0.95
500	1.41 + j1.89	1.97 - j0.87
510	1.32 + j1.93	1.82 - j0.76
520	1.20 + j1.99	1.68 - j0.62
$Z_{aauraa} = Te$	est circuit impedance	as measured from

 V_{DD} = 13.6 Vdc, I_{DQ} = 100 mA, P_{out} = 31 W Avg.

Z_{source} = lest circuit impedance as measured from gate to ground.

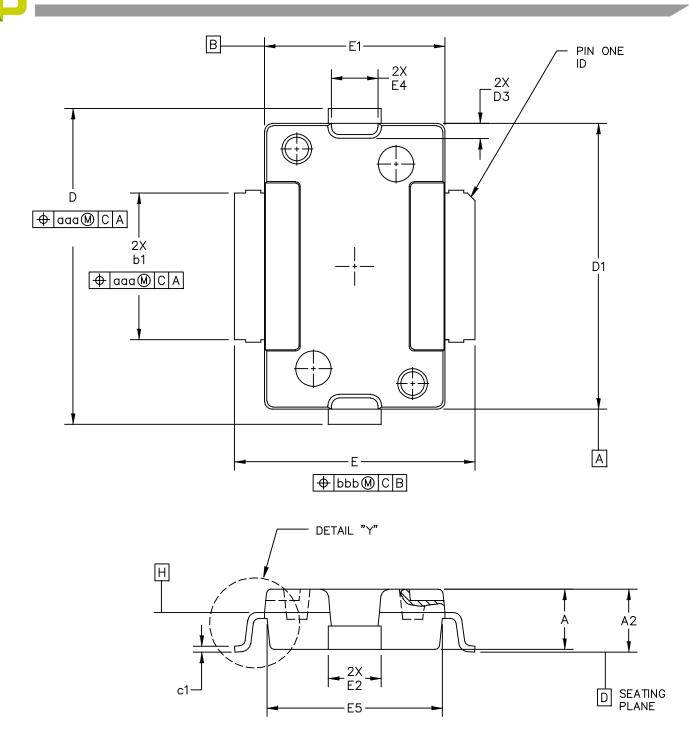

Figure 30. UHF Broadband Series Equivalent Source and Load Impedance — 450-520 MHz

PACKAGE DIMENSIONS

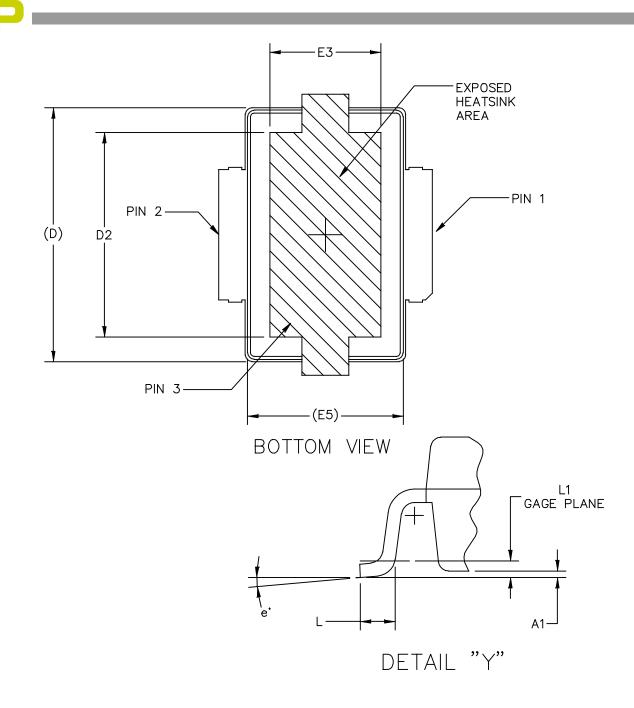
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: K
TO-270 SURFACE MOUN	Т	CASE NUMBER	:: 1265–09	29 JUN 2007
	STANDARD: JE	DEC TO-270 AA		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE: TO 070		DOCUMENT NO): 98ASH98117A	REV: K	
TO-270 SURFACE MOUN	Т	CASE NUMBER: 1265–09 29 JUN 2			
	I	STANDARD: JE	DEC TO-270 AA		

NOTES:


- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION "A2" APPLIES WITHIN ZONE "J" ONLY.
- 8. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH FOR DIMENSION "D" AND 0.080 INCH FOR DIMENSION "E2". DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-. STYLE 1:

	PIN 3 - SOURCE								
	IN	ICH	MII	LIMETER			INCH	М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.078	.082	1.98	2.08	F	.0	25 BSC	(D.64 BSC
A1	.039	.043	0.99	1.09	b1	.193	.199	4.90	5.06
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	3 0.28
D	.416	.424	10.57	10.77	aaa		.004		0.10
D1	.378	.382	9.60	9.70					
D2	.290		7.37						
D3	.016	.024	0.41	0.61					
E	.436	.444	11.07	11.28					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150		3.81						
E4	.058	.066	1.47	1.68					
E5	.231	.235	5.87	5.97					
© F		MICONDUCTOR, TS RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE
TITLE:	E:				DOCU	MENT NO): 98ASH98117/	4	REV: K
	211	TO-27 RFACE N		г	CASE	NUMBER	2: 1265–09		29 JUN 2007
	50			I	STAN	DARD: JE	DEC TO-270 /	٩A	


PIN 1 – DRAIN PIN 2 – GATE PIN 3 – SOURCE

AFT05MS031NR1 AFT05MS031GNR1

28

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	JTLINE P	RINT VERSION NO	T TO SCALE
TITLE:	DOC	CUMENT NO: 98	ASA99301D	REV: C
TO-270 GULL WING	CAS	E NUMBER: 126	65A-03	02 JUL 2007
	STA	NDARD: JEDEC	TO-270 BA	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA99301D	REV: C
TO-270 GULL WING		CASE NUMBER	02 JUL 2007	
		STANDARD: JE	DEC TO-270 BA	

NP

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION b1 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS "D AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

STYLE 1:			
PIN	1	—	DRAIN
PIN	2	_	GATE
PIN	3	—	SOURCE

	IN	СН	MIL	LIMETER			INCH	MI	LIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.078	.082	1.98	2.08	L	.018	.024	0.46	6 0.61
A1	.001	.004	0.02	0.10	L1	•	01 BSC	(0.25 BSC
A2	.077	.088	1.96	2.24	b1	.193	.199	4.90	5.06
D	.416	.424	10.57	10.77	c1	.007	.011	0.18	0.28
D1	.378	.382	9.60	9.70	e	2'	8'	2.	8'
D2	.290	-	7.37	—	aaa		.004		0.10
D3	.016	.024	0.41	0.61					
E	.316	.324	8.03	8.23					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150	-	3.81	_					
E4	.058	.066	1.47	1.68					
E5	.231	.235	5.87	5.97					
© FI	REESCALE SEM ALL RIGHT	ICONDUCTOR, IS RESERVED.	INC.	MECHANICA	AL OUT	「LINE	PRINT VER	SION NO	T TO SCALE
TITLE:		то о	70		DOCL	JMENT NO): 98ASA9930 ⁻	ID	REV: C
		TO-2 GULL W			CASE	NUMBER	R: 1265A—03		02 JUL 2007
		GULL N			STAN	IDARD: JE	DEC TO-270	BA	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

· EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	June 2012	Initial Release of Data Sheet
1	Apr. 2013	 Load Mismatch/Ruggedness tables: changed output power to input power to clarify the conditions used during test, p. 1, 3, 14, 20 Added 136-174 MHz VHF Broadband Reference Circuit as follows: Typical Performance table, p. 1 Table 8, VHF Broadband Performance, p. 8 Table 9, Load Mismatch/Ruggedness, p. 8 Fig. 10, VHF Broadband Reference Circuit Component Layout, p. 9 Table 10, VHF Broadband Reference Circuit Component Layout, p. 9 Fig. 10, VHF Broadband Reference Circuit Component Layout, p. 10 Table 11, VHF Broadband Reference Circuit Schematic, p. 10 Fig. 12, Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power - 12.5 V, p. 11 Fig. 13, Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power - 13.6 V, p. 11 Fig. 14, Output Power versus Gate-Source Voltage, p. 12 Fig. 15, Power Gain, Output Power and Drain Efficiency versus Input Power and Frequency, p. 12 Fig. 16, VHF Broadband Series Equivalent Source and Load Impedance, p. 13 Fig. 23, UHF Broadband Series Equivalent Source and Load Impedance — 380-450 MHz: corrected bias measurement from 10 mA to 100 mA, p. 19

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012-2013 Freescale Semiconductor, Inc.

Document Number: AFT05MS031N Rev. 1, 4/2013