VR5500

High voltage PMIC with multiple SMPS and LDO

Rev. 6 - 29 January 2020
Product data sheet

1 General description

The VR5500 is an automotive high-voltage multi-output power supply integrated circuit, with focus on Radio, V2X, and Infotainment applications. It includes multiple switch mode and linear voltage regulators. It offers external frequency synchronization input and output, for optimized system EMC performance and it is qualified in compliance with AEC-Q100 rev H (Grade1, MSL3).
Several device versions are available, offering choice in number of output rails, output voltage setting, operating frequency, and power up sequencing, to address multiple applications.

2 Features and benefits

- 60 V DC maximum input voltage for 12 V and 24 V applications
- VPRE synchronous buck controller with external MOSFETs. Configurable output voltage, switching frequency, and current capability up to 10 A peak.
- Low voltage integrated synchronous BUCK1 converter, dedicated to MCU core supply with SVS capability. Configurable output voltage and current capability up to 3.6 A peak.
- Low voltage integrated synchronous BUCK2 converter. Configurable output voltage and current capability up to 3.6 A peak. Multi-phase capability with BUCK1 to extend the current capability up to 7.2 A peak on a single rail. Static voltage scaling capability.
- Low voltage integrated synchronous BUCK3 converter. Configurable output voltage and current capability up to 3.6 A peak.
- BOOST converter with integrated low-side switch. Configurable output voltage and max input current up to 1.5 A peak.
- EMC optimization techniques including SMPS frequency synchronization, spread spectrum, slew rate control, manual frequency tuning
- Two linear voltage regulators for MCU IOs and ADC supply, external physical layer. Configurable output voltage and current capability up to 400 mADC .
- OFF mode with very low sleep current ($10 \mu \mathrm{~A}$ typ)
- Two input pins for wake-up detection and battery voltage sensing
- Device control via I2C interface with CRC
- Power synchronization pin to operate two VR5500 devices or VR5500 plus an external PMIC
- Three voltage monitoring circuits, dedicated interface for MCU monitoring, power good, reset, and interrupt outputs
- Configuration by OTP programming. Prototype enablement to support custom setting during project development in engineering mode.

3 Simplified application diagram

Figure 1. Simplified application diagram of VR5500

4 Ordering information

Table 1. Ordering information

Part number ${ }^{[1]}$	Package		OTP ID	
	Name	Description	Version	
MC33VR5500V0ES ${ }^{[2]}$	HPQFN56	HPQFN56, plastic, thermally enhanced very thin quad flat package, no lead, wettable flanks	SOT684-23	-
MC33VR5500V1ES ${ }^{[3]}$	http://www.nxp.com/MC33VR5500V1ES-OTP-Report			

[1] To order parts in tape and reel, add the R2 suffix to the part number.
[2] V0: Non-programmed part
[3] V1: Radio mercury reference design
V0 part is a non-programmed OTP configuration. Pre-programmed OTP configurations (other than BUCK regulators) are managed through suffix V1 to XZ.

5 Applications

- Radio
- V2x
- Infotainment

6 Block diagram

Figure 2. Block diagram of VR5500

7 Pinning information

7.1 Pinning

Figure 3. Pin configuration for HVQFN56

7.2 Pin description

See Section 8 for connection of unused pins.
Table 2. Pin description

Symbol	Pin	Type	Description
WAKE2	1	A_IN / D_IN	Wake-up input 2 An external serial resistor is required if WAKE2 is a global pin n.c.
BUCK3_INQ	3	n.c.	Not connected pin
VDDI2C	4	A_IN	Low voltage Buck3 quiet input voltage
BOOST_LS	5	A_IN	Input voltage for I2C buffers
BUCK3_IN	6	A_IN	Boost low-side drain of internal MOSFET
BUCK3_SW	7	A_OUT	Low voltage Buck3 input voltage
DBG	8	A_IN	Debug mode entry
BUCK3_FB	9	A_IN	Low voltage Buck3 voltage feedback

High voltage PMIC with multiple SMPS and LDO

Symbol	Pin	Type	Description
SCL	10	D_IN	I2C-bus Clock input
SDA	11	D_IN/OUT	I2C-bus Bidirectional data line
n.c.	12	n.c.	Not connected pin
n.c.	13	n.c.	Not connected pin
n.c.	14	n.c.	Not connected pin
n.c.	30	15	n.c.

High voltage PMIC with multiple SMPS and LDO

Symbol	Pin	Type	Description
PRE_GLS	43	A_OUT	VPRE low-side gate driver for external MOSFET
PRE_SW	44	A_OUT	VPRE switching node
PRE_GHS	45	A_OUT	VPRE high-side gate driver for external MOSFET
PRE_BOOT	46	A_IN/OUT	VPRE bootstrap capacitor
VBOS	47	A_OUT	Best of supply output voltage
PRE_FB	48	A_IN	VPRE voltage feedback and negative current sense input
WAKE1	50	A_IN	Power supply 1 of the device An external reverse battery protection diode in series is mandatory
VSUP1	51	A_IN	Wake up input 1 An external serial resistor is required if WAKE1 is a global pin
VSUP2	52	n.c.	Power supply 2 of the device An external reverse battery protection diode in series is mandatory
n.c.	53	A_IN	Not connected pin
VBOOST	54	A_OUT	VBOOST voltage feedback
LDO2	55	A_OUT	Linear regulator 2 output voltage
LDO1	56	A_IN	Ginear regulator 1 input voltage
LDO1_IN	57	GND	Exposed pad (BUCK1, BUCK2 and BUCK3 low-side GNDs are connected to the expose pad $)$ Must be connected to GND
EP	49		

8 Connection of unused pins

Table 3. Connection of unused pins

Pin	Name	Type	Connection if not used
1	WAKE2	A_IN / D_IN	External pull down to GND
2	n.c.	n.c.	Open
3	BUCK3_INQ	A_IN	Open
4	VDDI2C	A_IN	Open
5	BOOST_LS	A_IN	See Section 21.5 "VBOOST not populated"
6	BUCK3_IN	A_IN	Open
7	BUCK3_SW	A_OUT	Open
8	DBG	A_IN	Connection mandatory
9	BUCK3_FB	A_IN	Open - 1.5 MS internal resistor bridge pull down to GND
10	SCL	D_IN	External pull down to GND
11	SDA	D_IN/OUT	External pull down to GND
12	n.c.	n.c.	Open
13	n.c.	n.c.	Open
14	n.c.	n.c.	Open
15	n.c.	n.c.	Open
16	VMON1	A_IN	Open - 2 MS internal pull down to GND, OTP_VMON1_EN=0

High voltage PMIC with multiple SMPS and LDO

Pin	Name	Type	Connection if not used
17	VCOREMON	A_IN	Connection mandatory
18	PGOOD	D_OUT	Connection mandatory
19	RSTB	D_OUT	Connection mandatory
20	FIN	D_IN	External pull down to GND
21	GND	GND	Connection mandatory
22	GND	GND	Connection mandatory
23	VDDIO	A_IN	Connection mandatory
24	FOUT	D_OUT	Open - push pull structure
25	n.c.	n.c.	Open
26	n.c.	A_c.	Open
27	n.c.	GND	External pull down to GND
53		A_OUTN	O_IN
54			

9 Maximum ratings

Table 4. Maximum ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Parameter	Conditions	Min	Max	Unit
Voltage ratings					
VSUP1/2	DC voltage	power supply VSUP1,2 pins	-0.3	60	V
WAKE1/2	DC voltage	WAKE1,2 pins; external serial resistor mandatory	-1.0	60	V
PRE_SW	DC voltage	PRE_SW pin	-2.0	60	V
VMON1, VCOREMON	DC voltage	VMON1, VCOREMON pins	-0.3	60	V
PRE_GHS, PRE_ BOOT	DC voltage	PRE_GHS, PRE_BOOT pins	-0.3	65.5	V
DBG	DC voltage	DBG pin	-0.3	10	V
BOOST_LS	DC voltage	BOOST_LS pin	-0.3	8.5	V
VBOOST, LDO1_IN	DC voltage	VBOOST, LDO1_IN pins	-0.3	6.5	V
BUCKx_IN	DC voltage	BUCK1_IN, BUCK2_IN, BUCK3_IN, BUCK3_INQ	-1.0	5.5	V
BUCKx_IN	Transient voltage $<3 \mu \mathrm{~s}$	BUCK1_IN, BUCK2_IN, BUCK3_IN, BUCK3_INQ	-1.0	6.5	V
BUCKx_SW	Transient voltage < 20 ns	BUCK1_SW, BUCK2_SW, BUCK3_ SW	-2.0	6.5	V
All other pins	DC voltage	at all other pins	-0.3	5.5	V
Current ratings					
I_WAKE	Maximum current capability	WAKE1,2	-5.0	5.0	mA
I_SUP	Maximum current capability	VSUP1,2	-5.0	-	mA

10 Electrostatic discharge

10.1 Human body model (JESD22/A114)

The device is protected up to $\pm 2 \mathrm{kV}$, according to the human body model standard with 100 pF and $1.5 \mathrm{k} \Omega$. This protection is ensured at all pins.

10.2 Charged device model

The device is protected up to $\pm 500 \mathrm{~V}$, according to the AEC-Q100-011 charged device model standard. This protection is ensured at all pins.

10.3 Discharged contact test

The device is protected up to $\pm 8 \mathrm{kV}$, according to the following discharged contact tests.
Discharged contact test (IEC61000-4-2) at 150 pF and 330Ω
Discharged contact test (ISO10605.2008) at 150 pF and $2 \mathrm{k} \Omega$
Discharged contact test (ISO10605.2008) at 330 pF and $2 \mathrm{k} \Omega$
This protection is ensured at VSUP1, VSUP2, WAKE1, WAKE2 pins.

11 Operating range

Assumptions
$L_{\text {PI_DCR }}=30 \mathrm{~m} \Omega$
$\mathrm{D}_{\text {MAX }}=98.18 \%$ with $\mathrm{F}_{\text {PRE_SW }}=455 \mathrm{kHz}$ and $\mathrm{T}_{\text {PRE_OFF_MIN }}=40 \mathrm{~ns}$
$I_{\text {PRE }}=3.0 \mathrm{~A}$
$\mathrm{V}_{\mathrm{RBD}}=0.56 \mathrm{~V}$
VBAT_min $=3.4 \mathrm{~V}$ when VPRE $=\mathrm{V}_{\text {PRE_UVL }}$
Figure 4. Operating range

- Below VSUP_UVH threshold, the extended operation range depends on VPRE output voltage configuration and external components.
- When VPRE is configured at 5.0 V , VPRE may not remain in its regulation range
- VSUP minimum voltage depends on external components ($L_{\text {PI_DCR }}$) and application conditions (lpRE, FPRE_SW)
- The VR5500 maximum continuous operating voltage is 36 V when VPRE is switching at 455 kHz . It has been validated at 48 V for limited duration of 15 minutes at room temperature to satisfy the jump-start requirement of 24 V applications. It can sustain 58 V load dump without external protection.
- When VPRE is switching at 2.2 MHz , the VR5500 maximum continuous operating voltage is 18 V . It is validated at 26 V for limited duration of 2 minutes at room temperature to satisfy the jump-start requirement of 12 V applications and 35 V load dump.

12 Thermal ratings

Table 5. Thermal ratings

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{R}_{\text {өJA }}$	Thermal resistance junction to ambient	2s2p circuit board [1]	-	31	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal resistance junction to ambient	2s6p circuit board [1]	-	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Thermal resistance junction to board	2s2p circuit board [1]	-	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Thermal resistance junction to board	2s6p circuit board [1]	-	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJc_вот }}$	Thermal resistance junction to case bottom	between the die and the solder pad on the bottom of the package	-	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJP_TOP }}$	Thermal resistance junction to package top	between package top and the junction temperature	-	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {A }}$	Ambient temperature (Grade 1)		-40	125	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature (Grade 1)		-40	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-55	150	${ }^{\circ} \mathrm{C}$

[^0]
13 Characteristics

Table 6. Electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
Power supply					
ISUP_NORMAL	Current in Normal mode, all regulators ON ($\mathrm{l}_{\text {OUT }}=0$)	-	15	25	mA
ISUP_STANDBY	Current in Standby mode, all regulators OFF except VBOS	-	5	10	mA
ISUP_OFF1	Current in OFF mode (power down), $\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	-	10	15	$\mu \mathrm{A}$
ISUP_OFF2	Current in OFF mode (power down), $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	-	25	$\mu \mathrm{A}$
V SUP_UV7	VSUP undervoltage threshold (7.0 V)	7.2	7.5	7.8	V
V ${ }_{\text {SUP_UVH }}$	VSUP undervoltage threshold high (during power-up and Vsup rising) OTP_VSUP_CFG = 0	4.7	-	5.1	V
	VSUP undervoltage threshold high (during power-up and Vsup rising) OTP_VSUP_CFG = 1	6.0	-	6.4	V
VSUP_UVL	VSUP undervoltage threshold low (during power-up and Vsup falling) OTP_VSUP_CFG = 0	4.0	-	4.4	V
	VSUP undervoltage threshold low (during power-up and Vsup falling) OTP_VSUP_CFG = 1	5.3	-	5.7	V
TSUP_UV	$\mathrm{V}_{\text {SUP_UV7, }}$, $\mathrm{S}_{\text {SUP_UVH, }}$, and $\mathrm{V}_{\text {SUP_UVL }}$ filtering time	6.0	10	15	$\mu \mathrm{S}$

14 Functional description

The VR5500 device has two independent logic blocks. The main state machine manages the power management, the Standby mode and the wake-up sources. The fail-safe state machine manages the voltage monitoring of the power management.

14.1 Simplified functional state diagram

Figure 5. Simplified functional state diagram

14.2 Main state machine

The VR5500 start when VSUP > V SUP $_{\text {UVH }}$ and WAKE1 or WAKE2 $>$ WAKE12 VIH with VBOS first, followed by VPRE, VBOOST, and the power-up sequencing from the OTP programming for the remaining regulators if PSYNC pin is pulled up to VBOS. If during the power-up sequence VSUP < V $\mathrm{V}_{\text {SUP_UVL }}$, the device goes back to Standby mode. When the power-up is finished, the main state machine is in Normal_M mode which is the application running mode with all the regulators ON and $\mathrm{V}_{\text {SUP }}$ UVL has no effect even if VSUP < V ${ }_{\text {SUP_UVL. }}$ See Figure 4 for the minimum operating voltage.

The power-up sequence can be synchronized with another PMIC using the PSYNC pin in order to stop before or after VPRE is ON and wait for the PMIC feedback on PSYNC pin before allowing VR5500 to continue its power-up sequence. If the power-up sequence from VPRE ON to NORMAL_M is not completed within 1 second, the device goes back to Standby mode. VPRE restarts when VSUP > V WAKE12 ${ }^{\mathrm{VIH}}$.

The device goes to Standby mode by a I2C command from the MCU. The device goes to Standby mode when both WAKE1 and WAKE $2=0$. The device goes to Standby mode following the power down sequence to stop all the regulators in the reverse order of the power-up sequence. VPRE shutdown can be delayed from 250μ s to 32 ms by OTP_VPRE_off_dly bit in case VPRE is supplying an external PMIC to wait its power down sequence completion.

In case of loss of VPRE (VPRE < VPRE_uVL) or loss of VBOS (VBOS < V $\mathrm{V}_{\text {BOS_uL }}$), the device stops and goes directly to Standby mode without power down sequence. VPRE restarts when VSUP > V $\mathrm{V}_{\text {SUP_UVH }}$ and WAKE1 or WAKE2 > WAKE12 ${ }_{\mathrm{VIH}}$.

In case of VPRE_FB_OV detection, or TSD detection on a regulator depending on OTP_conf_tsd[5:0] bits configuration, or deep fail-safe request from the fail-safe state machine when DFS = 1 , the device stops and goes directly to DEEP-FS mode without power down sequence.

Exit of DEEP-FS mode is only possible by WAKE1 $=0$ or after 4 s if the autoretry feature is activated by OTP_Autorety_en bit. The number of autroretry can be limited to 15 or infinite depending on OTP_Autoretry_infinite bit. VPRE restarts when VSUP > VSUP UVH and WAKE1 > WAKE12 ${ }_{\mathrm{VIH}}$.

14.3 Fail-safe state machine

The fail-safe state machine starts when VBOS > V BOS_POR. RSTB and PGOOD pins are released and the initialization of the device is opened.

When RSTB and PGOOD pins are released, the device is ready for application running mode with all the selected monitoring activated. From now on, the VR5500 reacts by asserting the pins (PGOOD, RSTB) according to its configuration when a fault is detected.

14.4 Power sequencing

VPRE is the first regulator to start automatically, followed by the BOOST, before the SLOT_0. The other regulators are starting from the OTP power sequencing configuration. Seven slots are available to program the start-up sequence of BUCK1, BUCK 2, BUCK 3, LDO1, and LDO2 regulators. The delay between each slot is configurable to $250 \mu \mathrm{~s}$ or 1 ms by OTP using OTP_Tslot bit to accommodate the different ramp up speed of BUCK1, BUCK2, and BUCK3

The power-up sequence starts at SLOT_0 and ends at SLOT_7 while the power down sequence is executed in reverse order. All the SLOTs are executed even if there is no regulator assigned to a SLOT. The regulators assigned to SLOT_7 are not started during the power-up sequence. They can be started (or not) later in Normal_M mode with a I2C command to write in M_REG_CTRL1 register, if enabled by OTP.

High voltage PMIC with multiple SMPS and LDO

aaa-030985
Figure 6. Power sequencing (VREGx PWR_UP)
Each regulator is assigned to a SLOT by OTP configuration using OTP_VB1S[2:0] for BUCK1, OTP_VB2S[2:0] for BUCK2, OTP_VB3S[2:0] for BUCK3, OTP_LDO1S[2:0] for LDO1 and OTP_LDO2S[2:0] for LDO2.

The different soft start duration of the BUCKs and the LDOs should be considered in the SLOT assignment to achieve the correct sequence.

High voltage PMIC with multiple SMPS and LDO

Note: See Section 14.1 for PGOOD/RSTB released sequence.
Figure 7. Power-up sequence example
The VR5500_OTP_Mapping file used to generate the OTP configuration of the device draws the power-up sequence of an OTP configuration in the OTP_conf_summary sheet.

14.5 Debug mode

The VR5500 enters in Debug mode with the sequence described in Figure 8:

1. DBG pin $=V_{\text {DBG }}$ and $V S U P>V_{\text {SUP_UVH }}$
2. WAKE1 or WAKE2 > WAKE12VIH
$V_{\text {DBG }}$ and VSUP can come up at the same time as long as WAKE1 or WAKE2 comes up the last.

Figure 8. Debug mode entry
When the DBG pin is asserted low after TDBG without I2C command access, the device starts with the internal OTP configuration.

If $\mathrm{V}_{\mathrm{DBG}}$ voltage is maintained at DBG pin, a new OTP configuration can be emulated or programmed by I2C communication using NXP FlexGUI interface and NXP socket EVB. When the OTP process is completed, the device starts with the new OTP configuration when DBG pin is asserted low. The OTP emulation/programming is possible for during engineering development only. The OTP programming in production is done by NXP only

In OTP Debug mode (DBG $=5.0 \mathrm{~V}$), the I2C address is fixed to 0×20 for the main digital access and 0×21 for the fail-safe digital access.

Refer to AN12589 for more details on Debug mode entry implementation.
Table 7. Electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
V $_{\text {DBG }}$	Debug mode entry threshold	4.5	-	5.5	V
T $_{\text {DBG }}$	Debug mode entry filtering time (minimum duration of DBG = V VBG after VSUP > VSUP_UVH and WAKE1 or WAKE2 > WAKE12 2 VIH	7.0	-	-	ms

15 Register mapping

Register	M/FS	Address						$\begin{aligned} & \text { R/W } \\ & \text { I2C } \end{aligned}$	Read / Write	Reference
		Adr_5	Adr_4	Adr_3	Adr_2	Adr_1	Adr_0			
M_FLAG	0	0	0	0	0	0	0	1/0	Read / Write	Section 16.3
M_MODE	0	0	0	0	0	0	1	1/0	Read / Write	Section 16.4
M_REG_CTRL1	0	0	0	0	0	1	0	1/0	Read / Write	Section 16.5
M_REG_CTRL2	0	0	0	0	0	1	1	1/0	Read / Write	Section 16.6
M_AMUX	0	0	0	0	1	0	0	1/0	Read / Write	Section 16.7
M_CLOCK	0	0	0	0	1	0	1	1/0	Read / Write	Section 16.8
M_INT_MASK1	0	0	0	0	1	1	0	1/0	Read / Write	Section 16.9
M_INT_MASK2	0	0	0	0	1	1	1	1/0	Read / Write	Section 16.10
M_FLAG1	0	0	0	1	0	0	0	1/0	Read / Write	Section 16.11
M_FLAG2	0	0	0	1	0	0	1	1/0	Read / Write	Section 16.12
M_VMON_REGX	0	0	0	1	0	1	0	1/0	Read / Write	Section 16.13
M_LVB1_SVS	0	0	0	1	0	1	1	1	Read only	Section 16.14
M_MEMORYO	0	1	0	0	0	1	1	1/0	Read / Write	Section 16.15
M_MEMORY1	0	1	0	0	1	0	0	1/0	Read / Write	Section 16.16
M_DEVICEID	0	1	0	0	1	0	1	1	Read only	Section 16.17
FS_GRL_FLAGS	1	0	0	0	0	0	0	1	Read only	Section 17.3
FS_I_OVUV_SAFE_REACTION1	1	0	0	0	0	0	1	1/0	Write during INIT then Read only	Section 17.4
FS_I_NOT_OVUV_SAFE_REACTION1	1	0	0	0	0	1	0	1/0	Write during INIT then Read only	
FS_I_OVUV_SAFE_REACTION2	1	0	0	0	0	1	1	1/0	Write during INIT then Read only	Section 17.5
FS_I_NOT_OVUV_SAFE_REACTION2	1	0	0	0	1	0	0	1/0	Write during INIT then Read only	
FS_I_FSSM	1	0	0	1	0	0	1	1/0	Write during INIT then Read only	Section 17.6
FS_I_NOT_FSSM	1	0	0	1	0	1	0	1/0	Write during INIT then Read only	
FS_I_SVS	1	0	0	1	0	1	1	1/0	Write during INIT then Read only	Section 17.7
FS_I_NOT_SVS	1	0	0	1	1	0	0	1/0	Write during INIT then Read only	
FS_OVUVREG_STATUS	1	0	1	0	0	0	1	1/0	Read / Write	Section 17.8
FS_SAFE_IOS	1	0	1	0	0	1	1	1/0	Read / Write	Section 17.9
FS_DIAG	1	0	1	0	1	0	0	1/0	Read / Write	Section 17.10
FS_INTB_MASK	1	0	1	0	1	0	1	1/0	Read / Write	Section 17.11
FS_STATES	1	0	1	0	1	1	0	1/0	Read / Write	Section 17.12

16 Main register mapping

16.1 Main writing registers overview

Table 8. Main writing registers overview

Logic	Register name	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
Main	M_FLAG	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	12C_M_CRC	12C_M_REQ
	M_MODE	0	0	0	0	0	0	0	0
		0	EXT_FIN_DIS	0	0	0	W2DIS	W1DIS	Gotostby
	M_REG_CTRL1	VPRE_PD_DIS	VPDIS	BOOSTDIS	BUCK1DIS	BUCK2DIS	BUCK3DIS	LDO1DIS	LDO2DIS
		0	VPEN	BOOSTEN	BUCK1EN	BUCK2EN	BUCK3EN	LDO1EN	LDO2EN
	M_REG_CTRL2	VBSTSR[1:0]		$\begin{aligned} & \text { BOOSTT } \\ & \text { SDCFG } \end{aligned}$	BUCK1TSDCFG	BUCK2TSDCFG	BUCK3TSDCFG	LDO1TSDCFG	LDO2TSDCFG
		0	0	0	VPRESRLS[1:0]		0	VPRESRHS[1:0]	
	M_AMUX	0	0	0	0	0	0	0	0
		0	0	RATIO	AMUX[4:0]				
	M_CLOCK	MOD_CONF	FOUT_MUX_SEL[3:0]				FOUT_PHASE[2:0]		
		FOUT CLK_SEL	EXT_FIN_SEL	FIN_DIV	MOD_EN	CLK_TUNE[3:0]			
	M_INT_MASK1	0	VPREOC_M	0	BUCK10C_M	BUCK2OC_M	BUCK30C_M	LDO10C_M	LDO2OC_M
		0	0	BOOSTTSD_M	BUCK1TSD_M	BUCK2TSD_M	BUCK3TSD_M	LDO1TSD_M	LDO2TSD_M
	M_INT_MASK2	0	0	0	0	VBOOSTOV_M	VBOSUVH_M	COM_M	$\begin{aligned} & \text { VPRE_- } \\ & \text { FB_OV_M } \end{aligned}$
		$\begin{aligned} & \text { VBOOST_- } \\ & \text { UVH_M } \end{aligned}$	vSUPUV7	0	VPREUVH	VSUPUVL_M	VSUPUVH_M	WAKE1_M	WAKE2_M
	M_FLAG1	VBOSUVH	VBOOSTUVH	VPREOC	BUCK10C	BUCK2OC	BUCK30С	LDO10C	LDO2OC
		0	vBOOStov	vBOOStot	BUCK10T	BUCK2OT	BUCK3OT	LDO1OT	LDO2OT
	M_FLAG2	VPRE_FB_OV	vSUPUV7	0	0	0	0	0	0
		VPREUVL	VPREUVH	VSUPUVL	VSUPUVH	0	0	WK2FLG	WK1FLG
	M_VMON_REGX	0	0	0	0	0	0	0	0
		0	0	0	0	0	VMON1_REG[2:0]		
	M_MEMORYO	MEMORYO[15:0]							
	M_MEMORY1	MEMORY1[15:0]							

16.2 Main reading registers overview

Table 9. Main reading registers overview

Logic	Register name	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
Main	M_FLAG	COM_ERR	WU_G	VPRE_G	VBOOST_G	VBUCK1_G	VBUCK2_G	VBUCK3_G	VLDO1_G
		VLDO2_G	0	0	0	0	0	I2C_M_CRC	12C_M_REQ
	M_MODE	RESERVED	PLL_LOCK_RT						
		$\begin{aligned} & \text { EXT_FIN_- } \\ & \text { SEL_RT } \end{aligned}$	RESERVED	MAIN_NORMAL	RESERVED	RESERVED	W2DIS	W1DIS	RESERVED
	M_REG_CTRL1	VPRE_PD_DIS	VPDIS	BOOSTDIS	BUCK1DIS	BUCK2DIS	BUCK3DIS	LDO1DIS	LDO2DIS
		0	VPEN	BOOSTEN	BUCK1EN	BUCK2EN	BUCK3EN	LDO1EN	LDO2EN
	M_REG_CTRL2	VBSTSR[1:0]		$\begin{aligned} & \text { BOOSTT } \\ & \text { SDCFG } \end{aligned}$	BUCK1TSDCFG	BUCK2TSDCFG	BUCK3TSDCFG	LDO1TSDCFG	LDO2TSDCFG
		RESERVED	RESERVED	RESERVED	VPRESRLS[1:0]		RESERVED	VPRESRHS[1:0]	
	M_AMUX	RESERVED							
		RESERVED	RESERVED	RATIO	AMUX[4:0]				
	M_CLOCK	MOD_CONF	FOUT_MUX_SEL[3:0]				FOUT_PHASE[2:0]		
		FOUT CLK_SEL	RESERVED	FIN_DIV	MOD_EN	CLK_TUNE[3:0]			
	M_INT_MASK1	RESERVED	VPREOC_M	RESERVED	BUCK10C_M	BUCK2OC_M	BUCK3OC_M	LDO10C_M	LDO2OC_M
		RESERVED	RESERVED	BOOSTTSD_M	BUCK1TSD_M	BUCK2TSD_M	BUCK3TSD_M	LDO1TSD_M	LDO2TSD_M
	M_INT_MASK2	RESERVED	RESERVED	RESERVED	RESERVED	VBOOSTOV_M	VBOSUVH_M	COM_M	$\begin{aligned} & \text { VPRE_- } \\ & \text { FB_OV_M } \end{aligned}$
		$\begin{aligned} & \text { VBOOST_- } \\ & \text { UVH_M } \end{aligned}$	VSUPUV7_M	RESERVED	VPREUVH_M	VSUPUV_M	VSUPUVH_M	WAKE1_M	WAKE2_M
	M_FLAG1	VBOSUVH	VBOOSTUVH	VPREOC	BUCK10C	BUCK2OC	BUCK30С	LDO10C	LDO2OC
		CLK_FIN DIV_OK	vboostov	vboostot	BUCK10T	BUCK2OT	ВUСКЗОт	LDO10T	LDO2OT
	M_FLAG2	VPRE_FB_OV	VSUPUV7	BOOST_ST	BUCK1_ST	BUCK2_ST	BUCK3_ST	LDO1_ST	LDO2_ST
		VPREUVL	VPREUVH	VSUPUVL	VSUPUVH	WK2RT	WK1RT	WK2FLG	WK1FLG
	M_VMON_REGX	RESERVED							
		RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	VMON1_REG[2:0]		
	M_LVB1_SVS	RESERVED							
		RESERVED	RESERVED	RESERVED	LVB1_SVS[4:0]				
	M_MEMORYO	MEMORY0[15:0]							
	M_MEMORY1	MEMORY1[15:0]							
	M_DEVICEID	FM_REV[3:0]				MM_REV[3:0]			
		DEVICEID[7:0]							

16.3 M_FLAG register

Table 10. M_FLAG register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	0	0	0	0	0	0	0
Read	COM_ERR	WU_G	VPRE_G	VBOOST_G	VBUCK1_G	VBUCK2_G	VBUCK3_G	VLDO1_G
Reset	0	1	1	0	0	0	0	0

Bit 15	14	13	12	11	10	9	8	
Write	0	0	0	0	0	0	I2C_M_CRC	I2C_M_REQ
Read	VLDO2_G	0	0	0	0	0	I2C_M_CRC	I2C_M_REQ
Reset	0	0	0	0	0	0	0	0

Table 11. M_FLAG register bit description

Bit	Symbol	Description
23	COM_ERR	Report an error in the communication (I2C) COM_ERR = I2C_M_CRC or I2C_M_REQ or FS_COM_G
		0 No failure
		1 Failure
		Reset condition: Real-time information - cleared when all individual bits are cleared
22	WU_G	Report a wake-up event by WAKE1 or WAKE2 WU_G = WK1FLG or WK2FLG
		0 No wake event
		1 Wake event
		Reset condition: Real-time information - cleared when all individual bits are cleared
21	VPRE_G	Report an event on VPRE (status change or failure) VPRE_G = VPREOC or VPREUVH or VPREUVL or VPRE_FB_OV
		0 No event
		1 Event occurred
		Reset condition: Real-time information - cleared when all individual bits are cleared
20	VBOOST_G	Report an event on VBOOST (status change or failure) VBOOST_G = VBOOSTOT or BOOSTOV
		0 No event
		1 Event occurred
		Reset condition: Real-time information - cleared when all individual bits are cleared
19	VBUCK1_G	Report an event on BUCK1 (status change or failure) VBUCK1_G = BUCK1OC or BUCK1OT
		0 No event
		1 Event occurred
		Reset condition: Real-time information - cleared when all individual bits are cleared
18	VBUCK2_G	Report an event on BUCK2 (status change or failure) VBUCK2_G = BUCK2OC or BUCK2OT
		0 No event
		1 Event occurred
		Reset condition: Real-time information - cleared when all individual bits are cleared
17	VBUCK3_G	Report an event on BUCK3 (status change or failure) VBUCK3_G = BUCK3OC or BUCK3OT
		0 No event
		1 Event occurred
		Reset condition: Real-time information - cleared when all individual bits are cleared
16	VLDO1_G	Report an event on LDO1 (status change or failure) VLD01_G = LDO1OC or LDO1OT
		0 No event
		1 Event occurred
		Reset condition: Real-time information

High voltage PMIC with multiple SMPS and LDO

Bit	Symbol	Description
15	VLDO2_G	Report an event on LDO2 (status change or failure) VLDO2_G = LDO2OC or LDO2OT
		$0 \quad$ No event
		1 Event occurred
		Reset condition: Real-time information
9	I2C_M_CRC	Main domain I2C communication CRC issue
		0 No error
		1 Error detected in the I2C CRC
		Reset condition: POR / clear on write (write '1')
8	I2C_M_REQ	Invalid main domain I2C access (wrong Write or Read, Write to INIT registers in normal mode, wrong address)
		0 No error
		1 I2C violation
		Reset condition: POR / clear on Write (write ' 1 ')

16.4 M_MODE register

Table 12. M_MODE register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	0	0	0	0	0	0	0
Read	RESERVED	$\begin{gathered} \text { PLL_} \\ \text { LOCK_RT } \end{gathered}$						
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	0	$\begin{gathered} \text { EXT_} \\ \text { FIN_DIS } \end{gathered}$	0	0	0	W2DIS	W1DIS	GoToSTBY
Read	$\begin{gathered} \text { EXT_FIN_ } \\ \text { SEL_RT } \end{gathered}$	RESERVED	MAIN NORMAL	RESERVED	RESERVED	W2DIS	W1DIS	RESERVED
Reset	0	0	1	0	0	0	0	0

Table 13. M_MODE register bit description

Bit	Symbol	Description
16	PLL_LOCK_RT	Real-time status of the PPL
		0 PLL not locked
		1 PLL locked
		Reset condition: POR
15	EXT_FIN_SEL_RT	Real-time status of FIN clock selection
		$0 \quad$ Internal clock oscillator is selected
		1 External FIN clock is selected
		Reset condition: POR

High voltage PMIC with multiple SMPS and LDO

Bit	Symbol	Description
14	EXT_FIN_DIS	Disable request of EXT FIN selection at PLL input
		0 No effect
		1 Disable FIN selection
		Reset condition: POR
13	MAIN_NORMAL	Main state machine status
		0 Main state machine is not in Normal mode
		1 Main state machine is in Normal mode
		Reset condition: POR
10	W2DIS	WAKE2 wake up disable
		0 wake up enable
		1 wake up disable
		Reset condition: POR
9	W1DIS	WAKE1 wake up disable
		$0 \quad$ Wake up enable
		1 Wake up disable
		Reset condition: POR
8	GOTOSTBY	Standby mode request
		0 Device remains in current state
		1 Device enters in Standby mode
		Reset condition: POR

16.5 M_REG_CTRL1 register

Table 14. M_REG_CTRL1 register bit allocation

Bit	23	22	21	20	19	18	17	16	
Write	VPRE_- PD_DIS	VPDIS	BOOSTDIS	BUCK1DIS	BUCK2DIS	BUCK3DIS	LDO1DIS	LDO2DIS	
Read	VPRE PD_DIS	RESERVED							
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
Write	0	VPEN	BOOSTEN	BUCK1EN	BUCK2EN	BUCK3EN	LDO1EN	LDO2EN	
Read	RESERVED								
Reset	0	0	0	0	0	0	0	0	

Table 15. M_REG_CTRL1 register bit description

Bit	Symbol	Description
23	VPRE_PD_DIS	Force disable of VPRE pull-down
0 No effect (VPRE pull-down is automatically controlled by the logic) 1 VPRE pull-down disable request Reset condition: POR		

High voltage PMIC with multiple SMPS and LDO

Bit	Symbol	Description
22	VPDIS	Disable request of VPRE
		$0 \quad$ No effect (regulator remains in existing state)
		1 VPRE disable request
		Reset condition: POR
21	BOOSTDIS	Disable request of BOOST
		$0 \quad$ No effect (regulator remains in existing state)
		1 BOOST disable request
		Reset condition: POR
20	BUCK1DIS	Disable request of BUCK1
		$0 \quad$ No effect (regulator remains in existing state)
		1 BUCK1 disable request
		Reset condition: POR
19	BUCK2DIS	Disable request of BUCK2
		$0 \quad$ No effect (regulator remains in existing state)
		1 BUCK2 disable request
		Reset condition: POR
18	BUCK3DIS	Disable request of BUCK3
		$0 \quad$ No effect (regulator remains in existing state)
		1 BUCK3 disable request
		Reset condition: POR
17	LDO1DIS	Disable request of LDO1
		$0 \quad$ No effect (regulator remains in existing state)
		1 LDO1 disable request
		Reset condition: POR
16	LDO2DIS	Disable request of LDO2
		0 no effect (regulator remains in existing state)
		1 LDO2 disable request
		Reset condition: POR
14	VPEN	Enable request of VPRE
		$0 \quad$ No effect (regulator remains in existing state)
		1 VPRE enable request (after a VPDIS request)
		Reset condition: POR
13	BOOSTEN	Enable request of BOOST
		$0 \quad$ No effect (regulator remains in existing state)
		1 BOOST enable request
		Reset condition: POR
12	BUCK1EN	Enable request of BUCK1
		$0 \quad$ No effect (regulator remains in existing state)
		1 BUCK1 enable request
		Reset condition: POR

Bit	Symbol	Description
11	BUCK2EN	Enable request of BUCK2
		$0 \quad$ No effect (regulator remains in existing state)
		1 BUCK2 enable request
		Reset condition: POR
10	BUCK3EN	Enable request of BUCK3
		$0 \quad$ No effect (regulator remains in existing state)
		1 BUCK3 enable request
		Reset condition: POR
9	LDO1EN	Enable request of LDO1
		$0 \quad$ No effect (regulator remains in existing state)
		1 LDO1 enable request
		Reset condition: POR
8	LDO2EN	Enable request of LDO2
		0 no effect (regulator remains in existing state)
		1 LDO2 enable request
		Reset condition: POR

16.6 M_REG_CTRL2 register

Table 16. M_REG_CTRL2 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	VBSTSR[1:0]		$\begin{aligned} & \text { BOOSTT } \\ & \text { SDCFG } \end{aligned}$	$\begin{gathered} \text { BUCK1T } \\ \text { SDCFG } \end{gathered}$	$\begin{aligned} & \text { BUCK2T } \\ & \text { SDCFG } \end{aligned}$	BUCK3T SDCFG	LDO1T SDCFG	$\begin{aligned} & \text { LDO2T } \\ & \text { SDCFG } \end{aligned}$
Read	VBSTSR[1:0]		$\begin{aligned} & \text { BOOSTT } \\ & \text { SDCFG } \end{aligned}$	BUCK1T SDCFG	$\begin{gathered} \text { BUCK2T } \\ \text { SDCFG } \end{gathered}$	BUCK3T SDCFG	$\begin{aligned} & \text { LDO1T } \\ & \text { SDCFG } \end{aligned}$	$\begin{aligned} & \text { LDO2T } \\ & \text { SDCFG } \end{aligned}$
Reset	OTP							
Bit	15	14	13	12	11	10	9	8
Write	0	0	0	VPRESRLS[1:0]		0	VPRESRHS[1:0]	
Read	RESERVED	RESERVED	RESERVED	VPRESRLS[1:0]		RESERVED	VPRESRHS[1:0]	
Reset	0	0	0	1	1	0	OTP	OTP

Table 17. M_REG_CTRL2 register bit description

Bit	Symbol	Description
23 to 22	VBSTSR[1:0]	VBOOST low-side slew rate control
		$0050 \mathrm{~V} / \mu \mathrm{s}$ - slow
		$01100 \mathrm{~V} / \mu \mathrm{s}$ - medium
		$10300 \mathrm{~V} / \mu \mathrm{s}$ - fast
		$11500 \mathrm{~V} / \mu \mathrm{s}$ - ultra fast
		Reset condition: POR

High voltage PMIC with multiple SMPS and LDO

Bit	Symbol	Description
21	BOOSTTSDCFG	BOOST behavior in case of TSD
		0 Regulator shutdown
		1 Regulator shutdown and state machine transition to DEEP-FS
		Reset condition: POR
20	BUCK1TSDCFG	BUCK1 behavior in case of TSD
		$0 \quad$ Regulator shutdown
		1 Regulator shutdown and state machine transition to DEEP-FS
		Reset condition: POR
19	BUCK2TSDCFG	BUCK2 behavior in case of TSD
		0 Regulator shutdown
		1 Regulator shutdown and state machine transition to DEEP-FS
		Reset condition: POR
18	BUCK3TSDCFG	BUCK3 behavior in case of TSD
		0 Regulator shutdown
		1 Regulator shutdown and state machine transition to DEEP-FS
		Reset condition: POR
17	LDO1TSDCFG	LDO1 behavior in case of TSD
		$0 \quad$ Regulator shutdown
		1 Regulator shutdown and state machine transition to DEEP-FS
		Reset condition: POR
16	LDO2TSDCFG	LDO2 behavior in case of TSD
		0 Regulator shutdown
		1 Regulator shutdown and state machine transition to DEEP-FS
		Reset condition: POR
12 to 11	VPRESRLS[1:0]	VPRE low-side slew rate control
		00130 mA typical drive capability - slow
		01260 mA typical drive capability - medium
		10520 mA typical drive capability - fast
		11900 mA typical drive capability - ultra fast
		Reset condition: POR
9 to 8	VPRESRHS[1:0]	VPRE high-side slew rate control
		$00 \quad 130 \mathrm{~mA}$ typical drive capability - slow
		01260 mA typical drive capability - medium
		$10 \quad 520 \mathrm{~mA}$ typical drive capability - fast
		11900 mA typical drive capability - ultra fast
		Reset condition: POR

16.7 M_AMUX register

Table 18. M_AMUX register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	0	0	RATIO			AMUX[4:0]		
Read	RESERVED	RESERVED	RATIO			AMUX[4:0]		
Reset	0	0	0	0	0	0	0	0

Table 19. M_AMUX register bit description

Bit	Symbol	Description
13	RATIO	Selection of divider ratio for Vsup, Wake1 and Wake 2 inputs
		$0 \quad$ Ratio $=7.5$ when $\mathrm{V}_{\text {SUP }}$ is selected, 7.45 when WAKE1 or WAKE2 are selected
		1 Ratio = 14 when $\mathrm{V}_{\text {SUP }}$ is selected, 13.85 when WAKE1 or WAKE2 are selected
		Reset condition
12 to 8	AMUX[4:0]	See Table 77

16.8 M_CLOCK register

Table 20. M_CLOCK register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	MOD_CONF	FOUT_MUX_SEL[3:0]				FOUT_PHASE[2:0]		
Read	MOD_CONF	FOUT_MUX_SEL[3:0]				FOUT_PHASE[2:0]		
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	$\begin{aligned} & \text { FOUT- } \\ & \text { CLK_SEL } \end{aligned}$	$\begin{aligned} & \text { EXT_- } \\ & \text { FIN_SEL } \end{aligned}$	FIN_DIV	MOD_EN	CLK_TUNE[3:0]			
Read	$\begin{aligned} & \text { FOUT_- } \\ & \text { CLK_SEL } \end{aligned}$	RESERVED	FIN_DIV	MOD_EN	CLK_TUNE[3:0]			
Reset	0	0	0	0	0	0	0	0

Table 21. M_CLOCK register bit description

Bit	Symbol	Description
23	MOD_CONF	Modulation configuration of main oscillator
		$0 \quad$ range $\pm 5 \% 23 \mathrm{kHz}$
		1 range $\pm 5 \% 94 \mathrm{kHz}$
		Reset condition: POR
22 to 19	FOUT_MUX_SEL[3:0]	See Table 75

Bit	Symbol	Description
18 to 16	FOUT_PHASE[2:0]	FOUT phase shifting configuration (see Section 25.2 "Phase shifting")
		000 No shift
		001 Shifted by 1 clock cycle of CLK running at 20 MHz
		010 Shifted by 2 clock cycle of CLK running at 20 MHz
		011 Shifted by 3 clock cycle of CLK running at 20 MHz
		100 Shifted by 4 clock cycle of CLK running at 20 MHz
		101 Shifted by 5 clock cycle of CLK running at 20 MHz
		110 Shifted by 6 clock cycle of CLK running at 20 MHz
		111 Shifted by 7 clock cycle of CLK running at 20 MHz
		Reset condition: POR
15	FOUT_CLK_SEL	FOUT_clk frequency selection (CLK1 or CLK2)
		$0 \quad$ FOUT_clk = CLK1
		1 FOUT_clk = CLK2
		Reset condition: POR
14	EXT_FIN_SEL	Enable request of EXT FIN selection at PLL input
		0 No effect
		1 FIN selection request
		Reset condition: POR
13	FIN_DIV	FIN input signal divider selection
		0 Divider by 1
		1 Divider by 6
		Reset condition: POR
12	MOD_EN	Modulation activation of main oscillator
		0 Modulation disabled
		1 Modulation enabled
		Reset condition: POR
11 to 8	CLK_TUNE[3:0]	See Table 74

16.9 M_INT_MASK1 register

Table 22. M_INT_MASK1 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	VPREOC_M	0	BUCK1OC_ M	BUCK2OC_ M	BUCK3OC_ M	LDO1OC_M	LDO2OC_M
Read	RESERVED	VPREOC_M	RESERVED	BUCK1OC_ M	BUCK2OC_ M	BUCK3OC__ M	LDO1OC_M	LDO2OC_M
Reset	0	0	0	0	0	0	0	0

High voltage PMIC with multiple SMPS and LDO

Bit	15	14	13	12	11	10	9	8
Write	0	0	BOOSTTSD_ M	BUCK1TSD_ M	BUCK2TSD_ M	BUCK3TSD_ M	LDO1TSD_M	LDO2TSD_M
Read	RESERVED	RESERVED	BOOSTTSD__ M	BUCK1TSD_ M	BUCK2TSD_ M	BUCK3TSD_ M	LDO1TSD_M	LDO2TSD_M
Reset	0	0	0	0	0	0	0	0

Table 23. M_INT_MASK1 register bit description

Bit	Symbol	Description
22	VPREOC_M	Inhibit INTERRUPT for VPRE overcurrent
		0 INT not masked
		1 INT masked
		Reset condition: POR
20	BUCK1OC_M	Inhibit INTERRUPT for BUCK1 overcurrent
		0 INT not masked
		1 INT masked
		Reset condition: POR
19	BUCK2OC_M	Inhibit INTERRUPT for BUCK3 overcurrent
		0 INT not masked
		1 INT masked
		Reset condition: POR
18	BUCK3OC_M	Inhibit INTERRUPT for BUCK3 overcurrent
		0 INT not masked
		1 INT masked
		Reset condition: POR
17	LDO1OC_M	Inhibit INTERRUPT for LDO1 overcurrent
		0 INT not masked
		1 INT masked
		Reset condition: POR
16	LDO2OC_M	Inhibit INTERRUPT for LDO2 overcurrent
		0 INT not masked
		1 INT masked
		Reset condition: POR
13	BOOSTTSD_M	Inhibit INTERRUPT for BOOST overtemperature shutdown event
		0 INT not masked
		1 INT masked
		Reset condition: POR
12	BUCK1TSD_M	Inhibit INTERRUPT for BUCK1 overtemperature shutdown event
		0 INT not masked
		1 INT masked
		Reset condition: POR

Bit	Symbol	Description
11	BUCK2TSD_M	Inhibit INTERRUPT for BUCK2 overtemperature shutdown event
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
10	BUCK3TSD_M	Inhibit INTERRUPT for BUCK3 overtemperature shutdown event
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
9	LDO1TSD_M	Inhibit INTERRUPT for LDO1 overtemperature shutdown event
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
8	LDO2TSD_M	Inhibit INTERRUPT for LDO2 overtemperature shutdown event
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR

16.10 M_INT_MASK2 register

Table 24. M_INT_MASK2 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	0	0	0	$\begin{gathered} \text { VBOOSTOV_ }_{-} \\ M \end{gathered}$	$\begin{gathered} \text { VBOSUVH_- } \\ \mathrm{M} \end{gathered}$	COM_M	$\begin{aligned} & \text { VPRE_- } \\ & \text { FB_OV_M } \end{aligned}$
Read	RESERVED	RESERVED	RESERVED	RESERVED	$\begin{gathered} \text { VBOOSTOV_ }_{\text {M }} \end{gathered}$	$\begin{gathered} \text { VBOSUVH_ } \\ M \end{gathered}$	COM_M	$\begin{aligned} & \text { VPRE_- } \\ & \text { FB_OV_M } \end{aligned}$
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	$\begin{aligned} & \text { VBOOST- } \\ & \text { UVH_M } \end{aligned}$	VSUPUV7_M	0	VPREUVH_ M	VSUPUVL_M	$\begin{gathered} \text { VSUPUVH_ } \\ M \end{gathered}$	WAKE1_M	WAKE2_M
Read	$\begin{aligned} & \text { VBOOST_- } \\ & \text { UVH_M } \end{aligned}$	VSUPUV7_M	RESERVED	VPREUVH M	VSUPUVL_M	$\begin{gathered} \text { VSUPUVH_ } \\ M \end{gathered}$	WAKE1_M	WAKE2_M
Reset	0	0	0	0	0	0	0	0

Table 25. M_INT_MASK2 register bit description

Bit	Symbol	Description
19	VBOOSTOV_M	Inhibit INTERRUPT for VBOOST_OV any transition
		0 INT not masked
		1 INT masked
		Reset condition: POR

High voltage PMIC with multiple SMPS and LDO

Bit	Symbol	Description
18	VBOSUVH_M	Inhibit INTERRUPT for VBOS_UVH any transition
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
17	COM_M	Inhibit INTERRUPT for COM any transition
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
16	VPRE_FB_OV_M	Inhibit INTERRUPT for VPRE_FB_OV
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
15	VBOOSTUVH_M	Inhibit INTERRUPT for VBOOST_UVH
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
14	VSUPUV7_M	Inhibit INTERRUPT for VSUP_UV7
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
12	VREUVH_M	Inhibit INTERRUPT for VSUP_UVH
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
11	VSUPUVL_M	Inhibit INTERRUPT for VSUP_UVL
		$0 \quad$ INT not masked
		1 INT masked
		Reset condition: POR
10	VSUPUVH_M	Inhibit INTERRUPT for VPRE_UVH
		0 INT not masked
		1 INT masked
		Reset condition: POR
9	WAKE1_M	Inhibit INTERRUPT for WAKE1 any transition
		0 INT not masked
		1 INT masked
		Reset condition: POR
8	WAKE2_M	Inhibit INTERRUPT for WAKE2 any transition
		0 INT not masked
		1 INT masked
		Reset condition: POR

16.11 M_FLAG1 register

When device starts-up, it is recommended to clear all the flags by writing 1 on all bits.
Table 26. M_FLAG1 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	VBOSUVH	VBOO STUVH	VPREOC	BUCK1OC	BUCK2OC	BUCK3OC	LDO1OC	LDO2OC
Read	VBOSUVH	$\begin{aligned} & \text { VBOO } \\ & \text { STUVH } \end{aligned}$	VPREOC	BUCK1OC	BUCK2OC	BUCK3OC	LDO1OC	LDO2OC
Reset	1	1	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	0	VBOOSTOV	VBOOSTOT	BUCK1OT	BUCK2OT	BUCK3OT	LD010T	LDO2OT
Read	$\begin{aligned} & \text { CLK_FIN_ } \\ & \text { DIV OK } \end{aligned}$	VBOOSTOV	VBOOSTOT	BUCK1OT	BUCK2OT	BUCK3OT	LDO1OT	LDO2OT
Reset	0	0	0	0	0	0	0	0

Table 27. M_FLAG1 register bit description

Bit	Symbol	Description
23	VBOSUVH	VBOS undervoltage high event (falling)
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')
22	VBOOSTUVH	VBOOST undervoltage high event (falling)
		$0 \quad$ No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
21	VPREOC	VPRE overcurrent event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')
20	BUCK1OC	BUCK1 overcurrent event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')
19	BUCK2OC	BUCK3 overcurrent event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')
18	BUCK3OC	BUCK3 overcurrent
		$0 \quad$ No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')

Bit	Symbol	Description
17	LDO1OC	LDO2 overcurrent
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
16	LDO2OC	LDO1 overcurrent
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
15	CLK_FIN_DIV_OK	CLK_FIN_DIV monitoring
		0 Not OK: FIN ${ }_{\text {ERR_LONG }}<$ CLK_FIN_DIV deviation < FIN ${ }_{\text {ERR_SHORT }}$
		1 OK: FIN ${ }_{\text {ERR_SHORT }}$ < CLK_FIN_DIV deviation < FIN ${ }_{\text {ERR_LONG }}$
		Reset condition: Real time information
14	VBOOSTOV	VBOOST overvoltage protection event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
13	VBOOSTOT	VBOOST overtemperature shutdown event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
12	BUCK1OT	BUCK1 overtemperature shutdown event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
11	BUCK2OT	BUCK2 overtemperature shutdown event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
10	BUCK3OT	BUCK3 overtemperature shutdown event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
9	LDO1OT	LDO1 overtemperature shutdown event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')
8	LDO2OT	LDO2 overtemperature shutdown event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')

16.12 M_FLAG2 register

When device starts-up, it is recommended to clear all the flags by writing 1 on all bits.
Table 28. M_FLAG2 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	VPRE FB_OV	VSUPUV7	0	0	0	0	0	0
Read	VPRE FB_OV	VSUPUV7	BOOST_ST	BUCK1_ST	BUCK2_ST	BUCK3_ST	LDO1_ST	LDO2_ST
Reset	0	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8
Write	VPREUVL	VPREUVH	VSUPUVL	VSUPUVH	0	0	WK2FLG	WK1FLG
Read	VPREUVL	VPREUVH	VSUPUVL	VSUPUVH	WK2RT	WK1RT	WK2FLG	WK1FLG
Reset	1	1	1	1	0	1	0	1

Note: Reset value for VR5500, wake up by Wake1, all regulators started by default during power-up sequence.

Table 29. M_FLAG2 register bit description

Bit	Symbol	Description
23	VPRE_FB_OV	VPRE_FB_OV event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
22	VSUPUV7	VSUP_UV7 event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
21	BOOST_ST	BOOST state
		0 Regulator OFF
		1 Regulator ON
		Reset condition: Real-time information
20	BUCK1_ST	BUCK1 state
		0 Regulator OFF
		1 Regulator ON
		Reset condition: Real-time information
19	BUCK2_ST	BUCK2 state
		0 Regulator OFF
		1 Regulator ON
		Reset condition: Real-time information
18	BUCK3_ST	BUCK3 state
		0 Regulator OFF
		1 Regulator ON
		Reset condition: Real-time information

Bit	Symbol	Description
17	LDO1_ST	LDO1 state
		0 regulator OFF
		1 regulator ON
		Reset condition: Real-time information
16	LDO2_ST	LDO2 state
		0 regulator OFF
		1 regulator ON
		Reset condition: Real-time information
15	VPREUVL	VPRE_UVL event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
14	VPREUVH	VPRE_UVH event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
13	VSUPUVL	VSUP_UVL event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
12	VSUPUVH	VSUP_UVH event
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
11	WK2RT	Report event: WAKE2 real-time state
		0 WAKE2 is low level
		1 WAKE2 is high
		Reset condition: Real-time information
10	WK1RT	Report event: WAKE1 real-time state
		0 WAKE1 is low level
		1 WAKE1 is high
		Reset condition: Real-time information
9	WK2FLG	WAKE2 wake up source flag
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write '1')
8	WK1FLG	WAKE1 wake up source flag
		0 No event
		1 Event occurred
		Reset condition: POR / Clear on Write (write ' 1 ')

16.13 M_VMON_REG1 register

Table 30. M_VMON_REG1 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	0	0	0	0	0	VMON1_REG[2:0]		
Read	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	VMON1_REG[2:0]		
Reset	0	0	0	0	0	0	0	0

Table 31. M_VMON_REG1 register bit description

Bit	Symbol	Description
10 to 8	VMON1_REG[2:0]	Regulator assignment to VMON1
		000 External regulator
		001 VPRE
		010 LDO1
		011 LDO2
		100 BUCK2
		101 BUCK3
		11x External regulator
		Reset condition: POR

16.14 M_LVB1_SVS register

Table 32. M_LVB1_SVS register bit allocation

Bit	23	22	21	20	19	18	17	16
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Read	RESERVED	RESERVED	RESERVED	LVB1_SVS[4:0]				
Reset	0	0	0	0	0	0	0	0

Table 33. M_LVB1_SVS register bit description

Bit	Symbol	Description
12 to 8	LVB1_SVS[4:0]	Static voltage scaling negative offset
		000000 mV
		$00001-6.25 \mathrm{mV}$
		$00010-12.50 \mathrm{mV}$
		$00011-18.75 \mathrm{mV}$
		$00100-25 \mathrm{mV}$
		$00101-31.25 \mathrm{mV}$
		$00110-37.5 \mathrm{mV}$
		$00111-43.75 \mathrm{mV}$
		$01000-50 \mathrm{mV}$
		$01001-56.25 \mathrm{mV}$
		$01010-62.5 \mathrm{mV}$
		$01011-68.75 \mathrm{mV}$
		$01100-75 \mathrm{mV}$
		$01101-81.25 \mathrm{mV}$
		$01110-87.5 \mathrm{mV}$
		$01111-93.75 \mathrm{mV}$
		$10000-100 \mathrm{mV}$
		Reset condition: POR

16.15 M_MEMORYO register

Table 34. M_MEMORY0 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	MEMORYO[15:8]							
Read	MEMORYO[15:8]							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	MEMORY0[7:0]							
Read	MEMORY0[7:0]							
Reset	0	0	0	0	0	0	0	0

Table 35. M_MEMORYO register bit description

Bit	Symbol	Description
23 to 8	MEMORY0[15:0]	Free memory field for data storage
		$0 \ldots$ 16 bits free memory
		... 1
		Reset condition: POR

16.16 M_MEMORY1 register

Table 36. M_MEMORY1 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	MEMORY1[15:0]							
Read	MEMORY1[15:0]							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	MEMORY1[15:0]							
Read	MEMORY1[15:0]							
Reset	0	0	0	0	0	0	0	0

Table 37. M_MEMORY1 register bit description

Bit	Symbol	Description
23 to 8	MEMORY1[15:0]	Free memory field for data storage
16 bits free memory	$\ldots 1$	Reset condition: POR

16.17 M_DEVICEID register

Table 38. M_DEVICEID register bit allocation

Bit	23	22	21	20	19	18	17	16
Read	FMREV[3:0]				MMREV[3:0]			
Reset	0	0	1	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Read	DEVICEID[7:0]							
Reset	0	0	0	0	0	0	0	0

Table 39. M_DEVICEID register bit description

Bit	Symbol	Description
23 to 20	FMREV[3:0]	Full mask revision
		Full mask revision configured by metal connection
		Reset condition: POR
19 to 16	MMREV[3:0]	Metal Mask Revision
		Metal mask revision configured by metal connection
		Reset condition: POR
15 to 8	DEVICEID[7:0]	Device ID
		x...x Device ID from OTP_DEVICEID[7:0] bits
		Reset condition: POR

17 Fail-safe register mapping

17.1 Fail-safe writing registers overview

Table 40. Fail-safe writing registers overview

Logic	Register name	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
Fail-safe	FS_I_OVUV SAFE_REACTION1	VCOREMON_OV FS_IMPACT[1:0]		VCOREMON_UV_FS_IMPACT[1:0]		0	RESERVED	RESERVED	RESERVED
		RESERVED	RESERVED	RESERVED	0	VDDIO_OV_FS_IMPACT[1:0]		VDDIO_UV_FS_IMPACT[1:0]	
	FS_IOVUV SAFE_REACTION2	RESERVED							
		RESERVED	RESERVED	RESERVED	RESERVED	VMON1_OV_FS_IMPACT[1:0]		VMON1_UV_FS_IMPACT[1:0]	
	FS_I_FSSM	FLT_ERR_CNT_LIMIT[1:0]		0	RESERVED	RESERVED	0	RSTB_DUR	0
		RESERVED	0	RESERVED	DIS_8s	0	0	0	0
	FS_I_SVS	SVS_OFFSET[4:0]					0	0	0
		0	0	0	0	0	0	0	0
	FS_OVUVREG_ STATUS	$\begin{aligned} & \text { VCOREMON_ } \\ & \text { OV } \end{aligned}$	$\begin{aligned} & \text { VCOREMON_ } \\ & \text { UV } \end{aligned}$	VDDIO_OV	VDDIo_UV	RESERVED	RESERVED	RESERVED	RESERVED
		RESERVED	RESERVED	VMON1_OV	VMON1_UV	0	FS_DIG REF_OV	FS_OSC_DRIFT	0
	FS_SAFE_IOS	PGOOD_DIAG	$\begin{aligned} & \text { PGOOD_- } \\ & \text { EVENT } \end{aligned}$	0	EXT_RSTB	0	0	RSTB_EVENT	RSTB_DIAG
		RSTB_REQ	0	0	0	0	0	0	0
	FS_DIAG	RESERVED							
		RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	12C_FS_CRC	I2C_FS_REQ	RESERVED
	FS_INTB_MASK	0	0	0	0	0	0	RESERVED	RESERVED
		RESERVED	$\begin{gathered} \text { INT_INH_- } \\ \text { VMON1_OV_UV } \end{gathered}$	$\begin{gathered} \text { INT_INH_- } \\ \text { VDDIO_OV_UV } \end{gathered}$	$\begin{aligned} & \text { INT_INH_- } \\ & \text { VCOREMON_ } \\ & \text { OV_UV } \end{aligned}$	RESERVED	RESERVED	RESERVED	RESERVED
	FS_STATES	0	DBG_EXIT	0	0	OTP CORRŪTT	0	REG CORRŪTT	0
		0	0	0	0	0	0	0	0

17.2 Fail-safe reading registers overview

Table 41. Fail-safe reading registers overview

Logic	Register name	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
Fail-safe	FS_GRL_FLAGS	FS_COM_G	RESERVED	FS_IO_G	FS_REG_ OVUV_G	RESERVED	RESERVED	RESERVED	RESERVED
		RESERVED							
	FS I OVUV SAFE_REAC̄TION1	VCOREMON OV FS_IMPACT[1:0]		VCOREMON_UV_FS_IMPACT[1:0]		RESERVED	RESERVED	RESERVED	RESERVED
		RESERVED	RESERVED	RESERVED	RESERVED	VDDIO_OV_FS_IMPACT[1:0]		VDDIO_UV_FS_IMPACT[1:0]	
	FS_I OVUV SAFE_REACTION2	RESERVED							
		RESERVED	RESERVED	RESERVED	RESERVED	VMON1_OV_FS_IMPACT[1:0]		VMON1_UV_FS_IMPACT[1:0]	
	FS_I_FSSM	FLT_ERR_CNT_LIMIT[1:0]		RESERVED	RESERVED	RESERVED	RESERVED	RSTB_DUR	RESERVED
		RESERVED	RESERVED	RESERVED	DIS_8s	FLT_ERR_CNT[3:0]			
	FS_I_SVS	SVS_OFFSET[4:0]					RESERVED	RESERVED	RESERVED
		RESERVED							
	FS_OVUVREG_ StATUS	$\begin{aligned} & \text { VCOREMON_ } \\ & \text { OV } \end{aligned}$	$\begin{aligned} & \text { VCOREMON_ } \\ & \text { UV } \end{aligned}$	VDDIo_OV	VDDIo_UV	RESERVED	RESERVED	RESERVED	RESERVED
		RESERVED	RESERVED	VMON1_OV	VMON1_UV	RESERVED	FS_DIG REF_OV	FS_OSC_DRIFT	RESERVED
	FS_SAFE_IOS	PGOOD_DIAG	$\begin{aligned} & \text { PGOOD_- } \\ & \text { EVENT } \end{aligned}$	PGOOD_SNS	EXT_RSTB	RSTB_DRV	RSTB_SNS	RSTB_EVENT	RSTB_DIAG
		RESERVED							
	FS_DIAG	RESERVED	RESERVED	RESERVED	RESERVED	ERRMON	RESERVED	RESERVED	RESERVED
		RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	12C_FS_CRC	I2C_FS_REQ	RESERVED
	FS_INTB_MASK	RESERVED							
		RESERVED	$\begin{gathered} \text { INT_INH_- } \\ \text { VMON1_OV_UV } \end{gathered}$	$\begin{gathered} \text { INT_INH_ } \\ \text { VDDIO_OV_UV } \end{gathered}$		RESERVED	RESERVED	RESERVED	RESERVED
	FS_STATES	RESERVED	RESERVED	DBG_MODE	RESERVED	OTP CORRŪPT	RESERVED	REG CORRUPT	RESERVED
		RESERVED	RESERVED	RESERVED	FSM_STATE[4:0]				

17.3 FS_GRL_FLAGS register

Table 42. FS_GRL_FLAGS register bit allocation

| Bit | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | FS_COM_G | RESERVED | FS_IO_G | FS_REG_
 OVUV_G | RESERVED | RESERVED | RESERVED | RESERVED |
| Reset | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| Read | RESERVED |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 43. FS_GRL_FLAGS register bit description

Bit	Symbol	Description
23	FS_COM_G	Report an issue in the communication (I2C) FS_COM_G = I2C_FS_CRC or I2C_FS_REQ
		0 No failure
		1 Failure
		Reset condition: Real time information - cleared when all individual bits are cleared
21	FS_IO_G	Report an issue in one of the fail-safe IOs FS_IO_G = PGOOD_DIAG or RSTB_DIAG
		0 No failure
		1 Failure
		Reset condition: real time information - cleared when all individual bits are cleared
20	FS_REG_OVUV_G	Report an issue in one of the voltage monitoring (OV or UV) FS_REG_OVUV_G = VCOREMON_OV or VCOREMON_UV or VDDIO_OV or VDDIO_UV or VMON1_OV or VMON1_UV
		0 No failure
		1 Failure
		Reset condition: real time information - cleared when all individual bits are cleared

17.4 FS_I_OVUV_SAFE_REACTION1 register

Table 44. FS_I_OVUV_SAFE_REACTION1 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	VCOREMON_OV FS_IMPACT[1:0]		VCOREMON_UV FS_IMPACT[1:0]		0	RESERVED	RESERVED	RESERVED
Read	VCOREMON_OV_ FS_IMPACT[1:0]		$\begin{aligned} & \text { VCOREMON_UV_- } \\ & \text { FS_IMPACT[1:0] } \end{aligned}$		RESERVED	RESERVED	RESERVED	RESERVED
Reset	1	1	0	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	RESERVED	RESERVED	RESERVED	0	VDDIO OV FS_IMPACT[1:0]		VDDIO UV FS IMPACT[1:0]	
Read	RESERVED	RESERVED	RESERVED	RESERVED	VDDIO_OV FS_IMPACT[1:0]		VDDIO_UV_FS_ IMPACT[1:0]	
Reset	0	0	0	0	1	1	0	1

Table 45. FS_I_OVUV_SAFE_REACTION1 register bit description

Bit	Symbol	Description
23 to 22	VCOREMON_OV_FS_IMPACT[1:0]	Table 87
21 to 20	VCOREMON_UV_FS_IMPACT[1:0]	Table 87
11 to 10	VDDIO_OV_FS_IMPACT[1:0]	Table 90
9 to 8	VDDIO_UV_FS_IMPACT[1:0]	Table 90

17.5 FS_I_OVUV_SAFE_REACTION2 register

Table 46. FS_I_OVUV_SAFE_REACTION2 register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	RESERVED							
Read	RESERVED							
Reset	1	1	0	1	1	1	0	1
Bit	15	14	13	12	11	10	9	8
Write	RESERVED	RESERVED	RESERVED	RESERVED	$\begin{aligned} & \text { VMON1_OV } \\ & \text { FS_IMPACT[1:0] } \end{aligned}$		VMON1_UV FS_IMPACT[1:0]	
Read	RESERVED	RESERVED	RESERVED	RESERVED	$\begin{aligned} & \text { VMON1_OV } \\ & \text { FS_IMPACT[1:0] } \end{aligned}$		VMON1_UV FS_IMPACT[1:0]	
Reset	1	1	0	1	1	1	0	1

Table 47. FS_I_OVUV_SAFE_REACTION2 register bit description

Bit	Symbol	Description
11 to 10	VMON1_OV_FS_IMPACT[1:0]	See Table 92
9 to 8	VMON1_UV_FS_IMPACT[1:0]	

17.6 FS_I_FSSM register

Table 48. FS_I_FSSM register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	FLT_ERR_C	T_LIMIT[1:0]	0	RESERVED	RESERVED	0	RSTB_DUR	0
Read	FLT_ERR_C	T_LIMIT[1:0]	RESERVED	RESERVED	RESERVED	RESERVED	RSTB_DUR	RESERVED
Reset	0	1	0	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	RESERVED	0	RESERVED	DIS_8s	0	0	0	0
Read	RESERVED	RESERVED	RESERVED	DIS_8s	FLT_ERR_CNT[3:0]			
Reset	1	0	0	0	0	0	0	1

Table 49. FS I FSSM register bit description

Bit	Symbol	Description
23 to 22	FLT_ERR_CNT_LIMIT[1:0]	See Table 95
17	RSTB_DUR	RSTB pulse duration configuration
		$0 \quad 10 \mathrm{~ms}$
		$1 \quad 1.0 \mathrm{~ms}$
		Reset condition: POR

High voltage PMIC with multiple SMPS and LDO

Bit	Symbol	Description
12	DIS_8s	Disable 8 s timer
		$0 \quad$ RSTB low 8 s counter enabled
		1 RSTB low 8 s counter disabled
		Reset condition: POR
11 to 8	FLT_ERR_CNT[3:0]	Reflect the value of the fault error counter
		00000
		0001
		00102
		00113
		01004
		01015
		01106
		01117
		10008
		10019
		101010
		101111
		110012
		Reset condition: Real time information

17.7 FS_I_SVS register

Table 50. FS_I_SVS register bit allocation

Table 51. FS_I_SVS register bit description

Bit	Symbol	Description
23 to 19	SVS_OFFSET[4:0]	Static voltage scaling negative offset
		000000 mV
		$00001-6.25 \mathrm{mV}$
		$00010-12.50 \mathrm{mV}$
		$00011-18.75 \mathrm{mV}$
		$00100-25 \mathrm{mV}$
		$00101-31.25 \mathrm{mV}$
		$00110-37.5 \mathrm{mV}$
		00111 -43.75 mV
		$01000-50 \mathrm{mV}$
		$01001-56.25 \mathrm{mV}$
		$01010-62.5 \mathrm{mV}$
		$01011-68.75 \mathrm{mV}$
		$01100-75 \mathrm{mV}$
		$01101-81.25 \mathrm{mV}$
		$01110-87.5 \mathrm{mV}$
		$01111-93.75 \mathrm{mV}$
		$10000-100 \mathrm{mV}$
		Reset condition: POR

17.8 FS_OVUVREG_STATUS register

Table 52. FS_OVUVREG_STATUS register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	VCOREMON_ OV	VCOREMON UV	VDDIO_OV	VDDIO_UV	RESERVED	RESERVED	RESERVED	RESERVED
Read	$\begin{gathered} \text { VCOREMON_ } \\ \text { OV } \end{gathered}$	VCOREMON UV	VDDIO_OV	VDDIO_UV	RESERVED	RESERVED	RESERVED	RESERVED
Reset	0	1	0	1	0	1	0	1
Bit	15	14	13	12	11	10	9	8
Write	RESERVED	RESERVED	VMON1_OV	VMON1_UV	0	$\begin{aligned} & \text { FS_DIG_ } \\ & \text { REF_OV } \end{aligned}$	$\begin{gathered} \text { FS_OSC_ } \\ \text { DRIFT } \end{gathered}$	0
Read	RESERVED	RESERVED	VMON1_OV	VMON1_UV	RESERVED	$\begin{aligned} & \text { FS_DIG- } \\ & \text { REF_OV } \end{aligned}$	$\begin{gathered} \text { FS_OSC- } \\ \text { DRIFT } \end{gathered}$	RESERVED
Reset	0	1	0	1	0	0	0	0

Table 53. FS_OVUVREG_STATUS register bit description

Bit	Symbol	Description
23	VCOREMON_OV	Overvoltage monitoring on VCOREMON
		0 No overvoltage
		1 Overvoltage reported on VCOREMON
		Reset condition: POR / clear on write (write '1')
22	VCOREMON_UV	Undervoltage monitoring on VCOREMON
		$0 \quad$ No undervoltage
		1 Undervoltage reported on VCOREMON
		Reset condition: POR / clear on write (write ' 1 ')
21	VDDIO_OV	Overvoltage monitoring on VDDIO
		$0 \quad$ No overvoltage
		1 Overvoltage reported on VDDIO
		Reset POR / clear on write (write '1') condition
20	VDDIO_UV	Undervoltage monitoring on VDDIO
		$0 \quad$ No undervoltage
		1 Undervoltage reported on VDDIO
		Reset condition: POR / clear on write (write '1')
13	VMON1_OV	Overvoltage monitoring on VMON1
		$0 \quad$ No overvoltage
		1 Overvoltage reported on VMON1
		Reset condition: POR / clear on write (write '1')
12	VMON1_UV	Undervoltage monitoring on VMON1
		$0 \quad$ No undervoltage
		$1 \quad$ Undervoltage reported on VMON1
		Reset condition: POR / clear on write (write '1')
9	FS_DIG_REF_OV	Overvoltage of the internal digital fail-safe reference voltage
		$0 \quad$ No overvoltage
		1 Overvoltage reported of the internal digital fail-safe reference voltage
		Reset condition: POR / clear on write (write '1')
8	FS_OSC_DRIFT	Drift of the fail-safe OSC
		$0 \quad$ No drift
		1 Oscillator drift
		Reset condition: POR / clear on write (write '1')

17.9 FS_SAFE_IOs register

Table 54. FS_SAFE_IOS register bit allocation

Bit	23	$\mathbf{2 2}$	21	20	19	18	17	16
Write	PGOOD_ DIAG	PGOOD_ EVENT	0	EXT_RSTB	0	0	RSTB_M EVENT	RSTB_DIAG
Read	PGOOD_ DIAG	PGOOD_ EVENT	PGOOD_ SNS	EXT_RSTB	RSTB_DRV	RSTB_SNS	RSTB_ EVENT	RSTB_DIAG
Reset	0	1	0	0	0	0	1	0

Bit	15	14	13	12	11	10	9	8
Write	RSTB_REQ	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

Table 55. FS_SAFE_IOS register bit description

Bit	Symbol	Description
23	PGOOD_DIAG	Report a PGOOD Short to High
		0 No failure
		1 Short circuit HIGH
		Reset condition: POR / clear on write (write '1')
22	PGOOD_EVENT	Report a Power GOOD event
		0 No Power GOOD
		1 Power GOOD event occurred
		Reset condition: POR / clear on write (write '1')
21	PGOOD_SNS	Sense of PGOOD pad
		0 PGOOD pad sensed low
		1 PGOOD pad sensed high
		Reset condition: Real-time information
20	EXT_RSTB	Report an external RESET
		0 No external RESET
		1 External RESET
		Reset condition: POR / clear on write (write '1')
19	RSTB_DRV	RSTB driver - digital command
		0 RSTB driver command sensed low
		1 RSTB driver command sensed high
		Reset condition: Real-time information
18	RSTB_SNS	Sense of RSTB pad
		0 RSTB pad sensed low
		1 RSTB pad sensed high
		Reset condition: Real-time information

Bit	Symbol	Description
17	RSTB_EVENT	Report a RSTB event
		0 No RESET
		1 RESET occurred
		Reset condition: POR / clear on write (write '1')
16	RSTB_DIAG	Report a RSTB short to high
		0 No failure
		1 Short circuit high
		Reset condition: POR / clear on write (write '1')
15	RSTB_REQ	Request assertion of RSTB (Pulse)
		0 No assertion
		1 RSTB assertion (pulse)
		Reset condition: POR

17.10 FS_DIAG register

Table 56. FS_DIAG register bit allocation

| Bit | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Write | RESERVED |
| Read | RESERVED |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| Write | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | I2C_FS_CRC | I2C_FS_REQ | RESERVED |
| Read | RESERVED | RESERVED | RESERVED | RESERVED | RESERVED | I2C_FS_CRC | I2C_FS_REQ | RESERVED |
| Reset | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Table 57. FS_DIAG register bit description

Bit	Symbol	Description
10	I2C_FS_CRC	Invalid fail-safe I2C access (wrong write or read, write to INIT registers in normal mode, wrong address)
		0 No error
		1 I2C violation
		Reset condition: POR / clear on write (write '1')
9	I2C_FS_REQ	Fail-safe I2C communication CRC issue
		0 No error
		1 Error detected in the CRC
		Reset condition: POR / clear on write (write '1')

17.11 FS_INTB_MASK register

Table 58. FS_INTB_MASK register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	0	0	0	0	0	RESERVED	RESERVED
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

Bit	15	14	13	12	11	10	9	8
Write	RESERVED	INT_INH_ VMON1_ OV_UV	INT_INH_ VDDIO_ OV_UV	INT_INH_- VCOREMON_ OV_UV	RESERVED	RESERVED	RESERVED	RESERVED
Read	RESERVED	INT_INH_ VMON1_ OV_UV	INT_INH_ VDDIO_ OV_UV	INT_INH_- VCOREMON_ OV_UV	RESERVED	RESERVED	RESERVED	RESERVED
Reset	0	0	0	0	0	0	0	

Table 59. FS_INTB_MASK register bit description

Bit	Symbol	Description
14	INT_INH_VMON1_OV_UV	Inhibit INTERRUPT on VMON1 OV and UV event
		0 Interruption NOT MASKED
		1 Interruption MASKED
		Reset condition: POR
13	INT_INH_VDDIO_OV_UV	Inhibit INTERRUPT on VDDIO OV and UV event
		0 Interruption NOT MASKED
		1 Interruption MASKED
		Reset condition: POR
12	INT_INH_VCOREMON_OV_UV	Inhibit INTERRUPT on VCOREMON OV and UV event
		0 Interruption NOT MASKED
		1 Interruption MASKED
		Reset condition: POR

17.12 FS_STATES register

Table 60. FS_STATES register bit allocation

Bit	23	22	21	20	19	18	17	16
Write	0	DBG_EXIT	0	0	OTP CORRUPT	0	REG CORRUPT	0
Read	RESERVED	RESERVED	DBG_MODE	RESERVED	OTP CORRUPT	RESERVED	REG CORRUPT	RESERVED
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Write	0	0	0	0	0	0	0	0
Read	RESERVED	RESERVED	RESERVED	FSM_STATE[4:0]				
Reset	0	0	0	0	0	1	1	0

VR5500

Table 61. FS_STATES register bit description

Bit	Symbol	Description
22	DBG_EXIT	Leave DEBUG mode
		0 No action
		1 Leave DEBUG mode
		Reset condition: POR
21	DBG_MODE	DEBUG mode status
		0 NOT in DEBUG mode
		1 In DEBUG mode
		Reset condition: Real-time information
19	OTP_CORRUPT	OTP bits corruption detection (5 ms cyclic check)
		0 No error
		1 OTP CRC error detected
		Reset condition: POR / clear on write (write '1')
16	REG_CORRUPT	INIT register corruption detection (real-time comparison)
		0 No error
		1 INIT register content error detected (mismatch between FS_I_Register / FS_I_NOT_ Register)
		Reset condition: POR / clear on write (write '1')
12 to 8	FSM_STATE[4:0]	Report fail-safe state machine current state
		00110 INIT_FS
		Reset condition: Real-time information

18 OTP bits configuration

18.1 Overview

Table 62. Main OTP_REGISTERS
Legend: bold - Regulator behavior in case of TSD, VPRE, and VBOOST slew rate parameters can be changed later by I2C.

Name	Address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
OTP_CFG_VPRE_1	14	0	0	VPREV[5:0]					
OTP_CFG_VPRE_2	15	0	0	VPRESC[5:0]					
OTP_CFG_VPRE_3	16	VPREILIM[1:0]		1	0	1	1	VPRESRHS[1:0]	
OTP_CFG_BOOST_1	17	0	0	VPRE_MODE	0	VBSTV[3:0]			
OTP_CFG_BOOST_2	18	BOOSTEN	VBSTTONTIME[1:0]		VBSTSC[4:0]				
OTP_CFG_BOOST_3	19	0	0	0	0	0	1	VBSTSR[1:0]	
OTP_CFG_BUCK1_1	1A	VB1V[7:0]							
OTP_CFG_BUCK1_2	1B	0	0	0	VB1INDOPT[1:0]		VB1SWILIM[1:0]		VB12M ULTIPH
OTP_CFG_BUCK2_1	1 C	VB2V[7:0]							
OTP_CFG_BUCK2_2	1D	0	VB2INDOPT[1:0]		BUCK2EN	VB2SWILIM[1:0]		0	0
OTP_CFG_BUCK3_1	1E	BUCK3EN	VB3INDOPT[1:0]		VB3V[4:0]				
OTP_CFG_BUCK3_2	1F	VB2GMCOMP[2:0]			VB1GMCOMP[2:0]			VB3SWILIM[1:0]	
OTP_CFG_LDO	20	LDO2ILIM	LDO2V[2:0]			LD01ILIM	LDO1V[2:0]		
OTP_CFG_SEQ_1	21	0	0	VB2S[2:0]			VB1S[2:0]		
OTP_CFG_SEQ_2	22	0	0	LDO2S[2:0]			LDO1S[2:0]		
OTP_CFG_SEQ_3	23	DVS_BUCK12[1:0]		DVS_BUCK3[1:0]		Tslot	0	VB3S[2:0]	
OTP_CFG_CLOCK_1	24	0	0	VPRE_ph[2:0]			1	0	0
OTP_CFG_CLOCK_2	25	0	0	BUCK1_ph[2:0]			VBST_ph[2:0]		
OTP_CFG_CLOCK_3	26	0	0	BUCK3_ph[2:0]			BUCK2_ph[2:0]		
OTP_CFG_CLOCK_4	27	BUCK3 clk_sel	BUCK2 clk_sel	BUCK1_ clk_sel	VBST_clk_sel	VPRE_clk_sel	PLL_sel	0	1
OTP_CFG_SM_1	28	0	0	conf_TSD[5:0]					
OTP_CFG_SM_2	29	0	0	0	VPRE_off_dly	1	1	PSYNC_CFG	PSYNC_EN
OTP_CFG_VSUP_UV	2A	0	0	0	0	0	0	0	VSUPCFG
OTP_CFG_I2C	2B	0	0	0	0	M_I2CDEVADDR[3:0]			
OTP_CFG_OV	2 C	0	0	0	0	0	VDDIO_REG_ASSIGN[2:0]		
OTP_CFG_DEVID	2D	DeviceID[7:0]							

Table 63. Fail-safe OTP_REGISTERS

Name	Address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
OTP_CFG_UVOV_1	OA	VCORE_V[7:0]							
OTP_CFG_UVOV_2	OB	VDDIOOVTH[3:0]				VCOREOVTH[3:0]			
OTP_CFG_UVOV_3	OC	0	0	VDDIO_V	VCORE_SVS_CLAMP[4:0]				
OTP_CFG_UVOV_4	OD	0	0	0	0	VMON1OVTH[3:0]			
OTP_CFG_UVOV_5	OE	0	0	0	0	0	0	0	0
OTP_CFG_UVOV_6	OF	VDDIOUVTH[3:0]				VCOREUVTH[3:0]			
OTP_CFG_UVOV_7	10	0	0	0	0	VMON1UVTH[3:0]			
OTP_CFG_UVOV_8	11	0	0	0	0	0	0	0	0
OTP_CFG_PGOOD	12	0	$\begin{aligned} & \text { PGOOD_ } \\ & \text { RSTB } \end{aligned}$	0	0	0	$\begin{aligned} & \text { PGOOD_- } \\ & \text { VMON1 } \end{aligned}$	$\begin{aligned} & \text { PGOOD_- } \\ & \text { VDDIO } \end{aligned}$	PGOOD VCORE
OTP_CFG_ABIST1	13	0	0	0	0	0	0	0	0
OTP_CFG_ASIL	14	1	0	0	0	0	0	0	VMON1_EN
OTP_CFG_12C	15	0	0	0	0	FS_I2CDEVADDR[3:0]			
OTP_CFG_DGLT_DUR_1	16	0	0	VCORE_UV_DGLT[1:0]		VCORE OV_DGLT	VDDIO_UV_DGLT[1:0]		VDDIO OV_DGLT
OTP_CFG_DGLT_DUR_2	17	0	0	0	0	0	VMON1_UV_DGLT[1:0]		VMON1 OV_DGLT

18.2 Main OTP bit description

Table 64. Main OTP bit description

Address	Register	Bit	Symbol	Value	Description
14	OTP_CFG_VPRE_1	5 to 0	VPREV[5:0]		VPRE output voltage
				001111	3.3 V
15	OTP_CFG_VPRE_2	5 to 0	VPRESC[5:0]	0100	3.8 V
			010111	4.1 V	
			100000	5.0 V	

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
16	OTP_CFG_VPRE_3	7 to 6	VPREILIM[1:0]		VPRE current limitation threshold
				00	50 mV
				01	80 mV
				10	120 mV
				11	150 mV
		3 to 2	VPRESRLS[1:0]		VPRE low-side slew rate control
				11	PU/PD/900 mA
		1 to 0	VPRESRHS[1:0]		VPRE high-side slew rate control
				00	PU/PD/130 mA
				01	PU/PD/260 mA
				10	PU/PD/520 mA
				11	PU/PD/900 mA
17	OTP_CFG_BOOST_1	5	VPRE_MODE		VPRE mode (PWM, APS)
				0	Force PWM for 455 kHz setting
				1	Automatic Pulse Skipping (APS) for 2.2 MHz setting
		3 to 0	VBSTV[3:0]		VBOOST output voltage
				0110	5.0 V
				1101	5.74 V
18	OTP_CFG_BOOST_2	7	BOOSTEN		BOOST enable
				0	Disabled
				1	Enabled
		6 to 5	VBSTTONTIME[1:0]		BOOST minimum ON time
				00	60 ns
				01	50 ns
		4 to 0	VBSTSC[4:0]		VBOOST slope compensation
				00110	$160 \mathrm{mV} / \mu \mathrm{s}$
				01100	$125 \mathrm{mV} / \mu \mathrm{s}$
				01110	$79 \mathrm{mV} / \mu \mathrm{s}$
19	OTP_CFG_BOOST_3	1 to 0	VBSTSR[1:0]		VBOOST Iow-side slew rate control
				10	$300 \mathrm{~V} / \mu \mathrm{s}$
				11	$500 \mathrm{~V} / \mathrm{\mu s}$

High voltage PMIC with multiple SMPS and LDO

Address	Register	Sit	Value	Description	
1A	OTP_CFG_BUCK1_1	7 to 0	VB1V[7:0]		VBUCK1 output voltage
				01000000	0.8 V
			01000100	0.825 V	
			01010000	0.9 V	

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
1C	OTP_CFG_BUCK2_1	7 to 0	VB2V[7:0]		VBUCK2 output voltage
					01000000
01000100	0.8 V				

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
1E	OTP_CFG_BUCK3_1	7	BUCK3EN		BUCK3 enable
				0	Disabled
				1	Enabled
		6 to 5	VB3INDOPT[1:0]		BUCK3 inductor selection
				00	$1 \mu \mathrm{H}$
				01	$0.47 \mu \mathrm{H}$
				10	$1.5 \mu \mathrm{H}$
		4 to 0	VB3V[4:0]		VBUCK3 output voltage
				00000	1.0 V
				00001	1.1 V
				00010	1.2 V
				00011	1.25 V
				00100	1.3 V
				00101	1.35 V
				00110	1.5 V
				00111	1.6 V
				01000	1.8 V
				01110	2.3 V
				10000	2.5 V
				10001	2.8 V
				10101	3.3 V
1F	OTP_CFG_BUCK3_2	7 to 5	VB2GMCOMP[2:0]		BUCK2 compensation network
				001	16.25 GM
				010	32.5 GM
				011	48.75 GM
				100	65 GM
				101	81.25 GM
				110	97.5 GM
		4 to 2	VB1GMCOMP[2:0]		BUCK1 compensation network
				001	16.25 GM
				010	32.5 GM
				011	48.75 GM
				100	65 GM
				101	81.25 GM
				110	97.5 GM
		1 to 0	VB3SWILIM[1:0]		BUCK3 current limitation
				01	2.6 A
				11	4.5 A

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
20	OTP_CFG_LDO	7	LDO2ILIM		VLDO2 current limitation
				0	400 mA
				1	150 mA
		6 to 4	LDO2V[2:0]		VLDO2 output voltage
				000	1.1 V
				001	1.2 V
				010	1.6 V
				011	1.8 V
				100	2.5 V
				101	2.8 V
				110	3.3 V
				111	5.0 V
		3	LDO1ILIM		VLDO1 current limitation
				0	400 mA
				1	150 mA
		2 to 0	LDO1V[2:0]		VLDO1 output voltage
				000	1.1 V
				001	1.2 V
				010	1.6 V
				011	1.8 V
				100	2.5 V
				101	2.8 V
				110	3.3 V
				111	5.0 V

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
21	OTP_CFG_SEQ_1	5 to 3	VB2S[2:0]		BUCK2 sequencing slot

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit		Value	Description
OTP_CFG_SEQ_2	S to 3		LDO2S[2:0]	LDO2 sequencing slot	

High voltage PMIC with multiple SMPS and LDO

Address	Register	Sit	Symbol	Value	Description
					0

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
25	OTP_CFG_CLOCK_2	5 to 3	BUCK1_ph[2:0]		VBUCK1 phase (delay) selection
				000	no delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7
		2 to 0	VBST_ph[2:0]		VBOOST phase (delay) selection
				000	no delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7
26	OTP_CFG_CLOCK_3	5 to 3	BUCK3_ph[2:0]		VBUCK3 phase (delay) selection
				000	no delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7
		2 to 0	BUCK2_ph[2:0]		VBUCK2 phase (delay) selection
				000	no delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
27	OTP_CFG_CLOCK_4	7	BUCK3_clk_sel		BUCK3 clock selection
				0	CLK_DIV1 $=2.22 \mathrm{MHz}$
		6	BUCK2_clk_sel		BUCK2 clock selection
				0	CLK_DIV1 $=2.22 \mathrm{MHz}$
		5	BUCK1_clk_sel		BUCK1 clock selection
				0	CLK_DIV1 $=2.22 \mathrm{MHz}$
		4	VBST_clk_sel		VBOOST clock selection
				0	CLK_DIV1 $=2.22 \mathrm{MHz}$
		3	VPRE_clk_sel		VPRE clock selection
				0	CLK_DIV1 $=2.22 \mathrm{MHz}$
				1	CLK_DIV2 = 455 kHz
		2	PLL_sel		PLL enable
				0	Disabled
				1	Enabled
28	OTP_CFG_SM_1	5 to 0	conf_TSD[5]		BOOST behavior in case of TSD
				0	BOOST shutdown
				1	BOOST shutdown + DFS
			conf_TSD[4]		BUCK1 behavior in case of TSD
				0	BUCK1 shutdown
				1	BUCK1 shutdown + DFS
			conf_TSD[3]		BUCK2 behavior in case of TSD
				0	BUCK2 shutdown
				1	BUCK2 shutdown + DFS
			conf_TSD[2]		BUCK3 behavior in case of TSD
				0	BUCK3 shutdown
				1	BUCK3 Shutdown + DFS
			conf_TSD[1]		LDO1 behavior in case of TSD
				0	LDO1 shutdown
				1	LDO1 shutdown + DFS
			conf_TSD[0]		LDO2 behavior in case of TSD
				0	LDO2 shutdown
				1	LDO2 shutdown + DFS

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
29	OTP_CFG_SM_2	4	VPRE_off_dly		Delay to turn OFF VPRE at device power down
				0	$250 \mu \mathrm{~s}$
				1	32 ms
		1	PSYNC_CFG		Power up synchronization
				0	2x VR5500
				1	1x VR5500 and 1x external PMIC
		0	PSYNC_EN		Synchronization with two devices
				0	Disabled
				1	Enabled
2A	OTP_CFG_VSUP_UV	0	VSUP_CFG		VSUP undervoltage threshold configuration
				0	4.9 V for Vpre < 4.5 V
				1	6.2 V for Vpre > 4.5 V
2B	OTP_CFG_I2C	3 to 0	M_I2CDEVADDR[3:0]		Device I2C address
				0000	Address D0
				\ldots	\ldots
				1111	Address D15
2C	OTP_CFG_OV	2 to 0	VDDIO_REG_ASSIGN[2:0]		Regulator assigned to VDDIO
				000	External regulator
				001	VPRE
				010	LDO1
				011	LDO2
				100	BUCK3
				101	External regulator
				110	External regulator
				111	External regulator
2D	OTP_CFG_DEVID	7 to 0	DeviceID[7:0]		Device ID

High voltage PMIC with multiple SMPS and LDO

18.3 Fail-safe OTP bit description

Table 65. Fail-safe OTP bit description

Address	Register	Bit	Symbol	Value	Description
0A	OTP_CFG_UVOV_1	7 to 0	VCORE_V[7:0]		VCORE (VBUCK1) monitoring voltage
			01000000	0.8 V	
			01000100	0.825 V	
		01010000	0.9 V		
		01011000	0.95 V		
		01100000	1 V		
		01100100	1.025 V		

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
OB	OTP_CFG_UVOV_2	7 to 4	VDDIOOVTH[3:0]		VDDIO overvoltage threshold configuration
				0000	104.5 \%
				0001	105 \%
				0010	105.5 \%
				0011	106 \%
				0100	106.5 \%
				0101	107 \%
				0110	107.5
				0111	108 \%
				1000	108.5 \%
				1001	109 \%
				1010	109.5 \%
				1011	110 \%
				1100	110.5 \%
				1101	111 \%
				1110	111.5 \%
				1111	112 \%
		3 to 0	VCOREOVTH[3:0]		VCOREMON overvoltage threshold configuration
				0000	104.5 \%
				0001	105 \%
				0010	105.5 \%
				0011	106 \%
				0100	106.5 \%
				0101	107 \%
				0110	107.5
				0111	108 \%
				1000	108.5 \%
				1001	109 \%
				1010	109.5 \%
				1011	110 \%
				1100	110.5 \%
				1101	111 \%
				1110	111.5 \%
				1111	112 \%
OC	OTP_CFG_UVOV_3	5	VDDIO_V		VDDIO voltage selection
				0	3.3 V
				1	5 V
		4 to 0	VCORE_SVS_ CLAMP[4:0]		SVS max value allowed (mask)
				00000	2 steps available (-12.5 mV)
				00001	4 steps available (-25 mV)

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				00011	8 steps available (-50 mV)
				00100	16 steps available (-100 mV)
OD	OTP_CFG_UVOV_4	3 to 0	VMON1OVTH[3:0]		VMON1 overvoltage threshold configuration
				0000	104.5\%
				0001	105 \%
				0010	105.5 \%
				0011	106%
				0100	106.5 \%
				0101	107%
				0110	107.5
				0111	108%
				1000	108.5 \%
				1001	109%
				1010	109.5 \%
				1011	110%
				1100	110.5\%
				1101	111%
				1110	111.5\%
				1111	112 \%

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
OF	OTP_CFG_UVOV_6	7 to 4	VDDIOUVTH[3:0]		VDDIO undervoltage threshold configuration
				0000	95.5 \%
				0001	95 \%
				0010	94.5 \%
				0011	94 \%
				0100	93.5 \%
				0101	93 \%
				0110	92.5 \%
				0111	92 \%
				1000	91.5 \%
				1001	91 \%
				1010	90.5 \%
				1011	90 \%
				1100	89.5 \%
				1101	89 \%
				1110	88.5 \%
				1111	88 \%
		3 to 0	VCOREUVTH[3:0]		VCOREMON undervoltage threshold configuration
				0000	95.5 \%
				0001	95 \%
				0010	94.5 \%
				0011	94 \%
				0100	93.5 \%
				0101	93 \%
				0110	92.5 \%
				0111	92 \%
				1000	91.5 \%
				1001	91 \%
				1010	90.5 \%
				1011	90 \%
				1100	89.5 \%
				1101	89 \%
				1110	88.5 \%
				1111	88 \%

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
10	OTP_CFG_UVOV_7	3 to 0	VMON1UVTH[3:0]		VMON1 undervoltage threshold configuration
					0000

High voltage PMIC with multiple SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
16	OTP_CFG_DGLT_DUR_1	5 to 4	VCORE_UV_DGLT[1:0]		VCORE undervoltage filtering time
				00	$5 \mu \mathrm{~s}$
				01	$15 \mu \mathrm{~s}$
				10	$25 \mu \mathrm{~s}$
				11	$40 \mu \mathrm{~s}$
		3	VCORE_OV_DGLT		VCORE overvoltage filtering time
				0	$25 \mu \mathrm{~s}$
				1	$45 \mu \mathrm{~s}$
		2 to 1	VDDIO_UV_DGLT[1:0]		VDDIO undervoltage filtering time
				00	$5 \mu \mathrm{~s}$
				01	$15 \mu \mathrm{~s}$
				10	$25 \mu \mathrm{~s}$
				11	$40 \mu \mathrm{~s}$
		0	VDDIO_OV_DGLT		VDDIO overvoltage filtering time
				0	$25 \mu \mathrm{~s}$
				1	$45 \mu \mathrm{~s}$
17	OTP_CFG_DGLT_DUR_2	2 to 1	VMON1_UV_DGLT[1:0]		VMON1 undervoltage filtering time
				00	$5 \mu \mathrm{~s}$
				01	$15 \mu \mathrm{~s}$
				10	$25 \mu \mathrm{~s}$
				11	$40 \mu \mathrm{~s}$
		0	VMON1_OV_DGLT		VMON1 overvoltage filtering time
				0	$25 \mu \mathrm{~s}$
				1	$45 \mu \mathrm{~s}$

19 Best of supply

19.1 Functional description

VBOS regulator manages the best of supply from VSUP, VPRE, and VBOOST to efficiently generate 5.0 V output to supply the internal biasing of the device. VBOS is also the supply of VPRE high-side and low-side gate drivers and VBOOST low-side gate driver.

VBOS undervoltage may not guarantee the full functionality of the device. Consequently, VBOS_UVL detection powers down the device.
$\mathrm{V}_{\text {SUP UV7 }}$ undervoltage threshold is used to enable the path from VSUP to VBOS when VSUP < V power up the device when VPRE is not started. When VSUP $>\mathrm{V}_{\text {SUP_UV7, }}$ VBOS is forced to use either VPRE or VBOOST to optimize the efficiency.

19.2 Best of supply electrical characteristics

Table 66. Best of supply electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {BOS }}$	Best of supply output voltage	3.3	5.0	5.25	V
V ${ }_{\text {BOS_UVH }}$	VBOS undervoltage threshold high (VBOS rising)	4.1	-	4.5	V
V ${ }_{\text {BOS_UVL }}$	VBOS undervoltage threshold low (VBOS falling)	3.2	-	3.4	V
TBOS_uV	$\mathrm{V}_{\text {BOS_UVH }}$ and $\mathrm{V}_{\text {BOS_UVL }}$ filtering time	6.0	10	15	$\mu \mathrm{s}$
V ${ }_{\text {BOS_POR }}$	VBOS power-on reset threshold	-	-	2.5	V
TBOS_POR	$\mathrm{V}_{\text {BOS_POR }}$ filtering time	0.5	-	1.5	$\mu \mathrm{s}$
$\mathrm{I}_{\mathrm{BOS}}$	Best of supply current capability	-	-	60	mA
Cout_bos	Effective output capacitor	4.7	-	10	$\mu \mathrm{F}$
	Output decoupling capacitor	-	0.1	-	$\mu \mathrm{F}$

20 High voltage buck: VPRE

20.1 Functional description

VPRE block is a high voltage, synchronous, peak current mode buck controller. VPRE is working with external logical level NMOS in force PWM mode at 455 kHz and in Automatic Pulse Skipping (APS) mode at 2.22 MHz . The APS mode helps to maintain the correct output voltage at high input voltage by skipping some turn ON cycles of the HS FET below the minimum duty cycle. VPRE input voltage is naturally limited to $\mathrm{V}_{\text {SUP }}=$ $L_{\text {PI_DCR }} \times I_{\text {PRE }}+V_{\text {PRE_UVL }} / D_{\text {MAX }}$ with $D_{\text {MAX }}=1-\left(F_{\text {PRE_SW }} \times T_{\text {PRE_OFF_MIN }}\right)$.

A bootstrap capacitor is required to supply the gate drive circuit of the high-side NMOS. The output voltage is configurable by OTP from 3.3 V to 5.0 V , and the switching frequency is configurable by OTP at 455 kHz for 12 V and 24 V transportation applications or 2.22 MHz for 12 V automotive applications. The stability is ensured by an external Type 2 compensation network with slope compensation.

The output current is sensed via an external shunt in series with the inductor and the maximum current capability is defined by the external components (NMOS gate charge, inductor, shunt resistor), the gate driver current capability, and the switching frequency. An overcurrent detection is implemented to protect the external MOSFETs. If an overcurrent is detected after the HS minimum TON time, the HS is turned OFF and will be turned ON again at the next rising edge of the switching clock. The overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an undervoltage condition on VPRE and/or one of the cascaded regulators.
The maximum input voltage is 60 V and allows operation in 24 V truck applications without external protection to sustain ISO 16750-2:2012 load dump pulse 5b. VPRE must be the input supply of the BOOST and BUCK1,2. VPRE can be the input supply of BUCK3 and LDO1. VPRE can be the supply of local loads remaining inside the ECU.

By default, VPRE switching frequency is derived from the internal oscillator, and can be synchronized with an external frequency signal applied at FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by I2C.
$V_{\text {PRE_UVH, }}, V_{\text {PRE_UVL, }}$, and $V_{\text {PRE_FB_ov }}$ thresholds are monitored from PRE_FB pin and manage some transitions of the main state machine described in Section 14.1 "Simplified functional state diagram".

20.2 Application schematic

Figure 9. VPRE schematic
A PI filter, with $\mathrm{F}_{\text {RES }}=1 /[2 \pi \times \sqrt{ }(\mathrm{LCpi} 1)]$ and calculated for Fres $<\mathrm{F}_{\text {PRE }} s w / 10$, is required to filter VPRE switching frequency on the Battery line. VSUP1,2 pins must be connected before the PI filter for a clean biasing of the device. Cpi1 capacitor shall be implemented close to VSUP1,2 pins. Cpi2 capacitor shall be implemented close to Q1. The bootstrap capacitor value should be sized to be >10 times the gate source capacitor of Q1. Gate to source resistor on Q1 and Q2 is recommended in case of pin disconnection to guarantee a passive switch OFF of the transistors.

20.3 Compensation network and stability

The external compensation network, made with $\mathrm{R}_{\text {COMP }}, \mathrm{C}_{\text {COMP }}$, and C_{HF} shall be calculated for best compromise between stability and transient response, based on below conceptual plot of Type 2 compensation network transfer function.

Figure 10. Type 2 compensation network concept

Calculation guideline

- System bandwidth for VPRE $=455 \mathrm{kHz}: \mathrm{F}_{\mathrm{bw}}=\mathrm{F}_{\text {PRE }} \mathrm{sw} / 10$

System bandwidth for VPRE $=2.22 \mathrm{MHz}: \mathrm{F}_{\mathrm{bw}}=\mathrm{F}_{\text {PRE_sw }} / 15$

- Compensation zero: $F z=F_{b w} / 10$
- Compensation pole for VPRE $=455 \mathrm{kHz}: \mathrm{Fp}=\mathrm{F}_{\text {PRE sw }} / 2$
- Compensation pole for VPRE $=2.22 \mathrm{MHz}: \mathrm{Fp}=\mathrm{F}_{\text {PRE }}$ sw $/ 4$
- $F_{\text {GBW }}=1 /\left(2 \pi \times R_{\text {SHUNT }} \times V_{\text {PRE_LIM_GAIN }} \times C_{\text {OUT_PRE }}\right)$
- Error amplifier gain: EA_gain $=\left(\mathrm{V}_{\mathrm{REF}} / \mathrm{V}_{\mathrm{PRE}}\right) \times$ gmEAPRE $\times \mathrm{R}_{\mathrm{COMP}}=10^{\wedge} \mathrm{LOG}\left(\mathrm{F}_{\mathrm{BW}} /\right.$ $\mathrm{F}_{\mathrm{GBW}}$)
- $\mathrm{V}_{\text {REF }}=1.0 \mathrm{~V}, \mathrm{R}_{\text {COMP }}=\mathrm{V}_{\text {PRE }} \times\left(E A _g a i n /\right.$ gmEA $\left.A_{\text {PRE }}\right)$
- $\mathrm{C}_{\text {COMP }}=1 /\left(2 \pi \times\right.$ Fz $\left.\times R_{\text {COMP }}\right)$
- $\mathrm{C}_{\mathrm{HF}}=1$ / ($2 \pi \times \mathrm{Fp} \times \mathrm{R}_{\mathrm{COMP}}$)
- Slope compensation: Se > (VPRE $\left./ L_{\text {VPRE }}\right) \times R_{\text {SHUNT }} \times V_{\text {PRE_LIM_GAIN }}$

The compensation network can be automatically calculated in the VR5500_OTP_Config.xIsm file which is using the same formulas. A Simplis simulation is recommended to verify the Phase and Gain Margin with normalized components.

Use case calculation with $V_{\text {PRE }}=4.1 \mathrm{~V}$, $L_{\text {VPRE }}=6.8 \mu \mathrm{H}$, F $_{\text {PRE_sw }}=455 \mathrm{kHz}$, $C_{\text {OUt_PRE }}=66 \mu \mathrm{~F}, \mathrm{R}_{\text {SHUNT }}=10.0 \mathrm{~m} \Omega$

- System bandwidth: $\mathrm{F}_{\mathrm{bw}}=45 \mathrm{kHz}$
- Compensation zero: Fz $=4.5 \mathrm{kHz}$
- Compensation pole: $\mathrm{Fp}=227.5 \mathrm{kHz}$
- $\mathrm{F}_{\mathrm{GBW}}=53 \mathrm{kHz}$
- Error amplifier gain: EA_gain $=10^{\wedge}$ LOG $\left(F_{B W} / F_{G B W}\right)=0.86$
- $\mathrm{R}_{\mathrm{COMP}}=2.34 \mathrm{k} \Omega=2.2 \mathrm{k} \Omega$
- $\mathrm{C}_{\text {COMP }}=15.9 \mathrm{nF}=16 \mathrm{nF}$
- $\mathrm{C}_{\mathrm{HF}}=318 \mathrm{pF}=330 \mathrm{pF}$
- Slope compensation: $\mathrm{Se}>30 \mathrm{mV} / \mu \mathrm{s}$

Use case stability verification

- Phase margin target $\mathrm{PM}>45^{\circ}$ and gain margin target $\mathrm{GM}>6 \mathrm{~dB}$.

High voltage PMIC with multiple SMPS and LDO

Figure 11. Phase and gain margin simulation
Use case transient response verification

Figure 12. Transient response simulation

20.4 VPRE electrical characteristics

Table 67. VPRE electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {PRE }}$	Output voltage (OTP_VPREV[5:0] bits)	3.2	3.3	3.4	V
		3.68	3.8	3.92	V
		3.98	4.1	4.22	V
		4.85	5.0	5.15	V
VPRE_SOFT_START	Output voltage from 10% to 90%	250	450	650	$\mu \mathrm{s}$
	Digital DAC soft start completion	-	-	1.35	ms
VPRE_STARTUP	Overshoot at startup	-	-	3	\%
VPRE_FB_OV	Over voltage threshold protection	5.5	6.0	6.5	V
TPRE_FB_OV	VPRE_FB_OV filtering time	1	2	3	$\mu \mathrm{s}$

[^1]All information provided in this document is subject to legal disclaimers

High voltage PMIC with multiple SMPS and LDO

Symbol	Parameter	Min	Typ	Max	Unit
VPRE_UVH	Under voltage threshold high	2.9	-	3.1	V
VPRE_UVL	Under voltage threshold low	2.5	-	2.7	V
TPRE_UV	$\mathrm{V}_{\text {PRE_UVH }}$ and $\mathrm{V}_{\text {PRE_UVL }}$ filtering time	6.0	10	15	$\mu \mathrm{s}$
FPRE_SW	Switching frequency range (OTP_VPRE_clk_sel	430	455	480	kHz
		2.1	2.22	2.35	MHz
LVPRE	Typical inductor value for FPRE _SW $=455 \mathrm{kHz}$	4.7	6.8	10	$\mu \mathrm{H}$
	Typical inductor value for $\mathrm{F}_{\text {PRE_SW }}=2.22 \mathrm{MHz}$	1.5	2.2	4.7	$\mu \mathrm{H}$
VPRE_LOAD_REG_455k	Transient load regulation at 455 kHz VSUP $=6.0 \mathrm{~V}$ to 36 V (LVPRe $=6.8 \mu \mathrm{H}$, Cout_pre $=66 \mu \mathrm{~F}$, from 1.0 A to 3.0 A , di/dt $=300 \mathrm{~m} \overline{\mathrm{~A}} / \mu \mathrm{s}$)	-3	-	3	\%
VPRE_LOAD_REG_2.2M	$\begin{aligned} & \text { Transient load regulation at } 2.22 \mathrm{MHz} \\ & \text { VSUP }=6.0 \mathrm{~V} \text { to } 18 \mathrm{~V} \\ & \left(\text { LLVPRE }^{2} 2.2 \mu \mathrm{H}, \mathrm{C}_{\text {OuT_PRE }}=44 \mu \mathrm{~F}, \text { from } 1.0 \mathrm{~A}\right. \\ & \text { to } 3.0 \mathrm{~A}, \text { di } / \mathrm{dt}=300 \mathrm{~m} / \mathrm{A} / \mu \mathrm{s}) \end{aligned}$	-3	-	3	\%
VPRE_LINE_REG_455k	Transient line regulation at 455 kHz $\mathrm{VSUP}=6.0 \mathrm{~V}$ to 18 V and $\mathrm{VSUP}=12 \mathrm{~V}$ to 36 V (Cin $=47 \mu \mathrm{~F}+\mathrm{Pl}$ filter, L $_{\text {VPRE }}=6.8 \mu \mathrm{H}$, Cout_PRE $=66 \mu \mathrm{~F}, \mathrm{dv} / \mathrm{dt}=100 \mathrm{mV} / \mu \mathrm{s}$)	-3	-	3	\%
V PRE_LINE_REG_2.2M	Transient line regulation at 2.22 MHz VSUP $=6.0 \mathrm{~V}$ to 18 V (Cin $=47 \mu \mathrm{~F}+\mathrm{PI}$ filter, $\mathrm{L}_{\text {VPRE }}=2.2 \mu \mathrm{H}$, CoUT_PRE $=44 \mu \mathrm{~F}, \mathrm{dv} / \mathrm{dt}=100 \mathrm{mV} / \mu \mathrm{s}$)	-3	-	3	\%
VPRE_RIPPLE_455k	Ripple at 455 kHz VSUP $=12 \mathrm{~V}$ and VSUP $=24 \mathrm{~V}$ $\left(L_{\text {VPRE }}=6.8 \mu \mathrm{H}, \mathrm{C}_{\text {OUt_PRE }}=66 \mu \mathrm{~F}, \mathrm{~V}_{\text {PRE }}=3.3\right.$ V and 5.0 V , $\left.\mathrm{I}_{\mathrm{PRE}}=4 \mathrm{~A}\right)$	-1	-	1	\%
V PRE_RIPPLE_2.2M	Ripple at 2.22 MHz $\begin{aligned} & \mathrm{VSUP}=12 \mathrm{~V} \\ & \left(\text { L}_{\text {VPRE }}=2.2 \mu \mathrm{H}, \mathrm{C}_{\mathrm{OUT}} \mathrm{PRE}=44 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{PRE}}=3.3\right. \\ & \left.\mathrm{V} \text { and } 5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{PRE}}=2 \mathrm{~A}\right) \end{aligned}$	-0.5	-	0.5	\%
TPRE_ON_MIN	HS minimum ON time	15	25	35	ns
TPRE_OFF_MIN	HS minimum OFF time	20	40	60	ns
$\mathrm{R}_{\text {SHUNT }}$	Current sense resistor (± 1 \%)	10	-	20	$\mathrm{m} \Omega$
VPRE_LIM_GAIN	Current sense amplifier gain Current sense amplifier peak detection threshold (OTP_VPREILIM[1:0] bits) Note: 150 mV setting is not available for 2.22 MHz	4.5	5	5.5	
V ${ }_{\text {PRE_LIM_TH1 }}$	Current sense amplifier peak detection threshold (OTP_VPREILIM[1:0] bits) Note: 150 mV setting is not available for 2.22 MHz	37	50	63	mV
		60.8	80	99.2	mV
		93.6	120	146.4	mV
		117	150	183	mV
lıIM_PRE	LIM_PRE $=\mathrm{V}_{\text {PRE_LIM_TH }} / \mathrm{R}_{\text {SHUNT }}$ Inductor peak current limitation range ($\mathrm{R}_{\text {SHUNT }}=$ $10 \mathrm{~m} \Omega, \mathrm{~V}_{\text {PRE_LIM_TH1 }}=50 \mathrm{mV}$)	3.75	5	6.25	A
	Inductor peak current limitation range ($\mathrm{R}_{\text {SHUNT }}=$ $10 \mathrm{~m} \Omega, \mathrm{~V}_{\text {PRE_LIM_TH1 }}=150 \mathrm{mV}$) To be recalculated for different $\mathrm{R}_{\text {SHUNT }}$ and different $\mathrm{V}_{\text {PRE_LIM_TH }}$	12	15	18	A
VPRE_DRV	HS and LS gate driver output voltage	-	VBOS	-	V

High voltage PMIC with multiple SMPS and LDO

Symbol	Parameter	Min	Typ	Max	Unit
IPRE_GATE_DRV	HS and LS gate driver pull up and pull down current capability (OTP_VPRESRHS[1:0] and OTP_VPRESRLS[1:0] bits by default + VPRESRHS[1:0] and VPRESRLS[1:0] bits by I2C)	60	130	220	mA
		120	260	430	mA
		220	520	860	mA
		420	900	1490	mA
Cout_PRE	Effective output capacitor for $\mathrm{F}_{\text {PRE_sw }}=455$ kHz	40	66	220	$\mu \mathrm{F}$
	Effective output capacitor for $\mathrm{F}_{\text {PRE_sw }}=2.22$ MHz	20	44	110	$\mu \mathrm{F}$
	Output decoupling capacitor	-	0.1	-	$\mu \mathrm{F}$
CIN_PRE	Effective input capacitor (Cpi2)	20	-	-	$\mu \mathrm{F}$
	Input decoupling capacitor	-	0.1	-	$\mu \mathrm{F}$
IPRE_DRV	Combined HS + LS gate driver average current capability $\mathrm{I}_{\text {PRE_DRV }}<\mathrm{F}_{\text {PRE_SW }} \times\left(\mathrm{QC}_{\mathrm{HS}}+\mathrm{QC}_{\text {LS }}\right)$ with $\mathrm{QC}_{\mathrm{HS}}=$ gate charge of Q2 at VBOS with $\mathrm{QC}_{\mathrm{LS}}=$ gate charge of Q 1 at VBOS	-	-	30	mA
gmEAPRE	Error amplifier transconductance	1.0	1.5	2.1	mS
$\mathrm{V}_{\text {PRE_SLOPE }}$	Slope compensation (OTP_VPRESC[5:0] bits)	29	40	51	$\mathrm{mV} / \mathrm{\mu s}$
		36	50	64	$\mathrm{mV} / \mathrm{\mu s}$
		43	60	77	$\mathrm{mV} / \mu \mathrm{s}$
		51	70	89	$\mathrm{mV} / \mathrm{us}$
		58	80	102	$\mathrm{mV} / \mu \mathrm{s}$
		65	90	115	$\mathrm{mV} / \mu \mathrm{s}$
		73	100	127	$\mathrm{mV} / \mu \mathrm{s}$
		102	140	178	$\mathrm{mV} / \mu \mathrm{s}$
		124	170	216	$\mathrm{mV} / \mu \mathrm{s}$
		146	200	254	$\mathrm{mV} / \mu \mathrm{s}$
		175	240	305	$\mathrm{mV} / \mu \mathrm{s}$
TPRE_UV_DFS	$V_{\text {PRE UVL }}$ filtering time to go to DEEP-FS during VPRE startup	1.8	2	2.2	ms
TPRE_DT	Dead time to avoid cross conduction (this timing does not take into account the external FET turn ON/OFF times)	20	30	40	ns
VPRE_OFF_DLY	Wait time between VBOOST OFF and VPRE OFF (OTP_VPRE_off_dly bit)	-	250	-	$\mu \mathrm{s}$
		-	32	-	ms
R PRE_DIS	Discharge resistor (when VPRE is disabled)	250	500	1000	Ω
IPRE_SW_LKG	PRE_SW leakage	-	-	10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {DRV_OFF }}$	HS and LS gate driver pull-down resistor when VPRE is disabled	5	-	35	$\mathrm{k} \Omega$
R ${ }_{\text {BOOT_OFF }}$	PRE_BOOT pull-down resistor when VPRE is disabled	1.2	-	2.6	$k \Omega$
IBOOT_LKG	PRE_BOOT leakage	-	-	10	$\mu \mathrm{A}$

20.5 VPRE external MOSFETs

MOSFETs selection:

- Logical level NMOS, gate drive comes from VBOS (5.0 V)
- VDS > 60 V for 24 V truck, bus applications
- VDS > 40 V for 12 V automotive applications
- $\mathrm{Qg}<15 \mathrm{nC}$ at $\mathrm{Vgs}=5.0 \mathrm{~V}$ is recommended for 455 kHz $\mathrm{Qg}<7 \mathrm{nC}$ at $\mathrm{Vgs}=5.0 \mathrm{~V}$ is recommended for 2.22 MHz
- Recommended example references

Table 68. VPRE external MOSFETs recommendation

Applicatio ns	Fpre	Ipre<2.0 A	Ipre<4.0 A	Ipre < 6.0 A	Ipre<10 A
12 V	455 kHz	BUK9K25-40E, BUK9K18-40E	BUK9K25-40E, BUK9K18-40E	BUK9K18-40E	BUK9K18-40E, NVTFS5C471NLWFTAG, HS $=$ BUK9M9R5-40H, LS $=$ BUK9M3R3-40H
	2.22 MHz	BUK9K25-40E, BUK9Y29-40E	BUK9K25-40E, BUK9Y29-40E	BUK9K25-40E, BUK9Y29-40E	N/A
24 V	455 kHz	BUK9K35-60E, BUK9K52-60E	BUK9K35-60E, BUK9K52-60E	BUK9K35-60E	, BUK9K12-60E

Other MOSFETs are possible but should have similar performances as compared to the recommended references. The maximum current at 2.22 MHz is limited to 6.0 A for which the efficiency is equivalent to 10 A at 455 kHz . The power dissipation in the external MOSFETs is important and the junction temperature may rise above $175{ }^{\circ} \mathrm{C}$.

VPRE switching slew rate can be configured by I2C to align with external MOSFET selection, VPRE switching frequency, and to optimize power dissipation and EMC performance. It is recommended to configure the maximum slew rate by OTP and reduce it later by I2C if needed. VR5500 is using current source to drive the external MOSFET so adding an external serial resistor with the gate does not affect the slew rate. It is recommended to change the current source selection by I2C to change the slew rate.

VPRE MOSFET switching time can be estimated to $T_{S W}=\left(Q_{G D}+Q_{G S} / 2\right) /$ $I_{\text {PRE_GATE_DRV }}$ using the gate charge definition from Figure 13. $Q_{G D}$ and $Q_{G S}$ can be extracted from the MOSFET data sheet.

Figure 13. MOSFET gate charge definition

20.6 VPRE efficiency

VPRE efficiency versus current load is given for information based on external component criteria provided and VSUP voltage 14 V . If the conditions change, it has to be recalculated with the VR5500_PDTCAL tool. The real efficiency has to be verified by measurement at the application level.

20.7 VPRE not populated

When two VR5500 are used, only one VPRE may be required. It is possible to not populate the external components of the second VPRE to optimize the bill of material.
In that case, specific connection of the VPRE2 pins is required:

- PRE_FB2 must be connected to PRE_FB1
- PRE_CSP2 must be connected to PRE_FB1
- PRE_COMP2 must be left open
- PRE_SW2 must be connected to GND
- PRE_BOOT2 must be connected to VBOS2
- PRE_GHS2 and PRE_GLS2 must be left open

After the startup phase, VPRE2 shall be disabled by I2C with VPDIS bit.

21 Low voltage boost: VBOOST

21.1 Functional description

VBOOST block is a low voltage, asynchronous, peak current mode boost converter. VBOOST works in PWM and uses an external diode and an internal low-side FET.

VBOOST enters Skip mode to maintain the correct output voltage in light load condition. The output voltage is configurable by OTP at 5.0 V or 5.74 V , the switching frequency is 2.22 MHz and the output current is limited to 1.5 A peak input current. The input of the boost is connected to the output of VPRE. This block is intended to supply LDO1, LDO2, BUCK3, or an external regulator. The stability is ensured by an internal Type 2 compensation network with slope compensation.

By default, VBOOST switching frequency is derived from the internal oscillator, and can be synchronized with an external frequency signal applied on FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by I2C.

An overcurrent detection and a thermal shutdown are implemented to protect the internal MOSFET. If an overcurrent is detected after the LS minimum TON time, the LS is turned OFF and will be turned ON again at the next rising edge of the switching clock. The overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an undervoltage condition on one of the cascaded regulators.

Since the current limitation is on the input current, Table 69 summarizes the expected output current capability depending on VPRE and VBOOST voltage configurations and L $=4.7 \mu \mathrm{H}$.

Table 69. Output current capability

VPRE	VBOOST	IBOOST_OUT
3.3 V	5.0 V	800 mA
	5.74 V	700 mA
4.1 V	5.0 V	1 A
	5.74 V	900 mA
5.0 V	5.74 V	1.1 A

An overvoltage protection is implemented on BOOST_LS pin. When $\mathrm{V}_{\text {BOOSt_ov }}$ is detected during two consecutive turn ON cycles, VBOOST is disabled. An I2C command is required to enable it again.

21.2 Application schematic

Figure 15. BOOST schematic
It is recommended to select a Schottky diode for $D_{\text {BOOST }}$ to limit the impact on the SMPS efficiency.

21.3 Compensation network and stability

The internal compensation network, made with $\mathrm{R}_{\text {COMP }}, \mathrm{C}_{\text {COMP }}$, and C_{HF} is optimized for best compromise between stability and transient response with $R_{\text {COMP }}=750 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{COMP}}$ $=125 \mathrm{pF}$, and $\mathrm{C}_{\mathrm{HF}}=2.0 \mathrm{pF}$.

Use case with $\mathrm{V}_{\text {BOOSt }}=5.74 \mathrm{~V}$, $\mathrm{L}_{\mathrm{VBOOST}}=4.7 \mu \mathrm{H}, \mathrm{F}_{\text {BOOSt_sw }}=2.22 \mathrm{MHz}$, Cout_boost $=22 \boldsymbol{\mu F}$

Use case stability verification

- Phase margin target $\mathrm{PM}>45^{\circ}$ and gain margin target $\mathrm{GM}>6 \mathrm{~dB}$.

High voltage PMIC with multiple SMPS and LDO

Use case transient response verification

Figure 17. Transient response simulation

21.4 VBOOST electrical characteristics

Table 70. VBOOST electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {BOOST }}$	Output voltage (OTP_VBSTV[3:0] bits)	5.57	5.74	5.91	V
		4.85	5.0	5.15	V
VBOOST_SOFT_START	Output voltage from 10 \% to 90%	-	500	-	$\mu \mathrm{s}$
	Digital DAC soft start completion	-	-	825	$\mu \mathrm{s}$
V ${ }_{\text {BOOSt_Startup }}$	Overshoot at startup	-	-	3	\%
$V_{\text {BOOST_UVH }}$	Undervoltage threshold high	3.3	-	3.7	V
TBoost_uvh	$\mathrm{V}_{\text {BOOSt_UVH }}$ filtering time	6.0	10	15	$\mu \mathrm{s}$
VBoost_ov	Overvoltage protection threshold	7.4	-	7.9	V
$\mathrm{F}_{\text {BOOSt_SW }}$	Switching frequency range	2.1	2.22	2.35	MHz

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{L}_{\text {boost }}$	Inductor for $\mathrm{V}_{\text {BOOST_Sw }}=2.22 \mathrm{MHz}$	2.2	4.7	6.8	$\mu \mathrm{H}$
Cout_boost	Effective output capacitor	22	-	66	$\mu \mathrm{F}$
VBOOSt_LOAD_REG	Transient load regulation (Cout_boost $=22 \mu \mathrm{~F}$, from 10 mA to 400 mA , di/dt $=200 \mathrm{~mA} / \mu \mathrm{s}$)	-	-	750	mV
VBOOST_LOAD_REG	Transient load regulation (COUT_Bооst $=22 \mu \mathrm{~F}$, from 1.0 mA to $20 \mathrm{~mA}, \mathrm{di} / \mathrm{dt}=2 \overline{0} 0 \mathrm{~mA} / \mu \mathrm{s}$)	-	-	500	mV
LIIM_BOOST	Inductor peak current limitation range (OTP_ VBSTILIM[1:0] bits)	1.5	2.0	2.75	A
TBOOST_ON_MIN	LS minimum ON time (OTP_VBSTTONTIME[1:0] bits)	40	60	90	ns
		30	50	80	ns
$\mathrm{R}_{\text {BOOSt_RON }}$	LS NMOS RDSon	-	150	280	$\mathrm{m} \Omega$
TBOOST_SR	Switching output slew rate (OTP_VBSTSR[1:0] bits by default + VBSTSR[1:0] bits by I2C)	-	500	1500	$\mathrm{V} / \mu \mathrm{s}$
		-	300	750	V/ $\mu \mathrm{s}$
gmEA ${ }_{\text {BOOST }}$	Error amplifier transconductance	3.5	7.0	9.0	$\mu \mathrm{S}$
VBOOST_SLOPE	Slope compensation (OTP_VBSTSC[3:0] bits)	40	79	110	$\mathrm{mV} / \mu \mathrm{s}$
		70	125	190	$\mathrm{mV} / \mathrm{\mu s}$
		90	160	230	$\mathrm{mV} / \mu \mathrm{s}$
$\mathrm{R}_{\text {COMP }}$	Compensation network resistor	500	750	1200	$k \Omega$
		250	500	1000	$k \Omega$
$\mathrm{C}_{\text {COMP }}$	Compensation network capacitor	90	125	175	pF
TSD ${ }_{\text {Boost }}$	Thermal shutdown threshold	160	-	-	${ }^{\circ} \mathrm{C}$
TSD BOOST_HYST $^{\text {den }}$	Thermal shutdown threshold hysteresis	-	9	-	${ }^{\circ} \mathrm{C}$
TBOOST_TSD	Thermal shutdown filtering time	3.0	5.0	8.0	$\mu \mathrm{s}$

21.5 VBOOST not populated

It is possible to not use the VBOOST when VPRE is configured at 4.1 V or 5.0 V . In this case, the external VBOOST components can be unpopulated to optimize the bill of material. The OTP_BOOSTEN bit shall be programmed to 0 and VBOOST pin must be connected to VPRE. BOOST_LS pin must be left open.

VBOOST must be used when VPRE is configured at 3.3 V or 3.8 V to supply VBOS.

22 Low voltage buck: BUCK1 and BUCK2

22.1 Functional description

BUCK1 and BUCK2 blocks are low voltage, synchronous, valley current mode buck converters with integrated HS PMOS and LS NMOS. BUCK1 and BUCK2 work in force PWM and the output voltage is configurable by OTP from 0.8 V to 1.8 V , the switching frequency is 2.22 MHz and the output current is limited to 3.6 A peak. The input of these blocks must be connected to the output of VPRE. The stability is ensured by an internal Type 2 compensation network with slope compensation.

By default, BUCK1 and BUCK2 switching frequency is derived from the internal oscillator and can be synchronized with an external frequency signal applied on FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by I2C.

BUCK1 and BUCK2 can work independently or in Dual phase mode to double the output current capability. When BUCK1 and BUCK2 are used in dual phase, they must have the same output voltage configuration. Any action like TSD, OV, disable by I2C, on BUCK1 affects BUCK2 and vice versa.

An overcurrent detection and a thermal shutdown are implemented on BUCK1 and BUCK2 to protect the internal MOSFETs. The overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an undervoltage condition.

The ramp up and ramp down of BUCK1 and BUCK2 when they are enabled and disabled is configurable with OTP_DVS_BUCK12[1:0] bits to accommodate multiple MCU soft start requirements. Static Voltage Scaling (SVS) feature is available to decrease the output voltage after power up during INIT_FS Programmable phase shift control is implemented, see Section 25 "Clock management".

22.2 Application schematic: Single phase mode

In this configuration, BUCK1 and BUCK2 are configured as independent outputs, working independently. Each output is configured and controlled independently by I2C.

Figure 18. BUCK1/2 standalone schematic

22.3 Application schematic: Dual phase mode

In this configuration, BUCK1 and BUCK2 are configured in dual phase mode to double the output current capability. The dual phase mode is enable with OTP_VB12MULTIPH bit. The PCB layout of BUCK1 phase and BUCK2 must be symmetric for optimum EMC performance.

Figure 19. BUCK1/2 multiphase schematic

22.4 Compensation network and stability

The internal compensation network ensures the stability and the transient response performance of the buck converter. The error amplifier gain is configurable with OTP_VBxGMCOMP[2:0] bits for each BUCK 1 and BUCK2 regulators. It is recommended to use the default value that covers most of the use cases.

Decreasing the gain reduces the regulation bandwidth and increase the phase and gain margin but transient performance is degraded. Increasing the gain enlarges the regulation bandwidth and improves the transient performance but the phase and gain margin is degraded.

OTP_VBxINDOPT[1:0] scales the slope compensation and the zero cross detection according to the inductor value. $1.0 \mu \mathrm{H}$ is the recommended inductor value for BUCK1 and BUCK2.

Use case with $\mathrm{V}_{\text {PRE }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BUCK1 }}=1.0 \mathrm{~V}$, $\mathrm{L}_{\text {VBUCK1 }}=1.0 \mu \mathrm{H}, \mathrm{V}_{\text {BUCK1_sw }}=$ 2.22 MHz, Cout_виск1 $=44 \mu \mathrm{~F}$, default Err Amp gain

Use case stability verification

- Phase margin target $\mathrm{PM}>45^{\circ}$ and gain margin target $\mathrm{GM}>6 \mathrm{~dB}$.

High voltage PMIC with multiple SMPS and LDO

Figure 20. Phase and gain margin simulation
Use case transient response verification

Figure 21. Transient response simulation

22.5 BUCK1 and BUCK2 electrical characteristics

Table 71. BUCK1 and BUCK2 electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
VBUCK12_IN	Input voltage range	2.5	-	5.5	V
$V_{\text {BUCK12 }}$	$\begin{aligned} & \text { Output voltage (OTP_VB1V[7:0] and OTP_ } \\ & \text { VB2V[7:0] bits) } \\ & 0.8 \mathrm{~V}, 0.825 \mathrm{~V}, 0.9 \mathrm{~V}, 0.95 \mathrm{~V}, 1.0 \mathrm{~V}, 1.025 \mathrm{~V}, \\ & 1.03125 \mathrm{~V}, 1.075 \mathrm{~V}, 1.1 \mathrm{~V}, 1.1375 \mathrm{~V}, 1.2 \mathrm{~V}, 1.25 \\ & \mathrm{~V}, 1.3 \mathrm{~V}, 1.35 \mathrm{~V}, 1.4 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V} \end{aligned}$	0.8	-	1.8	V
IBUCK12	DC output current capability (one phase)	-	-	2.5	A
V ${ }_{\text {BUCK12_ACC }}$	Output voltage accuracy (lout < 2.5 A)	-2	-	+2	\%
V ${ }_{\text {BUCK12_SW }}$	Switching frequency range	2.1	2.22	2.35	MHz
$L_{\text {BUCK12 }}$	Inductor for $\mathrm{V}_{\text {BUCK12 }}$ sw $=2.22$ MHz (OTP_VB1INDOPT[1:0] and OTP_VB2INDOPT[1:0] bits)	0.47	1.0	1.5	$\mu \mathrm{H}$

High voltage PMIC with multiple SMPS and LDO

Symbol	Parameter	Min	Typ	Max	Unit
Cout_BuCK12	Effective Output capacitor	40	-	160	$\mu \mathrm{F}$
	Output decoupling capacitor	-	0.1	-	$\mu \mathrm{F}$
$\mathrm{C}_{\text {IN_BUCK12 }}$	Effective Input capacitor (close to BUCK1_IN and BUCK2_IN pins)	4.7	-	-	$\mu \mathrm{F}$
	Input decoupling capacitor (close to BUCK1_IN and BUCK2_IN pins)	-	0.1	-	$\mu \mathrm{F}$
V ${ }_{\text {BUCK12_TLR }}$	Transient load regulation for $\mathrm{V}_{\text {BUCK12 }}<1.2 \mathrm{~V}$ (Cout $=40 \mu \mathrm{~F}$, from 200 mA to 1.0 A , di/dt $=2.0$ A $/ \mu \mathrm{s})$, single phase (Cout $=40 \mu \mathrm{~F}$, from 400 mA to 2.0 A , di/dt $=4.0$ $\mathrm{A} / \mu \mathrm{s})$, dual phase	-25	-	+25	mV
V ${ }_{\text {BUCK12_TLR }}$	Transient load regulation for $\mathrm{V}_{\mathrm{BUCK} 12}>1.2 \mathrm{~V}$ (Cout $=40 \mu \mathrm{~F}$, from 200 mA to $1.0 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=2.0$ $\mathrm{A} / \mu \mathrm{s})$, single phase (Cout $=40 \mu \mathrm{~F}$, from 400 mA to 2.0 A , di/dt $=4.0$ $A / \mu s)$, dual phase	-3	-	+3	\%
ILIM_BUCK12	Inductor peak current limitation range for one phase (OTP_VB1SWILIM[1:0] and OTP_ VB2SWILIM[1:0] bits)	3.6	4.5	5.45	A
VBUCK12_DVS_UP (for $\mathrm{V}_{\text {BUCK12 }}$ up to 1.5 V)	Ramp up speed, OTP_DVS_BUCK12[1:0] = 00	5.86	7.81	9.77	$\mathrm{mV} / \mathrm{\mu s}$
	Ramp up speed, OTP_DVS_BUCK12[1:0] = 01	2.34	3.13	3.91	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp up speed, OTP_DVS_BUCK12[1:0] = 10	1.95	2.60	3.26	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp up speed, OTP_DVS_BUCK12[1:0] = 11	1.67	2.23	2.79	$\mathrm{mV} / \mu \mathrm{s}$
$V_{\text {BUCK12_DVS_UP }}$ (for $\mathrm{V}_{\mathrm{BUCK} 12}=1.8 \mathrm{~V}$)	Ramp up speed, OTP_DVS_BUCK12[1:0] = 00	7.33	9.763	12.21	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp up speed, OTP_DVS_BUCK12[1:0] = 01	2.93	3.91	4.89	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp up speed, OTP_DVS_BUCK12[1:0] = 10	2.44	3.25	4.08	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp up speed, OTP_DVS_BUCK12[1:0] = 11	2.09	2.79	3.49	$\mathrm{mV} / \mu \mathrm{s}$
VBUCK12_DVS_DOWN (for $V_{\text {BUCK12 }}$ up to 1.5 V)	Ramp down speed, OTP_DVS_BUCK12[1:0] = 00	3.91	5.21	6.51	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp down speed, OTP_DVS_BUCK12[1:0] = 01	2.34	3.13	3.91	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp down speed, OTP_DVS_BUCK12[1:0] = 10	1.95	2.6	3.26	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp down speed, OTP_DVS_BUCK12[1:0] = 11	1.67	2.23	2.79	$\mathrm{mV} / \mu \mathrm{s}$
VBUCK12_DVS_DOWN (for $\mathrm{V}_{\text {BUCK12 }}=1.8 \mathrm{~V}$)	Ramp down speed, OTP_DVS_BUCK12[1:0] = 00	4.89	6.51	8.14	$\mathrm{mV} / \mathrm{\mu s}$
	Ramp down speed, OTP_DVS_BUCK12[1:0] = 01	2.93	3.91	4.89	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp down speed, OTP_DVS_BUCK12[1:0] = 10	2.44	3.25	4.08	$\mathrm{mV} / \mu \mathrm{s}$
	Ramp down speed, OTP_DVS_BUCK12[1:0] = 11	2.09	2.79	3.49	$\mathrm{mV} / \mu \mathrm{s}$
$\mathrm{T}_{\text {BUCK12_SOFT_START }}$	```VBUCK12_SOFT_START }=\mp@subsup{V}{\mathrm{ BUCK12 }}{}/\mp@subsup{V}{\mathrm{ BUCK12_DVS_UP}}{ Soft start for }\mp@subsup{V}{\mathrm{ BUCK12 }}{}=1.2\textrm{V}\mathrm{ and OTP_DVS_BUCK12[1:0] = 00```	122.9	153.6	204.8	$\mu \mathrm{s}$
	Soft start for $\mathrm{V}_{\text {BUCK12 }}=1.2 \mathrm{~V}$ and OTP_DVS_BUCK12[1:0] = 11 To be recalculated for different $V_{\text {BUCK12 }}$ and different $V_{\text {BUCK12_DVs_UP }}$	430.1	538.1	718.5	$\mu \mathrm{s}$
V ${ }_{\text {BUCK12_STARTUP }}$	Overshoot at startup	-	-	50	mV
T BUCK12_OFF_MIN	HS minimum OFF time	9	30	54	ns
TBUCK12_DT	Dead time to avoid cross conduction	0.01	3	20	ns
R ${ }_{\text {BUCK12_HS_RON }}$	HS PMOS RDSon	-	-	135	$\mathrm{m} \Omega$

VR5500

Symbol	Parameter	Min	Typ	Max	Unit
$R_{\text {BUCK12_LS_RON }}$	LS NMOS RDSon	-	-	80	$\mathrm{~m} \Omega$
R $_{\text {BUCK12_DISch }}$	Discharge resistance (when BUCK1,2 is disabled)	250	500	1000	Ω
TSD $_{\text {BUCK12 }}$	Thermal shutdown threshold	160	-	-	${ }^{\circ} \mathrm{C}$
TSD $_{\text {BUCK12_HYST }}$	Thermal shutdown threshold hysteresis	-	9	-	${ }^{\circ} \mathrm{C}$
TBUCK12_TSD	Thermal shutdown filtering time	3	5	8	

22.6 BUCK1 and BUCK2 efficiency

BUCK1 and BUCK2 efficiency versus current load is given for information based on external component criteria provided and VPRE voltage 4.1 V . If the conditions change, it has to be recalculated with the VR5500_PDTCAL tool. The real efficiency has to be verified by measurement at the application level.

Figure 22. BUCK1 and BUCK2 theoretical efficiency

23 Low voltage buck: BUCK3

23.1 Functional description

BUCK3 block is a low voltage, synchronous, peak current mode buck converter with integrated HS PMOS and LS NMOS. BUCK3 works in force PWM and the output voltage is configurable by OTP from 1.0 V to 3.3 V , the switching frequency is 2.22 MHz and the output current is limited to 3.6 A peak. The input of this block can be connected to the output of VPRE or VBOOST when VBOOST $=5.0 \mathrm{~V}$ only. The stability is ensured by an internal Type 2 compensation network with slope compensation.

By default, BUCK3 switching frequency is derived from the internal oscillator, and can be synchronized with an external frequency signal applied on FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by I2C.

An overcurrent detection and a thermal shutdown are implemented on BUCK3 to protect the internal MOSFETs. The overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an undervoltage condition.

BUCK3 is part number dependent according to OTP_BUCK3EN bit. BUCK3_INQ pin, used to bias internal BUCK3 driver, and must be connected to the same source pin than BUCK3_IN pin. The ramp up and ramp down of BUCK3 when it is enabled and disabled is configurable with OTP_DVS_BUCK3[1:0] bits to accommodate multiple MCU soft start requirements.

Programmable phase shift control is implemented, see Section 25 "Clock management".

23.2 Application schematic

Figure 23. BUCK3 schematic

23.3 Compensation network and stability

The internal compensation network ensures the stability and the transient response performance of the buck converter. OTP_VB3INDOPT[1:0] scales the slope compensation and the zero cross detection according to inductor value. $1.0 \mu \mathrm{H}$ is the recommended inductor value for BUCK3.

Use case with $\mathrm{V}_{\text {PRE }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BUCK3 }}=2.3 \mathrm{~V}, \mathrm{~L}_{\text {VBUCK3 }}=1.0 \mu \mathrm{H}, \mathrm{F}_{\text {BUCK3_Sw }}=$ 2.22 MHz, Cout_виск $^{2}=44 \mu \mathrm{~F}$

Use case stability verification

- Phase margin target $\mathrm{PM}>45^{\circ}$ and gain margin target $\mathrm{GM}>6 \mathrm{~dB}$.

High voltage PMIC with multiple SMPS and LDO

Figure 24. Phase and gain margin simulation
Use case transient response verification

Figure 25. Transient response simulation

23.4 BUCK3 electrical characteristics

Table 72. BUCK3 electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
V BUCK3_IN	Input voltage range	2.5	-	5.5	V
$V_{\text {BUCK3 }}$	$\begin{aligned} & \text { Output voltage (OTP_VB3V[4:0] bits) } \\ & 1.0 \mathrm{~V}, 1.1 \mathrm{~V}, 1.2 \mathrm{~V}, 1.25 \mathrm{~V}, 1.3 \mathrm{~V}, 1.35 \mathrm{~V}, \\ & 1.5 \mathrm{~V}, 1.6 \mathrm{~V}, 1.8 \mathrm{~V}, 2.3 \mathrm{~V}, 2.5 \mathrm{~V}, 2.8 \mathrm{~V}, 3.3 \mathrm{~V} \end{aligned}$	1.0	-	3.3	V
$\mathrm{I}_{\text {BUCK3 }}$	DC output current capability	-	2.5	-	A
VBUCK3_ACC	Output voltage accuracy (lout < 2.5 A)	-2	-	+2	\%
V ${ }_{\text {BUCK3_SW }}$	Switching frequency range	2.1	2.22	2.35	MHz
$L_{\text {BUCK3 }}$	Inductor for $\mathrm{V}_{\text {BUCK3 }}$ sw $=2.22 \mathrm{MHz}$ (OTP_VB3INDOPT[1:0] bits)	0.47	1.0	1.5	$\mu \mathrm{H}$
Cout_buck	Effective output capacitor	40	-	120	$\mu \mathrm{F}$
	Output decoupling capacitor	-	0.1	-	$\mu \mathrm{F}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{C}_{\text {IN_BUCK3 }}$	Effective input capacitor (close to BUCK3_IN pin)	4.7	-	-	$\mu \mathrm{F}$
	Input decoupling capacitor (close to BUCK3_IN pin)	-	0.1	-	$\mu \mathrm{F}$
V ${ }_{\text {BUCK3_TLR }}$	Transient load regulation (Cout $=40 \mu \mathrm{~F}$, from 200 mA to 1.0 A , di/dt $=2.0 \mathrm{~A} / \mu \mathrm{s}$)	-50	-	+50	mV
ILIM_BUCK3	Inductor peak current limitation range (OTP_ VB3SWILIM[1:0] bits)	2.0	2.6	3.1	A
		3.6	4.5	5.45	A
TBUCK3_ON_MIN	HS minimum ON time	5	50	80	ns
VBUCK3_DVS_UP_DOWN	Ramp up and ramp down speed, OTP_DVS_ BUCK3[1:0] = 00	7.81	10.42	13.02	$\mathrm{mV} / \mathrm{\mu s}$
	Ramp up and ramp down speed, OTP_DVS_ BUCK3[1:0] = 01	2.6	3.47	4.34	$\mathrm{mV} / \mathrm{\mu s}$
	Ramp up and ramp down speed, OTP_DVS_ BUCK3[1:0] = 10	1.95	2.6	3.26	$\mathrm{mV} / \mathrm{\mu s}$
	Ramp up and ramp down speed, OTP_DVS_ BUCK3[1:0] = 11	1.56	2.08	2.60	$\mathrm{mV} / \mathrm{\mu s}$
TBUCK3_SOFT_START	$\begin{aligned} & \mathrm{V}_{\text {BUCK3_SOFT_START }}=\mathrm{V}_{\text {BUCK3 }} / \mathrm{V}_{\text {BUCK3_DVS_UP }} \\ & \text { Soft start for } \mathrm{V}_{\text {BUCK3 }}=1.8 \mathrm{~V} \text { and } \\ & \text { OTP_DVS_BUCK3[1:0] }=00 \end{aligned}$	84.8	105.6	140.08	$\mu \mathrm{s}$
	Soft start for $\mathrm{V}_{\text {BUCK }}=1.8 \mathrm{~V}$ and OTP_DVS_BUCK3[1:0] = 11 To be recalculated for different $V_{B U C K 3}$ and different $\mathrm{V}_{\text {BUCK3_DVS_UP_DOWN }}$	422.4	528	704	$\mu \mathrm{s}$
V ${ }_{\text {BUCK3_STARTUP }}$	Overshoot at startup	-	-	50	mV
TBUCK3_DT	Dead time to avoid cross conduction	0.01	3	20	ns
R ${ }_{\text {BUCK3_HS_RON }}$	HS PMOS RDSon	-	-	135	$\mathrm{m} \Omega$
R ${ }_{\text {BUCK3_LS_RON }}$	LS NMOS RDSon	-	-	80	$\mathrm{m} \Omega$
R ${ }_{\text {BUCK3_DISCH }}$	Discharge resistance (when BUCK3 is disabled)	250	500	1000	Ω
TSD BUCK3	Thermal shutdown threshold	160	-	-	${ }^{\circ} \mathrm{C}$
TSD BUCK3_HYST $^{\text {d }}$	Thermal shutdown threshold hysteresis	-	9	-	${ }^{\circ} \mathrm{C}$
TBUCK3_TSD	Thermal shutdown filtering time	3	5	8	$\mu \mathrm{s}$

23.5 BUCK3 efficiency

BUCK3 efficiency versus current load is given for information based on external component criteria provided and VPRE voltage 4.1 V . If the conditions change, it has to be recalculated with the VR5500_PDTCAL tool. The real efficiency has to be verified by measurement at the application level.

Ext. C and L		
Cin	60	$\mu \mathrm{~F}$
ESR Cin	10	$\mathrm{~m} \Omega$
Cout	44	$\mu \mathrm{~F}$
ESR Cout	10	$\mathrm{~m} \Omega$
L coil	1	$\mu \mathrm{H}$
DCR coil	20	$\mathrm{~m} \Omega$
Int. MOSFET's		
HS_Rdson	135	$\mathrm{~m} \Omega$
QHS	0.5	nC
THS_sw	3	ns
GHS_drive	5	V
LS_Rdson	80	$\mathrm{~m} \Omega$
QLS	0.5	nC
TLS_sw	3	ns
GLS_drive	5	V

BUCK3 Efficiency (VPRE = 4.1 V)

aaa-035375

Figure 26. BUCK3 theoretical efficiency

24 Linear voltage regulator: LDO1, LDO2

24.1 Functional description

LDO1 and LDO2 blocks are two linear voltage regulators. The output voltage is configurable by OTP from 1.1 V to 5.0 V . A minimum voltage drop is required depending on the output current capability (0.5 V for 150 mA and 1.0 V for 400 mA). The LDO current capability is linear with the voltage drop and can be estimated to $\mathrm{I}(\mathrm{mA})=500 \mathrm{x}$ $\mathrm{V}_{\text {LDO12_DROP }}-100$ for intermediate voltage drop between 0.5 V and 1.0 V .
LDO1 input supply is externally connected to VPRE, VBOOST, or another supply. LDO2 input supply is internally connected to the output of VBOOST. An overcurrent detection and a thermal shutdown are implemented on LDO1 and LDO2 to protect the internal pass device.

24.2 Application schematics

aaa-032950
Figure 27. LDO1 block diagram

Figure 28. LDO2 block diagram

24.3 LDO1 and LDO2 electrical characteristics

Table 73. LDO1 and LDO2 electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
VLDO12_IN	Input voltage range	2.5	-	6.5	V
$\mathrm{V}_{\text {LDO12 }}$	Output voltage (OTP_VLDO1V[2:0] and OTP_LDO2V[2:0] bits) $1.1 \mathrm{~V}, 1.2 \mathrm{~V}, 1.6 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.8 \mathrm{~V}, 3.3 \mathrm{~V}, 5.0 \mathrm{~V}$	1.1	-	5.0	V
VLDO12_ACC_150	Output voltage accuracy, 150 mA current capability	-2	-	+2	\%
VLDO12_ACC_400	Output voltage accuracy, 400 mA current capability	-3	-	+3	\%
V ${ }_{\text {LDO12_DROP_150 }}$	Minimum voltage drop for 150 mA current capability	0.5	-	-	V
V LDO12_DROP_400	Minimum voltage drop for 400 mA current capability	1.0	-	-	V
$\mathrm{C}_{\text {IN_LDO1 }}$	Input capacitor (close to LDO1_IN pin)	1.0	-	-	$\mu \mathrm{F}$
Cout_LDO12_150	Output capacitor, 150 mA current capability	4.7	-	10	$\mu \mathrm{F}$
Cout_LDO12_400	Output capacitor, 400 mA current capability	6.8	-	10	$\mu \mathrm{F}$
Cout_LDO12	Output decoupling capacitor	0.1	-	-	$\mu \mathrm{F}$
VLDO12_LTR_150	Transient load regulation (from 10 mA to $150 \mathrm{~mA} \mathrm{in} 2.0 \mu \mathrm{~s}$)	-4	-	+4	\%
VLDO12_LTR_400	Transient load regulation (from 10 mA to 400 mA in $4.0 \mu \mathrm{~s}$)	-5	-	+5	\%
VLDO12_LR	Line regulation	-	-	0.5	\%
VLDO12_LIM_150	Current limitation, 150 mA current capability (OTP_ LDO1ILIM and OTP_LDO2ILIM bits)	200	280	500	mA
VLDO12_LIM_400	Current limitation, 400 mA current capability (OTP_ LDO1ILIM and OTP_LDO2ILIM bits)	430	560	800	mA
VLDO12_SOFT_START	Soft start (enable to 90%)	-	1.0	1.3	ms
VLDO12_Startup	Overshoot at startup	-	-	2	\%
RLDO12_DISCH	Discharge resistance (when LDO1,2 is disabled)	10	20	60	Ω
TSD ${ }_{\text {LDO12 }}$	Thermal shutdown threshold	160	-	-	${ }^{\circ} \mathrm{C}$
TSD ${ }_{\text {LDO12_HYST }}$	Thermal shutdown threshold hysteresis	-	9	-	${ }^{\circ} \mathrm{C}$
TLDO12_TSD	Thermal shutdown filtering time	3	5	8	$\mu \mathrm{s}$

25 Clock management

25.1 Clock description

The clock management block is made of the internal oscillator, the Phase Locked Loop (PLL) and multiple dividers. This block manages the clock generation for the internal digital state machines, the switching regulators, and the external clock synchronization.

The internal oscillator is running at 20 MHz by default after startup. The frequency is programmable by I2C and a spread spectrum feature can be activated by I2C to reduce the emission of the oscillator fundamental frequency.
VPRE switching frequency is coming from CLK2 (455 kHz) or CLK1 (2.22 MHz). BUCK1,2,3 and BOOST switching frequency is coming from CLK1 (2.22 MHz). The switching regulators can be synchronized with an external frequency coming from FIN pin. A dedicated watchdog monitoring is implemented to verify and report the correct FIN frequency range. Different clocks can be sent to FOUT pin to synchronize an external IC or for diagnostic.

High voltage PMIC with multiple SMPS and LDO

Figure 29. Clock management block diagram

25.2 Phase shifting

The clocks of the switching regulators (VPRE_clk, BOOST_clk, BUCK1_clk, BUCK2_clk and BUCK3_clk) can be delayed in order to avoid all the regulators to turn ON at the same time to reduce peak current and improve EMC performance.

Each clock of each regulator can be shifted from 1 to 7 clock cycles of CLK running at 20 MHz what corresponds to 50 ns . The phase shift configuration is done by OTP configuration using OTP_VPRE_ph[2:0], OTP_VBST_ph[2:0], OTP_BUCK1_ph[2:0], OTP_BUCK2_ph[2:0], and OTP_BUCK3_ph[2:0].

VPRE and BUCK3 have a peak current detection architecture. The PWM synchronizes the turn ON of the high-side switch. BUCK1 and BUCK2 have a valley current detection architecture. The PWM synchronizes the turn ON of the low-side switch.

Figure 30. BUCK1,2,3_clk = 2.22 MHz without clock phase shifting

Figure 31. BUCK1,2,3_clk $=\mathbf{2 . 2 2} \mathbf{~ M H z}$ with clock phase shifting

25.3 Manual frequency tuning

The internal oscillator frequency, 20 MHz by default, can be programmed from 16 MHz to 24 MHz with 1.0 MHz frequency step by I2C. The oscillator functionality is guaranteed for frequency increment of one step at a time in either direction, with a minimum of 10 μ s between two steps. For any unused code of the CLK_TUNE [3:0] bits, the internal oscillator is set at the default 20 MHz frequency.

To change the internal oscillator frequency from 20 MHz to 24 MHz , four I2C commands are required with $10 \mu \mathrm{~s}$ wait time between each command (21 MHz - wait $10 \mu \mathrm{~s}-22$ MHz - wait $10 \mu \mathrm{~s}-23 \mathrm{MHz}$ - wait $10 \mu \mathrm{~s}-24 \mathrm{MHz}$). To change the internal oscillator frequency from 24 MHz to 16 MHz , eight I2C commands are required with $10 \mu \mathrm{~s}$ wait time between each command (23 MHz - wait $10 \mu \mathrm{~s}-22 \mathrm{MHz}$ - wait $10 \mu \mathrm{~s}-21 \mathrm{MHz}$ - wait $10 \mu \mathrm{~s}-20 \mathrm{MHz}$ - wait $10 \mu \mathrm{~s}-19 \mathrm{MHz}$ - wait $10 \mu \mathrm{~s}-18 \mathrm{MHz}$ - wait $10 \mu \mathrm{~s}-17$ MHz - wait $10 \mu \mathrm{~s}-16 \mathrm{MHz}$).

Table 74. Manual frequency tuning configuration

CLK_TUNE [3:0]	Oscillator frequency [MHz]
$\mathbf{0 0 0 0}$ (default)	20
0001	21
0010	22
0011	23
0100	24
1001	16
1010	17
1011	18
1100	19
Reset condition	POR

25.4 Spread spectrum

The internal oscillator can be modulated with a triangular carrier frequency of 23 kHz or 94 kHz with $\pm 5 \%$ deviation range around the oscillator frequency. The spread spectrum feature can be activated by I2C with the MOD_EN bit and the carrier frequency can be selected by I2C with the MOD_CONF bit. By default, the spread spectrum is disabled.

The spread spectrum and the manual frequency tuning functions cannot be used at the same time.

The main purpose of the spread spectrum is to improve the EMC performance by spreading the energy of the internal oscillator and VPRE frequency on VBAT frequency spectrum. It is recommended to select 23 kHz carrier frequency when VPRE is configured at 455 kHz and 94 kHz when VPRE is configured at 2.2 MHz for the best performance.

25.5 External clock synchronization

To synchronize the switching regulators with an external frequency coming from FIN pin, the PLL is enabled with OTP_PLL_SEL bit. The FIN pin accepts two ranges of frequency depending on the divider selection to always have CLK clock at the output of the PLL in the working range of the digital blocks from 16 MHz to 24 MHz . When FIN_DIV = 0, the input frequency range must be between 333 kHz and 500 kHz . When FIN_DIV = 1, the input frequency range must be between 2.0 MHz and 3.0 MHz .

After the FIN clock divider configuration with FIN_DIV bit, the FIN clock is routed to the PLL input with EXT_FIN_SEL bit. The CLK clock changes from the internal oscillator to FIN external clock with EXT_FIN_SEL bit. So, the configuration procedure is FIN_DIV first, then apply FIN and finally set EXT_FIN_SEL.

If FIN is out of range, CLK clock moves back to the internal oscillator and reports the error using the CLK_FIN_DIV_OK bit. When FIN comes back in the range, the configuration procedure described above is executed again.

The FOUT pin can be used to synchronize an external device with the VR5500. The frequency sent to FOUT is selected by I2C with the FOUT_MUX_SEL [3:0] bits.

Table 75. FOUT multiplexer selection

FOUT_MUX_SEL[3:0]	FOUT multiplexer selection
$\mathbf{0 0 0 0}$ (default)	No signal, FOUT is low
0001	VPRE_clk
0010	BOOST_clk
0011	BUCK1_clk
0100	BUCK2_clk
0101	BUCK3_clk
0110	FOUT_clk (CLK1 or CLK2 selected with FOUT_ CLK_SEL bit)
0111	OSC_MAIN/48 (when PLL is enabled by OTP)
1000	OSC_FS/48
1001	CLK_FIN_DIV
Others	No signal, FOUT is low
Reset condition	POR

25.6 Electrical characteristics

Table 76. Electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
20 MHz internal oscillator					
$\mathrm{F}_{20 \mathrm{MHz}}$	Oscillator nominal frequency (programmable)	-	20	-	MHz
$\mathrm{F}_{20 \mathrm{MHz} \text { _ACC }}$	Oscillator accuracy	-6	-	+6	\%
T ${ }_{\text {20MHz_step }}$	Oscillator frequency tuning step transition time	-	10	-	$\mu \mathrm{s}$
Spread spectrum					
FSS MOD	Spread spectrum frequency modulation (MOD_ CONF I2C configuration)	-	23	-	kHz
		-	94	-	kHz
FSS RANGE	Spread spectrum range (around the nominal frequency)	-5	-	+5	\%
Clock synchronization (FIN)					
$\mathrm{V}_{\text {FIN_IN }}$	Input voltage range	-	VDDI2C	-	V
DC Fin_fout	FIN and FOUT duty cycle	40	50	60	\%
FIN $\mathrm{R}_{\text {Range }}$	FIN input frequency range (FIN_DIV I2C configuration)	333	417	500	kHz
		2.25	2.5	2.75	MHz
FIN ${ }_{\text {VIL }}$	FIN low-voltage threshold	$0.3 \times \mathrm{V}_{\text {DDI2C }}$	-	-	V
FIN VIH	FIN high-voltage threshold	-	-	$0.7 \times \mathrm{V}_{\text {DDI2C }}$	V
FIN ${ }_{\text {HYST }}$	FIN hysteresis	0.1	-	-	V
FIN ${ }_{\text {IPD }}$	FIN internal pull-down current source	7	10	13	$\mu \mathrm{A}$
FIN ${ }_{\text {DLY }}$	FIN input buffer propagation delay	-	-	8	ns
FIN ERR_LONG	CLK_FIN_DIV monitoring, long deviation detection	5	-	-	$\mu \mathrm{s}$
FIN ${ }_{\text {ERR_SHORT }}$	CLK_FIN_DIV monitoring, short deviation detection	-	-	1.5	$\mu \mathrm{s}$
FIN ${ }_{\text {TLOST }}$	Time to switch to internal oscillator when FIN is lost	-	-	3	$\mu \mathrm{s}$
Clock synchronization (FOUT)					
$\mathrm{V}_{\text {FOUT_OUT }}$	Output voltage range	-	VDDIO	-	V
FOUT $_{\text {Vol }}$	FOUT low-voltage threshold at 2.0 mA	-	-	0.5	V
$\mathrm{FOUT}_{\text {VOH }}$	FOUT high-voltage threshold at -2.0 mA	$\mathrm{V}_{\text {DDIO }}-0.5$	-	-	V
$\mathrm{I}_{\text {FOUT }}$	3-state leakage current (VDDIO $=5.0 \mathrm{~V}$)	-1.0	-	1.0	$\mu \mathrm{A}$
$\mathrm{FOUT}_{\text {TRISE }}$	FOUT rise time (from 20 \% to 80 \% of VDDIO, Cout $=30 \mathrm{pF}$)	-	-	20	ns
$\mathrm{FOUT}_{\text {TFALL }}$	FOUT fall time (from 80% to 20 \% of VDDIO, Cout $=30 \mathrm{pF}$)	-	-	20	ns
PLL ${ }_{\text {TLOCK }}$	PLL lock time	-	-	90	$\mu \mathrm{s}$
PLLTSET	PLL settling time (from EXT_FIN_DIS enable to $\pm 1 \%$ of output frequency)	-	-	125	$\mu \mathrm{s}$

26 Analog multiplexer: AMUX

26.1 Functional description

The AMUX pin delivers 32 analog voltage channels to the MCU ADC input. The voltage channels delivered to AMUX pin can be selected by I2C. The maximum AMUX output voltage range is VDDIO. External Rs/Cout components are required for the buffer stability.

26.2 Block diagram

Figure 32. AMUX block diagram

26.3 AMUX channel selection

Table 77. AMUX output selection

AMUX[4:0]	Signal selection for AMUX output
$\mathbf{0} 0000$ (default)	GND
00001	VDDIO voltage
00010	Temperature sensor $: ~$$\left({ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{V}_{\text {AMUX }}-\mathrm{V}_{\text {TEMP25 }}\right) /\right.$
00011	Bandgap main: $1.0 \mathrm{~V} \pm 1 \%$
00100	Bandgap fail-safe: $1.0 \mathrm{~V} \pm 1 \%$
00101	VBUCK1 voltage
00110	VBUCK2 voltage
00111	VBUCK3 voltage divided by 2.5
01000	VPRE voltage divided by 2.5
01001	VBOOST voltage divided by 2.5
01010	VLDO1 voltage divided by 2.5
01011	VLDO2 voltage divided by 2.5
01100	VBOS voltage divided by 2.5
01101	Reserved
01110	VSUP1 voltage divided by 7.5 or 14 (I2C configuration with
bit RATIO)	

High voltage PMIC with multiple SMPS and LDO

AMUX[4:0]	Signal selection for AMUX output
01111	WAKE1 voltage divided by 7.45 or 13.85 (I2C configuration with bit RATIO)
10000	WAKE2 voltage divided by 7.45 or 13.85 (I2C configuration with bit RATIO)
10001	Vana: internal main analog voltage supply: $1.6 \mathrm{~V} \pm 2 \%$
10010	Vdig: internal main digital voltage supply: $1.6 \mathrm{~V} \pm 2 \%$
10011	Vdig_fs: internal fail-safe digital voltage supply: $1.6 \mathrm{~V} \pm 2 \%$
10100	PSYNC voltage
Others	Same as default value (00000): GND

26.4 AMUX electrical characteristics

Table 78. AMUX electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {AMUX_VDDIO }}$	Minimum VDDIO operating voltage for AMUX	3.2	-	-	V
$V_{\text {AMUX_IN }}$	Input voltage range for VSUP, WAKE1, WAKE2 - Ratio 7.45 and 7.5 - Ratio 13.85 and 14	$\begin{aligned} & 2.25 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & 22.5 \\ & 42 \end{aligned}$	V
$\mathrm{I}_{\text {AMUX }}$	Output buffer current capability	-	-	2.0	mA
$V_{\text {AMUX_OFF }}$	Offset voltage (lout = 1.0 mA)	-7	-	+7	mV
VAMUX_RATIO	Ratio accuracy - Ratio 1 - Ratio 2.5 - Ratio 7.5 for VSUP1 - Ratio 7.45 for WAKE12 - Ratio 14 for VSUP1 - Ratio 13.85 for WAKE12	$\begin{aligned} & -0.5 \\ & -1.5 \\ & -2.0 \\ & -2.0 \\ & -2.0 \\ & -2.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \\ & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	\%
$\mathrm{V}_{\text {AMUX_BRIDGE }}$	VSUP1, WAKE1, WAKE2 resistor bridge	0.75	1.5	3	$\mathrm{M} \Omega$
$\mathrm{V}_{\text {TEMP25 }}$	Temperature sensor voltage at $25^{\circ} \mathrm{C}$	2.01	2.07	2.12	V
$\mathrm{V}_{\text {TEMP_COEFF }}$	Temperature sensor coefficient	-6.25	-6	-5.75	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
TAMUX_SET	Settling time (from 10% to 90% of $\mathrm{V}_{\mathrm{DDIO}}$, Rs $=$ 220Ω, Cout $=10 \mathrm{nF}$)	-	-	10	$\mu \mathrm{s}$
Rs	Output resistor	-	220	-	Ω
Cout	Output capacitor	-	10	-	nF

26.5 1.8 V MCU ADC input use case

VR5500 AMUX buffer is referenced to VDDIO, 3.3 V , or 5.0 V . In case the MCU requires a 1.8 V ADC input voltage, an external resistor bridge R1/R2 can be added in between AMUX output and ADC input as shown in Figure 33. It is recommended to use 0.1 \% resistor accuracy to limit the conversion error impact.

The total resistor bridge value ($\mathrm{R} 1+\mathrm{R} 2$) shall consume between min 10x ADC input current and max 1 mA at AMUX output to neither disturb the AMUX output buffer nor the ADC input. A good estimate is to calculate the resistor bridge value for $200 \mu \mathrm{~A}$ current consumption at $\mathrm{VDDIO}=3.3 \mathrm{~V}$.

Target R1 + R2 $=20 \mathrm{k} \Omega$
For VDDIO $=3.3 \mathrm{~V}, \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)=1.8 / 3.3=0.545$
After calculation, $\mathrm{R} 2=11 \mathrm{k} \Omega$ and $\mathrm{R} 1=9.3 \mathrm{k} \Omega$

27 I/O interface pins

27.1 WAKE1, WAKE2

WAKE pins are used to manage the internal biasing of the device and the main state machine transitions.

- When WAKE1 or WAKE2 is > WAKE12 ${ }_{\mathrm{VIH}}$, the internal biasing is started and the equivalent digital state is '1'
- When WAKE1 or WAKE2 is < WAKE12 ${ }_{\text {VIL }}$, the equivalent digital state is ' 0 '
- When WAKE1 and WAKE2 are < WAKE12 ${ }_{\text {AVIL }}$, the internal biasing is stopped if the device was in Standby mode

WAKE1 and WAKE2 are level based wake-up input signals with analog measurement capability through AMUX. WAKE1 can be, for example, connected to a switched VBAT (KL 15 line) and WAKE2 to the wake-up output of a CAN or FlexRay transceiver. When a WAKE pin is used as a global pin, a C-R-C protection is required (see Section 29 "Application information").

Table 79. WAKE1, WAKE2 electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
WAKE12 $_{\text {AVIL }}$	Analog low input voltage threshold	1.0	-	-	V
WAKE12VIL	Digital low input voltage threshold	2.0	-	-	V
WAKE12 ${ }_{\mathrm{VIH}}$	Digital high input voltage threshold	-	-	4.0	V
IWAKE12	Input current leakage at WAKE12 $=36 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
	Input current leakage at WAKE12 $=60 \mathrm{~V}$	-	-	300	$\mu \mathrm{A}$
TWAKE12	Filtering time	50	70	100	$\mu \mathrm{s}$

27.2 INTB

INTB is an open drain output pin with internal pull up to VDDIO. This pin generates a pulse when an internal interrupt occurs to inform the MCU. Each interrupt can be masked by setting the corresponding inhibit interrupt bit in M_INT_MASK registers.

Table 80. INTB electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

| Symbol | Parameter | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| INTB $_{\text {PULL-up }}$ | Internal pull-up resistor to VDDIO | 5.5 | 10 | 15 | $\mathrm{k} \Omega$ |
| INTB | | | | | |
| VOL | Low output level threshold (I =2.0 mA) | - | - | 0.5 | V |
| INTB PULSE | Pulse duration (without manual frequency tuning) | 90 | 100 | 110 | $\mu \mathrm{~s}$ |

Table 81. List of interrupts from main logic

Interrupt main	Description
VSUP_UV7	VSUP undervoltage 7.0 V
VSUP_UVH	VSUP undervoltage high
VSUP_UVL	VSUP undervoltage low
VBOS_UVH	VBOS undervoltage high
VPRE_OC	VPRE overcurrent overvoltage protection
VPRE_FB_OV	VPRE undervoltage high
VPRE_UVH	BUCK1 overcurrent
BUCK1_TSD	BUCK2 over temperature shutdown event
BUCK1_OC	BUCK2 overcurrent
BUCK2_TSD	BUCK3 overtemperature overcurrent
BUCK2_OC	BOOST overtemperature shutdown event
BUCK3_TSD	BOOST overvoltage
BUCK3_OC	BOOST undervoltage high
BOOST_TSD	LDO1 overtemperature shutdown event
VBOOST_OV	LDO1 overcurrent
VBOOST_UVH	LDO2 overtemperature shutdown event
LDO1_TSD	LDO2 overcurrent
LDO1_OC	WAKE1 transition
LDO2_TSD	WAKE2 transition
LDO2_OC	I2C communication error
WAKE1	WAKE2

Table 82. List of interrupts from fail-safe logic

Interrupt fail-safe	Description
VCOREMON_OV	VCOREMON overvoltage detected
VCOREMON_UV	VCOREMON undervoltage detected
VDDIO_OV	VDDIO overvoltage detected
VDDIO_UV	VDDIO undervoltage detected
VMON1_OV	VMON1 overvoltage detected
VMON1_UV	VMON1 undervoltage detected

27.3 PSYNC for two VR5500

PSYNC function allows to manage complex startup sequence with multiple power management ICs like two VR5500 (OTP_PSYNC_CFG = 0) or one VR5500 plus one PF82 (OTP_PSYNC_CFG = 1). This function is enabled with the OTP_PSYNC_EN bit.

When PSYNC is used to synchronize two VR5500, PSYNC pins of each device shall be connected together and pulled up to VBOS pin of the VR5500 master device as shown in Figure 34. In this configuration, VR5500 \#1 state machine stops before VR5500 \#1_VPRE starts and waits for VR5500 \#2 to synchronize VR5500\#2_VPRE start.

Figure 34. Synchronization of two VR5500

27.4 PSYNC for VR5500 and external PMIC

When PSYNC is used to synchronize one VR5500 and one external PMIC, PSYNC pin of VR5500 is connected to PGOOD pin of the external PMIC.

When the external PMIC is PF82 from NXP, it can be pulled up to VSNVS pin of PF82. In this configuration, VR5500 state machine stops after VPRE starts and waits for the PGOOD pin of the external PMIC to be released to continue its own power sequencing. It allows to synchronize the power up sequence of both devices.

During power-down sequence, VR5500 should wait for the external PMIC power-down sequence completion before turning OFF VPRE (VPRE is powering the external PMIC). OTP_VPRE_off_dly bit is configured to extend VPRE turn OFF delay from $250 \mu \mathrm{~s}$ default value to 32 ms .

Figure 36. Synchronization of one VR5500 and one external PMIC (PF82)

Figure 37. VR5500 and one external PMIC (PF82) synchronization timing diagram
Table 83. PSYNC electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Tур	Max	Unit
PSYNC ${ }_{\text {VIL }}$	Low-level input voltage threshold	1.0	-	-	V
$\mathrm{PSYNC}_{\mathrm{VIH}}$	High-level input voltage threshold	-	-	2.0	V
$\mathrm{PSYNC}_{\text {HYST }}$	Hysteresis	0.1	-	-	V
$\mathrm{PSYNC}_{\text {Vol }}$	Low-level output threshold ($\mathrm{I}=2.0 \mathrm{~mA}$)	-	-	0.5	V
PSYNC ${ }_{\text {IPD }}$	Internal pull down current source	7.0	10	13	$\mu \mathrm{A}$
$\mathrm{PSYNC}_{\text {RPU }}$	External pull up resistor to VBOS	-	10	-	k ת
$\mathrm{PSYNC}_{\text {COUT }}$	External decoupling capacitor	-	0.1	-	$\mu \mathrm{F}$
$\mathrm{PSYNC}_{\text {TFB }}$	Feedback filtering time	6.0	10	15	$\mu \mathrm{s}$

28 I2C interface

28.1 I2C interface overview

The VR5500 uses an I2C interface following the high-speed mode definition up to 3.4 Mbit/s. I2C interface protocol requires a device address for addressing the target IC on a multi-device bus. The VR5500 has two device address: one to access the main logic and one to access the fail-safe logic. These two I2C addresses are set by OTP.

The I2C interface is using a dedicated power input pin VDDI2C and it is compatible with $1.8 \mathrm{~V} / 3.3 \mathrm{~V}$ input supply. Timing, diagrams, and further details can be found in the NXP ${ }^{2} \mathrm{C}$ specification UM10204 rev6.

Table 84. I2C message arrangement

B39	B38	B37	B36	B35	B34	B33	B32	B31	B30	B29	B28	B27	B26	B25	B24
ID_6-0							0	0	0	Adr_5-0					
Device address							Read/Write			Register address					
B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8
Data_15	Data_14	Data_13	Data_12	Data_11	Data_10	Data_9	Data_8	Data_7	Data_6	Data_5	Data_4	Data_3	Data_2	Data_1	Data_0
Data MSB								Data LSB							
								B7	B6	B5	B4	B3	B2	B1	B0
								CRC_7	CRC_6	CRC_5	CRC_4	CRC_3	CRC_2	CRC_1	CRC_0
								CRC_7	CRC_6	CRC_5	CRC_4	CRC_3	CRC_2	CRC_1	CRC_0

28.2 Device address

The VR5500 has two device address: one to access the Main logic and one to access the Fail-safe logic.

B39	B38	B37	B36	B35	B34	B33
0	1	OTP	OTP	OTP	OTP	M/FS

The I2C addresses have the following arrangement:

- Bit 39: 0
- Bit 38: 1
- Bit 37 to 34: OTP value
- Bit 33: 0 to access the main logic, 1 to access the fail-safe logic

28.3 Cyclic redundant check

An 8 bit CRC is required for each Write and Read I2C command. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two.

The CRC polynomial used is $x^{\wedge} 8+x^{\wedge} 4+x^{\wedge} 3+x^{\wedge} 2+1$ (identified by $0 x 1 D$) with a SEED value of hexadecimal '0xFF'

The following table shows an example of CRC encoding HW implementation:
CRC calculation using XOR:

```
CRC_7 = XOR (B38, B35, B32, B31, B24, B23, B22, B20, B17, B13, B12, B11, 1, 1, 1)
CRC_6 = XOR (B37, B34, B23, B22, B21, B19, B16, B12, B11, B10, 1, 1)
CRC_5 = XOR (B39, B36, B33, B30, B29, B22, B21, B20, B18, B15, B11, B10, B9, 1, 1, 1)
CRC_4 = XOR (B39, B38, B35, B32, B29, B28, B21, B20, B19, B17, B14, B10, B9, B8, 1, 1, 1, 1)
CRC_3 = XOR (B37, B35, B34, B32, B28, B27, B24, B23, B22, B19, B18, B17, B16, B12, B11, B9, B8, 1, 1, 1, 1)
CRC_2 = XOR (B39, B38, B36, B35, B34, B33, B32, B27, B26, B24, B21, B20, B18, B16, B15, B13, B12 B10, B8, 1,1,1,1,1,1,1)
CRC_1 = XOR (B37, B34, B33, B26, B25, B24, B22, B19, B15, B14, B13, B9, 1, 1, 1)
CRC_0 = XOR (B39, B36, B33, B32, B25, B24, B23, B21, B18, B14, B13, B12, B8, 1, 1, 1, 1)
```

CRC results examples:

- Main I2C device address: 0x20
- Fail-safe I2C device address: 0x21

Figure 38. CRC encoder example

Table 85. CRC results example

Device address, R/W, 8 bit (Hex)	00, Register address, 8 bit (Hex)	Data MSB, 8 bit (Hex)	Data LSB, 8 bit (Hex)	CRC, 8 bit
0×40	0×02	0×00	0×00	0×31
0×42	0×01	$0 \times D 0$	$0 \times 0 \mathrm{D}$	$0 \times 8 \mathrm{C}$

28.4 I2C electrical characteristics

Table 86. I2C electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
VDDI2C	I2C interface power input	1.62	1.8	1.98	V
		2.97	3.3	3.63	V
$\mathrm{F}_{\text {SCL }}$	SCL clock frequency	-	-	3.4	MHz
$12 \mathrm{C}_{\mathrm{VIL}}$	SCL, SDA low-level input voltage threshold	$0.3 \times \mathrm{V}_{\text {DDI2C }}$	-	-	V
$\mathrm{I}^{2} \mathrm{C}_{\mathrm{VIH}}$	SCL, SDA high-level input voltage threshold	-	-	$0.7 \times \mathrm{V}_{\text {DDI2C }}$	V
SDA VOL	Low-level output voltage at SDA pin ($=20 \mathrm{~mA}$)	-	-	0.4	V
$\mathrm{C}_{12 \mathrm{C}}$	Input capacitance at SCL / SDA	-	-	10	pF
$\mathrm{t}_{\text {SPSCL }}$	SLC pulse width filtering time, when 50 ns filter selected (fast speed, fast speed plus)	50	-	150	ns
$\mathrm{t}_{\text {SPSDA }}$	SDA pulse width filtering time, when 50 ns filter selected (fast speed, fast speed plus)	50	-	150	ns
$t_{\text {SPHSCL }}$	SLC pulse width filtering time, when 10 ns filter selected (high speed)	10	-	25	ns
$\mathrm{t}_{\text {SPHSDA }}$	SDA pulse width filtering time, when 10 ns filter selected (high speed)	10	-	25	ns

29 Application information

Figure 39. VR5500 application diagram

30 Fail-safe domain description

30.1 Functional description

The fail-safe domain is electrically independent and physically isolated. The fail-safe domain is supplied by its own reference voltages and current, has its own oscillator. The fail-safe domain and the dedicated pins are represented in Figure 40:

Figure 40. Fail-safe block diagram

30.2 Voltage supervisor

The voltage supervisor is in charge of overvoltage and undervoltage monitoring of VCOREMON, VDDIO and VMON1 input pins. When an overvoltage occurs on a VR5500 regulator monitored by one of these pins, the associated VR5500 regulator is switched off till the fault is removed. The voltage monitoring is active as soon as FS_ENABLE=1 and UV/OV flags are then reported accordingly.

30.2.1 VCOREMON monitoring

VCOREMON input pin is dedicated to BUCK1 or BUCK1 and BUCK2, in case of multiphase operation. When overvoltage or undervoltage fault is detected, the fail-safe reaction on RSTB is configurable with the VCOREMON_OV/UV_FS_IMPACT[1:0] bits during the INIT_FS phase.

Table 87. VCOREMON error impact configuration

VCOREMON_OV_FS_IMPACT[1:0]	VCOREMON OV impact on RSTB
00	No effect on RSTB
01	Reserved
$\mathbf{1 x}$ (default)	RSTB is asserted
Reset condition	POR
VCOREMON_UV_FS_IMPACT[1:0]	VCOREMON UV impact on RSTB
00	No effect on RSTB
$\mathbf{0 1}$ (default)	No effect on RSTB
1x	RSTB is asserted
Reset condition	POR

Table 88. VCOREMON electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
VCOREMON_OV_min	Overvoltage threshold minimum	-	+4.5	-	\%
VCOREMON_OV_max	Overvoltage threshold maximum	-	+12	-	\%
VCOREMON_OV_step	Overvoltage threshold step (OTP_ VCOREOVTH[7:0] bits)	-	+0.5	-	\%
VCOREMON_OV_acc	Overvoltage threshold accuracy	-2	-	2	\%
TCOREMON_OV	Overvoltage filtering time (OTP_VCORE_OV_ DGLT bit)	20	25	30	$\mu \mathrm{s}$
		40	45	50	$\mu \mathrm{s}$
VCOREMON_UV_min	Undervoltage threshold minimum	-	-4.5	-	\%
VCOREMON_UV_max	Undervoltage threshold maximum	-	-12	-	\%
VCOREMON_UV_step	Undervoltage threshold step (OTP_ VCOREUVTH[7:0] bits)	-	-0.5	-	\%
VCOREMON_UV_acc	Undervoltage threshold accuracy	-2	-	2	\%
TCOREMON_UV	Undervoltage filtering time (OTP_VCORE_UV_ DGLT[1:0] bits)	2.5	5	7.5	$\mu \mathrm{s}$
		10	15	20	$\mu \mathrm{s}$
		20	25	30	$\mu \mathrm{s}$
		35	40	45	$\mu \mathrm{S}$

30.2.2 Static voltage scaling (SVS)

A static voltage scaling function is implemented to allow the MCU to reduce the output voltage initially configured at start-up of BUCK1 (and BUCK2 if used in multiphase). The SVS configuration must be done in INIT_FS phase. The offset value is configurable by I2C with the SVS_OFFSET[4:0] bits and the exact complemented value shall be written in the NOT_SVS_OFFSET[4:0] bits.

Table 89. SVS offset configuration

SVS_OFFSET[4:0]	NOT_SVS_OFFSET[4:0]	Offset applied to BUCK1 (and BUCK2 if used in multiphase)
$\mathbf{0 0 0 0 0}$ (default)	$\mathbf{1 1 1 1 1}$	$\mathbf{0 ~ m V}$
00001	11110	-6.25 mV
\ldots	\ldots	-6.25 mV step per bit
10000	01111	-100 mV
Reset condition	POR	

The BUCK1/2 output voltage transition starts when the NOT_SVS_OFFSET[4:0] I2C command is received and confirmed good. If the NOT_SVS_OFFSETET4:0] I2C command is not the exact opposite to the SVS_OFFSET[4:0] I2C command, the SVS procedure is not executed and the BUCK1 output voltage remains at its original value. The OV/ UV threshold changes immediately when the NOT_SVS_OFFSET[4:0] I2C command is received and confirmed good. Therefore, the BUCK1 output voltage transition is done within TCOREMON_OV.

Figure 41. SVS principle

30.2.3 VDDIO monitoring

VDDIO input pin can be connected to VPRE, LDO1, LDO2, BUCK3, or an external regulator. The regulator connected to VDDIO must be at 3.3 V or 5.0 V to be compatible with overvoltage and undervoltage monitoring thresholds. In order to turn OFF the regulator in case of overvoltage detection, the configuration of which regulator is connected to VDDIO is done with OTP_VDDIO_REG_ASSIGN[2:0] bits. If an external regulator (not delivered by the VR5500) is connected to VDDIO, this regulator cannot be turned OFF, but the overvoltage flag is reported to the MCU which can take appropriate action. In all cases, the reaction on RSTB is configured with VDDIO_OV/ UV_FS_IMPACT[1:0] bits.

Figure 42. VDDIO monitoring principle
When overvoltage or undervoltage fault is detected, the fail-safe reaction on RSTB is configurable with the VDDIO_OV/UV_IMPACT[1:0] bits during the INIT_FS phase.

Table 90. VDDIO error impact configuration

VDDIO_OV_FS_IMPACT[1:0]	VDDIO OV impact on RSTB	
00	No effect on RSTB	
01	Reserved	
$\mathbf{1 x}$ (default)	RSTB is asserted	
Reset condition	POR	
VDDIO_UV_FS_IMPACT[1:0]	VDDIO UV impact on RSTB	
$\mathbf{0 0}$	No effect on RSTB	
$\mathbf{0 1}$ (default)	No effect on RSTB	
$\mathbf{1 x}$	RSTB is asserted	
Reset condition	POR	

Table 91. VDDIO electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
VDDIO_OV_min	Overvoltage threshold minimum	-	+4.5	-	\%
VDDIO_OV_max	Overvoltage threshold maximum	-	+12	-	\%
VDDIO_OV_step	Overvoltage threshold step (OTP_ VDDIOOVTH[7:0] bits)	-	+0.5	-	\%
VDDIO_OV_acc	Overvoltage threshold accuracy	-2	-	2	\%
TVDDIO_OV	Overvoltage filtering time (OTP_VDDIO_OV_ DGLT bit)	20	25	30	$\mu \mathrm{s}$
		40	45	50	$\mu \mathrm{S}$
VDDIO_UV_min	Undervoltage threshold minimum	-	-4.5	-	\%
VDDIO_UV_max	Undervoltage threshold maximum	-	-12	-	\%
VDDIO_UV_step	Undervoltage threshold step (OTP_ VDDIOUVTH[7:0] bits)	-	-0.5	-	\%
VDDIO_UV_acc	Undervoltage threshold accuracy	-2	-	2	\%
TVDDIO_UV	Undervoltage filtering time (OTP_VDDIO_UV_ DGLT[1:0] bits)	2.5	5	7.5	$\mu \mathrm{s}$
		10	15	20	$\mu \mathrm{s}$
		20	25	30	$\mu \mathrm{S}$
		35	40	45	$\mu \mathrm{s}$

30.2.4 VMON1 monitoring

Each VMON1 monitoring feature is enabled by OTP. VMON1 input pin can be connected to VPRE, LDO1, LDO2, BUCK3, BUCK2 (in case BUCK2 is not used in multiphase), or even an external regulator. In order to turn OFF the regulator in case of Overvoltage detection, the configuration of which regulator is connected to VMON1 is done by I2C in the register M_VMON_REGx. If an external regulator (not delivered by the VR5500) is connected to VMON1, this regulator cannot be turned OFF, but the Overvoltage flag is reported to the MCU which can take appropriate action. In all cases, the fail-safe reaction on RSTB is configured with VMON1_OV/UV_FS_IMPACT[1:0] bits.

Figure 43. VMON1 monitoring principle
The external resistor bridge connected to VMON1 shall be calculated to deliver a middle point of 0.8 V . It is recommended to use $\pm 1 \%$ or less resistor accuracy When overvoltage or undervoltage fault is detected, the fail-safe reaction on RSTB is configurable with the VMON1_OV/UV_FS_IMPACT[1:0] bits during the INIT_FS phase.

Table 92. VMON1 error impact configuration

VMON1_OV_FS_IMPACT[1:0]	VMON1 OV impact on RSTB
00	No effect on RSTB
01	Reserved
$\mathbf{1 x}$ (default)	RSTB is asserted
Reset condition	POR

VMON1_UV_FS_IMPACT[1:0]	VMON1 UV impact on RSTB
00	No effect on RSTB
$\mathbf{0 1}$ (default)	No effect on RSTB
1 x	RSTB is asserted
Reset condition	POR

Table 93. VMON1 (without ext resistor accuracy) electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
VMON1_OV_min	Overvoltage threshold minimum	-	+4.5	-	$\%$
VMON1_OV_max	Overvoltage threshold maximum	-	+12	-	$\%$
VMON1_OV_step	Overvoltage threshold step (OTP_ VMON1OVTH[7:0] bits)	-	+0.5	-	$\%$
VMON1_OV_acc	Overvoltage threshold accuracy	-2	-	2	$\%$
TMON1_OV	Overvoltage filtering time (OTP_ VMON1_OV_DGLT bit)	20	25	30	$\mu \mathrm{~s}$
VMON1_UV_min	Undervoltage threshold minimum	-	45	50	$\%$ s
VMON1_UV_max	Undervoltage threshold maximum	-	-4.5	-	$\%$

Symbol	Parameter	Min	Typ	Max	Unit
VMON1_UV_step	Undervoltage threshold step (OTP_ VMON1UVTH[7:0] bits)	-	-0.5	-	$\%$
VMON1_UV_acc	Undervoltage threshold accuracy	-2	-	2	$\%$
TMON1_UV	Undervoltage filtering time (OTP_ VMON1_UV_DGLT[1:0] bits)	2.5	5	7.5	$\mu \mathrm{~s}$
	10	15	20	$\mu \mathrm{~s}$	
		20	25	30	$\mu \mathrm{~s}$
VMON1_PD	Internal passive pull down	35	40	45	$\mathrm{M} \Omega$

30.3 Fault management

30.3.1 Fault source and reaction

In normal operation when RSTB is released, the fault error counter is incremented when a fault is detected by the VR5500 fail-safe state machine. Table 94 lists the faults and their impact on PGOOD and RSTB pins according to the device configuration. The faults that are configured to not assert RSTB will not increment the fault error counter. In that case, only the flags are available for MCU diagnostic.

Table 94. Application related fail-safe fault list and reaction
In Orange, the reaction in not configurable.
In Green, the reaction is configurable by OTP for PGOOD and I2C for RSTB during INIT_FS.

Application-related fail-safe faults	FLT_ERR_CNT increment	RSTB assertion	PGOOD assertion
VCOREMON_OV	+1	VCOREMON_OV_FS_IMPACT[1]	OTP config
VDDIO_OV	+1	VDDIO_OV_FS_IMPACT[1]	OTP config
VMON1_OV	+1	VMON1_OV_FS_IMPACT[1]	OTP config
VCOREMON_UV	+1	VCOREMON_UV_FS_IMPACT[1]	OTP config
VDDIO_UV	+1	VDDIO_UV_FS_IMPACT[1]	OTP config
VMON1_UV	VMON1_UV_FS_IMPACT[1]	OTP config	
External RESET (out of extended	+1	Yes (low externally)	No
RSTB)	Yes	No	
RSTB pulse request by MCU	No	No (high externally)	No
RSTB short to high	+1	No	No
REG_CORRUPT $=1$	+1	No	No
OTP_CORRUPT $=1$	+1		

If OTP_PGOOD_RSTB = '0' (default configuration), RSTB and PGOOD pins work independently according to Table 94. If OTP_PGOOD_RSTB = '1', RSTB and PGOOD pins work concurrently and all the faults asserting RSTB will also assert PGOOD.

30.3.2 Fault error counter

The VR5500 integrates a configurable fault error counter which is counting the number of faults related to the device itself and also caused by external events. The fault error counter starts at level ' 1 ' after a POR or resuming from Standby. The final value of the fault error counter is used to transition in DEEP-FS mode. The maximum value of this
counter is configurable with the FLT_ERR_CNT_LIMIT[1:0] bits during the INIT_FS phase.

Table 95. Fault error counter configuration

FLT_ERR_CNT_LIMIT[1:0]	Fault error counter max value configuration
00	2
01 (default)	6
10	8
11	12
Reset condition	POR

30.4 PGOOD, RSTB

These two output pins have a hierarchical implementation in order to guarantee the safe state.

- PGOOD has the priority one. If PGOOD is asserted, RSTB is asserted.
- RSTB has the priority two. If RSTB is asserted, PGOOD may not be asserted.

30.4.1 PGOOD

PGOOD is an open-drain output that can be connected in the application to the PORB of the MCU. PGOOD requires an external pull-up resistor to VDDIO and a filtering capacitor to GND for immunity. An internal pull-down RPD ensures PGOOD low-level in Standby and Power down mode. VCOREMON, VDDIO, VMON1 can be assigned to PGOOD by OTP.

PGOOD is asserted low by the FS_LOGIC when any of the assigned regulators are in undervoltage or overvoltage. When PGOOD is asserted low, RSTB is also asserted low. An internal pull-up on the gate of the low-side MOS ensures PGOOD low-level in case of FS_LOGIC failure.

Figure 44. PGOOD pin implementation

Table 96. PGOOD electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP $=$ VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
PGOOD $_{\text {VIL }}$	Low-level input voltage threshold	1.0	-	-	
PGOOD $_{\text {VIH }}$	High-level input voltage threshold	-	-	V	
PGOOD $_{\text {HYST }}$	Input voltage hysteresis	100	-	2.0	
PGOOD $_{\text {VOL }}$	Low-level output voltage $(I=2.0 \mathrm{~mA})$	-	-	mV	
PGOOD $_{\text {RPD }}$	Internal pull-down resistor	200	-	0.5	V
PGOOD $_{\text {ILIM }}$	Current limitation	4.0	-	800	$\mathrm{k} \Omega$
PGOOD $_{\text {TFB }}$	Feedback filtering time	8.0	-	20	mA

30.4.2 RSTB

RSTB is an open-drain output that can be connected in the application to the RESET of the MCU. RSTB requires an external pull-up resistor to VDDIO and a filtering capacitor to GND for immunity. An internal pull-down RPD ensures RSTB low level in Standby and Power down mode. RSTB assertion depends on the device configuration during INIT_FS phase. An internal pull up on the gate of the low-side MOS ensures RSTB low level in case of FS_LOGIC failure. When RSTB is stuck low for more than RSTB T8s $^{\text {, the device }}$ transitions in DEEP-FS mode.

Figure 45. RSTB pin implementation

Table 97. RSTB electrical characteristics
$T_{A}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. VSUP = VSUP_UVH to 36 V , unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{RSTB}_{\text {VIL }}$	Low-level input voltage threshold	1.0	-	-	V
$\mathrm{RSTB}_{\text {VIH }}$	High-level input voltage threshold	-	-	2.0	V
$\mathrm{RSTB}_{\text {HYST }}$	Input voltage hysteresis	100	-	-	mV
RSTB ${ }_{\text {Vol }}$	Low-level output voltage ($\mathrm{I}=2.0 \mathrm{~mA}$)	-	-	0.5	V
$\mathrm{RSTB}_{\text {RPB }}$	Internal pull-down resistor	200	400	800	$k \Omega$
$\mathrm{RSTB}_{\text {ILIM }}$	Current limitation	4.0	-	20	mA
$\mathrm{RSTB}_{\text {TFB }}$	Feedback filtering time	8.0	-	15	$\mu \mathrm{s}$
$\mathrm{RSTB}_{\text {TSc }}$	Short to high filtering time	500	-	800	us
RSTB ${ }_{\text {TLG }}$	Long pulse (configurable with RSTB_DUR bit)	9.0	-	11	ms
$\mathrm{RSTB}_{\text {TST }}$	Short pulse (configurable with RSTB_DUR bit)	0.9	-	1.1	ms
$\mathrm{RSTB}_{\text {T8S }}$	8 second timer	7.0	8.0	9.0	S
RSTB TRELEASE	Time to release RSTB from wake-up or POR with all regulators started in Slot 0	-	8.0	-	ms

31 Package information

VR5500 package is a QFN (sawn), thermally enhanced wettable flanks, $8 \times 8 \times 0.85 \mathrm{~mm}$, 0.5 mm pitch, 56 pins. The assembly can be done at two different NXP assembly sites with slight wettable flank difference but sharing the same PCB footprint.

32 Package outline

Figure 46. Package outline for HPQFN56 (SOT684-23)

Figure 47. Package outline detail for HPQFN56 (SOT684-23)
NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.
4. COPLANARITY APPLIES TO LEADS, DIE ATTACH FLAG AND CORNER NON-FUNCTIONAL PADS.
5. MIN. METAL GAP SHOULD BE 0.25 MM.
6. ANCHORING PADS.

Figure 48. Package outline notes for HPQFN56 (SOT684-23)

High voltage PMIC with multiple SMPS and LDO

33 Layout and PCB guidelines

33.1 Landing pad information

Figure 49. Solder mask pattern

High voltage PMIC with multiple SMPS and LDO

Figure 50. I/O pads and solderable areas

Figure 51. Solder paste stencil

33.2 Component selection

- SMPS input and output capacitors shall be chosen with low ESR (ceramic or MLCC type of capacitors). X7R ceramic type is preferred. Input decoupling capacitors shall be placed as close as possible to the device pin. Output capacitor voltage rating shall be selected to be $3 x$ the voltage output value to minimize the DC bias degradation.
- SMPS inductors shall be shielded with ISAT higher than maximum inductor peak current.

33.3 VPRE

- Inductor charging and discharging current loop is designed as small as possible.
- Input decoupling capacitors are placed close to the high-side drain transistor pin.
- The boot strap capacitor is placed close to the device pin using wide and short track to connect to the external low-side drain transistor.
- PRE_GLS, PRE_GHS and PRE_SW tracks is wide and short and should not cross any sensitive signal (current sensing, for example).

- PRE_FB used as voltage feedback and current sense shall be connected to R RHUNT and routed as a pair with CSP.

layout as a pair
do not cross any noisy signal
aaa-032962
- The external transistor thermal shape should be in the range of $25 \times 25 \mathrm{~mm}$ for optimum Rth.
- The LFPAK56 application note can give better insight: http://assets.nexperia.com/ documents/application-note/AN10874.pdf

33.4 VBUCKx

- Inductor charging and discharging current loop is designed as small as possible.

- Input decoupling capacitors is placed close to BUCKx_IN pins.
- BUCK3_FB and BUCK3_INQ pins shall be tied to the same capacitor, VPRE, or VBOOST output capacitor depending on BUCK3_IN supply selected (in the blue path below, the coil is parasitic from track on the PCB). In the package, the coil is parasitic from the bonding.

34 EMC compliance

The VR5500 EMC performance is verified against BISS generic IC EMC test specification version 2.0 from 07.2012 and FMC1278 electromagnetic compatibility specification for electrical/electronic components and subsystems from 2016 with the following specific conditions:

- Conducted emission: IEC 61967-4
- Global pins: VBAT (Vsup1 and Vsup2), WAKE1/2, 150 Ohm method, 12-M level
- Local pins: VPRE, BUCK1/2/3, LDO1/2, VBOOST, 150 Ohm method, 10-K level
- Conducted immunity: IEC 62132-4
- Global pins: VBAT (Vsup1 and Vsup2), 36 dBm, Class A (no state change on RSTB, PGOOD, and all regulators in spec)
- Global pins: WAKE1, WAKE2, 30 dBm , Class A (no state change on RSTB, PGOOD, and all regulators in spec)
- Local pins: RSTB, PGOOD, VDDIO, VDDI2C, VBOS, 12 dBm , Class A (no state change on RSTB, PGOOD, and all regulators in spec)
- Supply pins: VPRE, BUCK1/2/3, LDO1/2, 12 dBm , Class A (no state change on RSTB, PGOOD, and all regulators in spec)
- Radiated emission: FMC1278 from July 2015
- Compliance with FMC1278 RE310 Level 2 requirement in Normal mode
- Radiated immunity: FMC1278 from July 2015
- Injection level per FMC1278 RI112 Level 2 requirement in Normal mode,
- Injection level per FMC1278 RI112 Level 2 requirement in Normal mode,
- No wake up when injecting FMC1278 RI112 Level 2 requirement in Standby mode

Table 98. Regulators setup for the EMC tests

VPRE	Output voltage	3.3 V
	Switching frequency	455 kHz
	Output current	3 A
BUCK1	Output voltage	1.25 V
	Switching frequency	2.22 MHz
	Output current	1.2 A
BUCK2	Output voltage	0.8 V
	Switching frequency	2.22 MHz
	Output current	1.2 A
BUCK3	Output voltage	2.3 V
	Switching frequency	2.22 MHz
	Output current	1.2 A
BOOST	Output voltage	5 V
	Switching frequency	2.22 MHz
	Output current	275 mA
LDO1	Output voltage	2.5 V
	Output current	75 mA
LDO2	Output voltage	1.1 V
	Output current	200 mA

35 References

[1] VR5500_PDTCALC ${ }^{[1]}$ — VPRE compensation network calculation and power dissipation tool (Excel file)
[2] VR5500_OTP_Mapping ${ }^{[1]}$ — OTP programming configuration (Excel file)
[3] VR5500_VPRE_Simplis_Model ${ }^{[1]}$ — Simplis model for stability and transient simulations
[4] Schematic ${ }^{[1]}$ — Reference schematic in Cadence and PDF formats
[5] Layout ${ }^{[1]}$ — Reference layout in Cadence format
[6] EVB ${ }^{[1]}$ - Evaluation board (EVB)
[7] FlexGUI ${ }^{[1]}$ - Graphical user interface to be used with the EVB
[1] Contact NXP sales representative.

36 Revision history

Table 99. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
VR5500 v.6.0	20200129	Product data sheet	2019120151	VR5500 v.5.0
Modifications	- Global: deleted "SPI" references - Section 15: corrrected typo (deleted R/W SPI column)			
VR5500 v.5.0	20191218	Product data sheet	2019120151	VR5500 v.4.0
Modifications	- Global: changed document status from "Preliminary" to "Product"			
VR5500 v.4.0	20191216	Preliminary data sheet	2019120151	VR5500 v.3.0
Modifications	- Global: multiple formatting and wording updates - Table 1: added OTP ID - Table 2: updated ground pin description - Table 4: added values for BUCKx_SW and updated min value for DC voltage (replaced -1.0 by -0.3) - Table 5: updated T_{A} and T_{J} description (added "Grade1") - Table 7: updated $\mathrm{T}_{\mathrm{DBG}}$ values and unit - Table 8, Table 12: replaced "GOTOSTBY" by "GoToSTBY" - Table 19: updated description for RATIO - Table 26: updated reset value for Bit 22 and Bit 23 (replaced 0 by 1) - Table 54: updated reset value for Bit 17 and Bit 22 (replaced 0 by 1) - Table 64: updated OTP_CFG_BUCK1_2 and OTP_CFG_BUCK2_2 register description (replaced 2.6 A by Reserved) - Table 65: updated OTP_CFG_UVOV_3 register description - Table 66, Table 67, Table 70, Table 76, Table 72, Table 71: updated parameters - Figure 8: replaced "WAKE1" by "WAKE1/2" - Section 10: updated description for charged device model - Section 11: updated assumptions and description (replaced "VFPRE_sw" by "FPRE_sw") - Section 20.5: updated description and values in Table 68 - Section 20.6: updated Figure 14 - Section 22.6: updated Figure 22 - Section 23.5: updated Figure 26 - Section 25.1: replaced "VPRE switching frequency is coming from CLK2 (455 kHz)" by "VPRE switching frequency is coming from CLK2 (455 kHz) or CLK1 (2.22 MHz)" - Section 27.4: updated figure title and description - Section 28.3: enhanced description (added Figure 38 and Table 85) - Section 30.4.1, Section 30.4.2: updated current limiting parameters - Section 33.3, Section 33.4: updated description			
VR5500 v.3.0	20190522	Preliminary data sheet		VR5500 v.2.0
Modifications	- Global: deleted safety references throughout the document - Section 30: updated section title (replaced "Functional safety" by "Fail-safe domain description")			
VR5500 v.2.0	20190415	Preliminary data sheet	-	VR5500 v.1.0
Modifications	- Global: changed document status from Objective to Preliminary - Table 1: replaced MC by PC - Table 4: added parameters for BUCKx_IN - Section 10: updated description - Section 11: updated Figure 4, assumptions, and description - Section 15: renamed column R/W to R/W SPI and added a column R/W I2C - Table 64: replaced CLK_DIV1 by 2.22 MHz - Table 64: updated the value and description for OTP_CFG_CLOCK_4 register bit 3 (replaced 0 by 1 and 2.22 MHz by 455 kHz) - Section 20.1: replaced " $V_{\text {SUP }}=V_{\text {PRE }} /\left(T_{\text {PRE_ON_MIN }} \times V_{\text {PRE_SW }}\right)$ " by $V_{\text {SUP }}=L_{\text {PI_DCR }} \times I_{\text {PRE }}+V_{\text {PRE_UVL }} / D_{\text {MAX }}$ with $D_{\text {MAX }}=$ 1 - (VPRE_SW \times TPRE_OFF_MIN ${ }^{\prime \prime}$ - Figure 14: deleted 2.22 MHz curves			
VR5500 v.1.0	20190221	Objective data sheet		

37 Legal information

37.1 Data sheet status

Document status ${ }^{[1][2]}$	Product status ${ }^{[3]}$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions"
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

37.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

37.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications - This NXP
Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

37.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP - is a trademark of NXP B.V
Tab. 1. Ordering information 2
Tab. 2. Pin description4
Tab. 3. Connection of unused pins 6
Tab. 4. Maximum ratings 8
Tab. 5. Thermal ratings 9
Electrical characteristics 10
Tab. 7. Electrical characteristics 15
Tab. 8. Main writing registers overview 17
Tab. 9. Main reading registers overview 18
Tab. 10. M FLAG register bit allocation 18
Tab. 11. M_FLAG register bit description 19
Tab. 12. M_MODE register bit allocation 20
Tab. 13. M_MODE register bit description 20
Tab. 14. M_REG_CTRL1 register bit allocation 21
Tab. 15. M_REG_CTRL1 register bit description 21
Tab. 16. M_REG_CTRL2 register bit allocation 23
Tab. 17. M_REG_CTRL2 register bit description 23
Tab. 18. M_AMUX register bit allocation 25
Tab. 19. M_AMUX register bit description 25
Tab. 20. M_CLOCK register bit allocation 25
Tab. 21. M CLOCK register bit description 25
Tab. 22. M_INT_MASK1 register bit allocation 26
Tab. 23. M_INT_MASK1 register bit description 27
Tab. 24. M INT MASK2 register bit allocation 28
Tab. 25. M_INT_MASK2 register bit description 28
Tab. 26. M_FLAG1 register bit allocation 30
Tab. 27. M_FLAG1 register bit description 30
Tab. 28. M_FLAG2 register bit allocation 32
Tab. 29. M FLAG2 register bit description 32
Tab. 30. M VMON REG1 register bit allocation 34
Tab. 31. M_VMON_REG1 register bit description 34
Tab. 32. M_LVB1_SVS register bit allocation 34
Tab. 33. M_LVB1_SVS register bit description 35
Tab. 34. M_MEMORYO register bit allocation 35
Tab. 35. M MEMORYO register bit description 35
Tab. 36. M_MEMORY1 register bit allocation 36
Tab. 37. M_MEMORY1 register bit description 36
Tab. 38. M DEVICEID register bit allocation 36
Tab. 39. M_DEVICEID register bit description 36
Tab. 40. Fail-safe writing registers overview 37
Tab. 41. Fail-safe reading registers overview 38
Tab. 42. FS_GRL_FLAGS register bit allocation 38
Tab. 43. FS_GRL_FLAGS register bit description 39
Tab. 44. FS_I_OVUV_SAFE_REACTION1 register bit allocation 39
Tab. 45. FS_I_OVUV_SAFE_REACTION1 register bit description 39
Tab. 46. FS_I_OVUV_SAFE_REACTION2 register bit allocation 40
Tab. 47. FS_I_OVUV_SAFE_REACTION2 register bit description 40
Tab. 48. FS I FSSM register bit allocation 40
Tab. 49. FS_I_FSSM register bit description 40
Tab. 50. FS_I_SVS register bit allocation 41

Tab. 51. FS_I_SVS register bit description 42
Tab. 52. FS OVUVREG STATUS register bit allocation ... 42
Tab. 53. FS_OVUVREG_STATUS register bit description ... 43
Tab. 54. FS_SAFE_IOS register bit allocation 44
Tab. 55. FS_SAFE_IOS register bit description 44
Tab. 56. FS_DIAG register bit allocation 45
Tab. 57. FS_DIAG register bit description 45
Tab. 58. FS_INTB_MASK register bit allocation 46
Tab. 59. FS_INTB_MASK register bit description 46
Tab. 60. FS_STATES register bit allocation 46
Tab. 61. FS_STATES register bit description 47
Tab. 62. Main OTP_REGISTERS 48
Tab. 63. Fail-safe OTP_REGISTERS 49
Tab. 64. Main OTP bit description 49
Tab. 65. Fail-safe OTP bit description 61
Tab. 66. Best of supply electrical characteristics 67
Tab. 67. VPRE electrical characteristics 71
Tab. 68. VPRE external MOSFETs recommendation 74
Tab. 69. Output current capability 76
Tab. 70. VBOOST electrical characteristics 79
Tab. 71. BUCK1 and BUCK2 electrical 84
Tab. 72. BUCK3 electrical characteristics 89
Tab. 73. LDO1 and LDO2 electrical characteristics 93
Tab. 74. Manual frequency tuning configuration 95
Tab. 75. FOUT multiplexer selection 96
Tab. 76. Electrical characteristics 97
Tab. 77. AMUX output selection ... 98
Tab. 78. AMUX electrical characteristics 99
Tab. 79. WAKE1, WAKE2 electrical characteristics 100
Tab. 80. INTB electrical characteristics 101
Tab. 81. List of interrupts from main logic 101
Tab. 82. List of interrupts from fail-safe logic 102
Tab. 83. PSYNC electrical characteristics 104
Tab. 84. I2C message arrangement 105
Tab. 85. CRC results example 106
Tab. 86. I2C electrical characteristics 106
Tab. 87. VCOREMON error impact configuration 108
Tab. 88. VCOREMON electrical characteristics 109
Tab. 89. SVS offset configuration 109
Tab. 90. VDDIO error impact configuration 111
Tab. 91. VDDIO electrical characteristics 111
Tab. 92. VMON1 error impact configuration 112
Tab. 93. VMON1 (without ext resistor accuracy) electrical characteristics112

Tab. 94. Application related fail-safe fault list and
reaction

113

Tab. 95. Fault error counter configuration 114
Tab. 96. PGOOD electrical characteristics 115
Tab. 97. RSTB electrical characteristics 116
Tab. 98. Regulators setup for the EMC tests 124
Tab. 99. Revision history ... 125

Fig. 1. Simplified application diagram of VR5500 2
Fig. 2. Block diagram of VR5500 3
Fig. 3. Pin configuration for HVQFN56 4
Fig. 4. Operating range .. 9
Fig. 5. Simplified functional state diagram 11
Fig. 6. Power sequencing (VREGx PWR_UP) 13
Fig. 7. Power-up sequence example 14
Fig. 8. Debug mode entry .. 15
Fig. 9. VPRE schematic ... 68
Fig. 10. Type 2 compensation network concept 69
Fig. 11. Phase and gain margin simulation 70
Fig. 12. Transient response simulation 71
Fig. 13. MOSFET gate charge definition 74
Fig. 14. VPRE theoretical efficiency 75
Fig. 15. BOOST schematic ... 77
Fig. 16. Phase and gain margin simulation 78
Fig. 17. Transient response simulation 79
Fig. 18. BUCK1/2 standalone schematic 81
Fig. 19. BUCK1/2 multiphase schematic 82
Fig. 20. Phase and gain margin simulation 83
Fig. 21. Transient response simulation 84
Fig. 22. BUCK1 and BUCK2 theoretical efficiency 86
Fig. 23. BUCK3 schematic ... 87
Fig. 24. Phase and gain margin simulation 88
Fig. 25. Transient response simulation 89
Fig. 26. BUCK3 theoretical efficiency 91
Fig. 27. LDO1 block diagram 92
Fig. 28. LDO2 block diagram 92
Fig. 29. Clock management block diagram 94

Fig. 30. BUCK1,2,3_Clk $=2.22 \mathrm{MHz}$ without clock
phase shifting 94
Fig. 31. BUCK1,2,3_clk $=2.22 \mathrm{MHz}$ with clock phase shifting 95
Fig. 32. AMUX block diagram 98
Fig. 33. Optional 1.8 V ADC use case 100
Fig. 34. Synchronization of two VR5500 102
Fig. 35. Two VR5500 synchronization timing diagram 103
Fig. 36. Synchronization of one VR5500 and one external PMIC (PF82) 103
Fig. 37. VR5500 and one external PMIC (PF82) synchronization timing diagram 104
Fig. 38. CRC encoder example 106
Fig. 39. VR5500 application diagram 107
Fig. 40. Fail-safe block diagram 108
Fig. 41. SVS principle 110
Fig. 42. VDDIO monitoring principle 110
Fig. 43. VMON1 monitoring principle 112
Fig. 44. PGOOD pin implementation 114
Fig. 45. RSTB pin implementation 115
Fig. 46. Package outline for HPQFN56 (SOT684-23). 117
Fig. 47. Package outline detail for HPQFN56 (SOT684-23) 118
Fig. 48. Package outline notes for HPQFN56 (SOT684-23) 118
Fig. 49. Solder mask pattern 119
Fig. 50. I/O pads and solderable areas 120
Fig. 51. Solder paste stencil 121

Contents

1
General description 118
2 Features and benefits118.1
Simplified application diagram 2
4 Ordering information 2
5 Applications3
Block diagram 6Pinning information4
Pinning 4
Pin description 4
7.2
Connection of unused pins 6
9 Maximum ratings 8
Electrostatic discharge 8
Human body model (JESD22/A114) 8
10.1
10.2Charged device model 8
Discharged contact test 8
Operating range 9
Thermal ratings
Characteristics 10
Functional description 10
Simplified functional state diagram 11
Main state machine 11
Fail-safe state machine 12
Power sequencing 12
Debug mode 14
Register mapping 16
Main register mapping 17
16
Main writing registers overview 17
16.2 Main reading registers overview 18
6.3 M_FLAG register 18
16.4 M MODE register 20
M_REG_CTRL1 register 21
M_REG_CTRL2 register 23
16.7 M_AMUX register 25
16.8 M_CLOCK register 25
16.9 M INT MASK1 register 26
16.10 M_INT_MASK2 register 28
M_FLAG1 register 30
16.12 M FLAG2 register 32
16.13 M_VMON_REG1 register 34
16.14 M_LVB1_SVS register 34
16.15 M MEMORYO register 35
16.16 M_MEMORY1 register 36
16.17 M_DEVICEID register 36
17 Fail-safe register mapping 37
17.1 Fail-safe writing registers overview 37
17.2 Fail-safe reading registers overview 38
17.3 FS_GRL_FLAGS register 38
17.4 FS_I_OVUV_SAFE_REACTION1 registe 39
17.5 FS_I_OVUV_SAFE_REACTION2 registe 40
17.6 FS_I_FSSM register 40
17.7 FS_I_SVS register 41
17.8 FS OVUVREG STATUS register 42
17.9 FS_SAFE_IOs register 44
17.10 FS_DIAG register 45
17.11 FS INTB MASK register 46
17.12 FS_STATES register 46
8
OTP bits configuration 48
Overview48
18.2
18.2 18.2 Main OTP bit description 49
18.
Fail-safe OTP bit description 61
Best of supply 66
Functional description 66 19.1
Best of supply electrical characteristics 67
20
High voltage buck: VPRE 67
Functional description 67
20.2 Application schematic 68
20.3 Compensation network and stability 68
20.4 VPRE electrical characteristics 71
20.5 VPRE external MOSFETs 74
20.6 VPRE efficiency 75
20.7 VPRE not populated 75
21 75
21.1 Functional description 75
21.2 Application schematic 77
21.3 Compensation network and stability 77
21.4 VBOOST electrical characteristics 79
21.5 VBOOST not populated 80
22 Low voltage buck: BUCK1 and BUCK2 80
22.1 Functional description 80
22.2 Application schematic: Single phase mode 81
22.3 Application schematic: Dual phase mode 81
22.4 Compensation network and stability 82
22.5 BUCK1 and BUCK2 electrical characteristics 84
22.6 BUCK1 and BUCK2 efficiency 86
23
Low voltage buck: BUCK3 86
23.1 Functional description 86
23.2 Application schematic 87
23.3 Compensation network and stability 87
23.4 BUCK3 electrical characteristics 89
23.5 BUCK3 efficiency 90
24
24.1
24.1 91
Linear voltage regulator: LDO1, LDO2 91
24.2 Application schematics 92
24.3 LDO1 and LDO2 electrical characteristics 93
25
25.1
25.2 Phase shifting 93 94-
25.3 Manual frequency tuning 95
Spread spectrum 95
25.5 External clock synchronization 96
25.6 Electrical characteristics 97
Analog multiplexer: AMUX 98
26.1 Functional description 98
26.2 Block diagram 98
26.3 AMUX channel selection 98
26.4 AMUX electrical characteristics 9926.5
1.8 V MCU ADC input use case 99
27 I/O interface pins 100
27.1 WAKE1, WAKE2 100
27.2 INTB 101
27.3 PSYNC for two VR5500 102
27.4 PSYNC for VR5500 and external PMIC 10328I2C interface104
28.1 I2C interface overview 104
28.2 Device address 105
28.3 Cyclic redundant check 105
28.4 I2C electrical characteristics 106
29 Application information 107
30 Fail-safe domain description 107
30.1 Functional description 107
30.2 Voltage supervisor 108
30.2.1 VCOREMON monitoring 108
30.2.2 Static voltage scaling (SVS) 09
30.2.3 VDDIO monitoring 110
30.2.4 VMON1 monitoring 111
30.3 Fault management 113
30.3.1 Fault source and reaction 113
30.3.2 Fault error counter 113
30.4 PGOOD, RSTB 114
30.4.1 PGOOD 114
30.4.2 RSTB 115
31 Package information 116
32 Package outline 117
33 Layout and PCB guidelines 119
33.1 Landing pad information 119
33.2 Component selection 121
33.3 VPRE 121
33.4 VBUCKx 122
34 EMC compliance 123
35 References 124
36 Revision history 125
37 Legal information 126

[^0]: [1] per JEDEC JESD51-2 and JESD51-8

[^1]: VR5500

