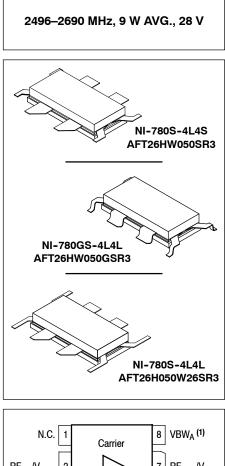


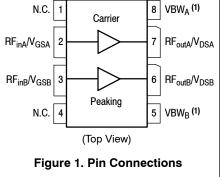
VRoHS

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These 9 watt asymmetrical Doherty RF power LDMOS transistors are designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2496 to 2690 MHz.


• Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQA} = 100$ mA, $V_{GSB} = 1.4$ Vdc, $P_{out} = 9$ Watts Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2620 MHz	14.9	48.6	7.9	-28.4
2655 MHz	14.6	48.3	7.9	-32.6
2690 MHz	14.2	47.1	7.8	-37.3

Features

- Advanced High Performance In-Package Doherty
- Designed for Wide Instantaneous Bandwidth Applications
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- Designed for Digital Predistortion Error Correction Systems
- In Tape and Reel. R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel.

^{1.} Device can operate with the V_{DD} current supplied through pin 5 and pin 8.

© Freescale Semiconductor, Inc., 2013. All rights reserved.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit		
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc		
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc		
Operating Voltage			V _{DD}	32, +0	Vdc
Storage Temperature Range			T _{stg}	-65 to +150	°C
Case Operating Temperature Range			T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)			TJ	-40 to +225	°C
able 2. Thermal Characteristics					
Characteristic			Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 72°C, 9 W W-CDMA, 28 Vdc, I _{DQA} = 100 mA,	655 MHz	$R_{ extsf{ heta}JC}$	0.75	°C/W	
able 3. ESD Protection Characteristics					
Test Methodology				Class	
Human Body Model (per JESD22-A114)				1C	
Machine Model (per EIA/JESD22-A115)				А	
Charge Device Model (per JESD22-C101)				Ш	
able 4. Electrical Characteristics (T _A = 25°C unless otherwise	noted)				
Characteristic	Symbol	Min	Тур	Мах	Unit
off Characteristics ⁽⁴⁾			•		
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—	-	1	μAdc
On Characteristics - Side A ⁽⁴⁾					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 18 μ Adc)	V _{GS(th)}	1.5	2.1	2.5	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DA} = 100 mA)	V _{GSA(Q)}		2.85	_	Vdc
Gate Quiescent Voltage ⁽⁵⁾ (V _{DD} = 28 Vdc, I _{DA} = 100 mA, Measured in Functional Test)	V _{GGA(Q)}	5.0	5.7	6.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.18 Adc)	V _{DS(on)}	0.1	0.21	0.3	Vdc
On Characteristics - Side B ⁽⁴⁾	I				
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 36 μ Adc)	V _{GS(th)}	1.5	2.0	2.5	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc)	V _{GSB(Q)}	—	1.4	—	Vdc
Gate Quiescent Voltage ⁽⁵⁾ (V _{DD} = 28 Vdc, Measured in Functional Test)	V _{GGB(Q)}	—	2.8	-	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.36 Adc)	V _{DS(on)}	0.1	0.22	0.3	Vdc
1. Continuous use at maximum temperature will affect MTTF.			1		

MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

4. Each side of device measured separately.

5. $V_{GG} = 2 \times V_{GS(Q)}$. Parameter measured on Freescale test fixture, due to resistor divider network on the board. Refer to test fixture layout. (continued)

AFT26HW050SR3 AFT26HW050GSR3 AFT26H050W26SR3

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic		Min	Тур	Max	Unit
Functional Tests (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system	י) V א = 28 V	dc. Inov = 10	0 mA. Vose =	1.4 Vdc. Pour	= 9 W Ava

Functional lests (1)=50 (in Freescale Donerty lest Fixture, 50 onm system) $v_{DD} = 28$ Vac, $I_{DQA} = 100$ mA, $v_{GSB} = 1.4$ Vac, $P_{out} = 9$ W Avg., f = 2690 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

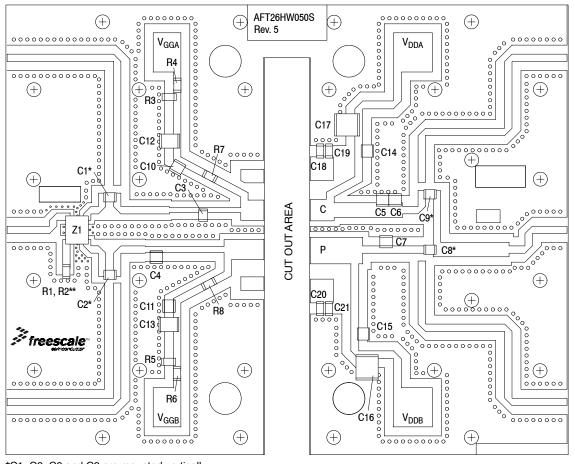
Power Gain	G _{ps}	13.5	14.2	16.5	dB				
Drain Efficiency	η _D	44.0	47.1	—	%				
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.3	7.8	—	dB				
Adjacent Channel Power Ratio	ACPR	_	-37.3	-32.5	dBc				
Load Mismatch (In Freescale Test Fixture, 50 ohm system) I _{DQA} = 100 mA, f = 2655 MHz									

VSWR 10:1 at 32 Vdc, 35 W CW Output Power	No Device Degradation
(3 dB Input Overdrive from 70 W CW Rated Power)	

Typical Performances ⁽²⁾ (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 100 mA, V_{GSB} = 1.4 Vdc, 2620-2690 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	_	42	—	W
Pout @ 3 dB Compression Point (4)	P3dB	—	54	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 2620-2690 MHz frequency range)	Φ	—	35	—	0
VBW Resonance Point (5) (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	—	130	_	MHz
Gain Flatness in 70 MHz Bandwidth @ P _{out} = 9 W Avg.	G _F	—	0.7	—	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	—	0.014	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	—	0.007	—	dB/°C

1. Part internally matched both on input and output.

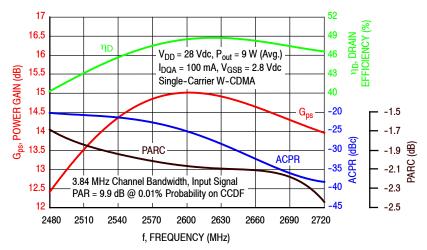

2. Measurements made with device in an asymmetrical Doherty configuration.

3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GS) parts.

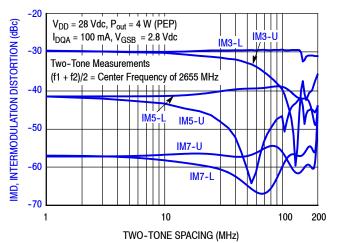
4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

5. Measured using gull wing formed part in AFT26HW050GS characterization test fixture. See Appendix, p. 17.

*C1, C2, C8 and C9 are mounted vertically. **R1 and R2 are stacked.



Part	Description	Part Number	Manufacturer
C1, C2, C8, C9, C10, C11, C14, C15	3.9 pF Chip Capacitors	ATC100B3R9BT500XT	ATC
C3	0.4 pF Chip Capacitor	ATC100B0R4BT500XT	ATC
C4	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C5, C6	0.2 pF Chip Capacitors	ATC100B0R2BT500XT	ATC
C7	0.1 pF Chip Capacitor	ATC100B0R1BT500XT	ATC
C12, C13	4.7 μF Chip Capacitors	C4532X7S2A475M230KB	TDK
C16, C17	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C18, C19, C20, C21	1.0 μF Chip Capacitors	12065G105ZAT2A	AVX
R1, R2	100 Ω, 1/4 W Chip Resistors	WCR1206-100RFI	Welwyn
R3, R4, R5, R6	10 kΩ, 1/4 W Chip Resistors	WCR1206-10K0FI	Welwyn
R7, R8	4.7 Ω, 1/4 W Chip Resistors	WCR1206-4R70FI	Welwyn
Z1	2300-2700 MHz Band, 90°, 5 dB Hybrid Coupler	X3C25P1-05S	Anaren
PCB	$0.030'', \epsilon_r = 3.5$	RF35A2	Taconic


AFT26HW050SR3 AFT26HW050GSR3 AFT26H050W26SR3

TYPICAL CHARACTERISTICS

Note: Measured using gull wing formed part in AFT26HW050GS characterization test fixture. See Appendix, p. 17.

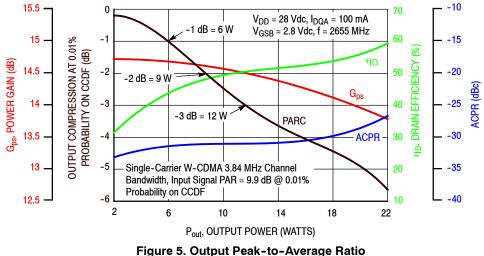
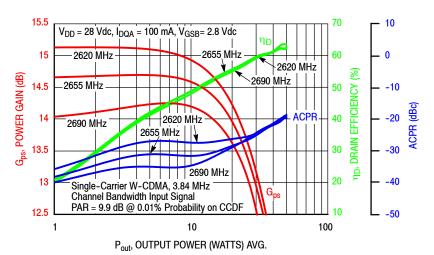



Figure 5. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

RF Device Data Freescale Semiconductor, Inc.

TYPICAL CHARACTERISTICS

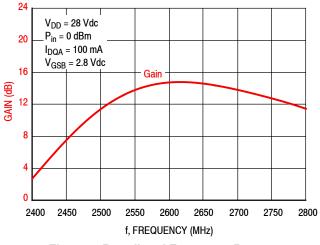


Figure 7. Broadband Frequency Response

NP

V_{DD} = 28 Vdc, I_{DQA} = 87 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

				Ma	ax Output Pov	ver		
					P1dB			
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
2620	28.0 - j23.1	23.9 + j22.9	27.8 - j12.4	17.2	42.9	19	54.9	-17
2655	36.9 - j21.1	33.1 + j21.2	29.1 - j11.6	17.3	42.9	19	56.0	-16
2690	48.4 - j13.5	42.1 + j16.0	30.9 - j14.3	17.0	42.8	19	53.5	-17

				Ma	ax Output Pov	wer			
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2620	28.0 - j23.1	27.1 + j23.9	29.8 - j16.4	14.8	43.6	23	54.6	-21	
2655	36.9 - j21.1	37.9 + j20.4	31.0 - j16.1	14.9	43.6	23	55.1	-21	
2690	48.4 - j13.5	47.7 + j12.5	32.1 - j14.9	14.9	43.6	23	54.9	-22	

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

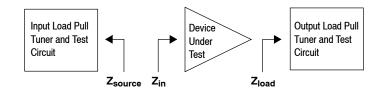
Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 87 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

				ency					
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2620	28.0 - j23.1	25.7 + j23.9	24.3 + j8.63	19.5	41.2	13	62.2	-22	
2655	36.9 - j21.1	35.7 + j21.2	22.2 + j8.93	19.7	41.0	13	62.8	-22	
2690	48.4 - j13.5	44.6 + j15.4	21.1 + j7.02	19.6	41.1	13	62.5	-22	

				Max	Drain Efficie	ency		
				P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)
2620	28.0 - j23.1	28.0 + j24.6	26.6 + j5.46	17.2	42.3	17	63.1	-27
2655	36.9 - j21.1	39.6 + j20.7	23.4 + j5.31	17.3	42.2	17	63.6	-29
2690	48.4 - j13.5	49.3 + j11.6	21.5 + j5.46	17.4	42.0	16	63.0	-30

(1) Load impedance for optimum P1dB efficiency.


(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning

V_{DD} = 28 Vdc, V_{GSB} = 1.4 Vdc, Pulsed CW, 10 µsec(on), 10% Duty Cycle

		ax Output Pov	wer							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2620	27.1 - j17.7	22.9 + j19.6	8.62 - j15.3	12.8	46.1	40	58.3	-32		
2655	36.7 - j12.5	32.0 + j15.6	8.78 - j15.7	12.8	46.1	40	58.4	-33		
2690	39.5 - j2.23	37.9 + j7.03	8.71 - j17.3	12.4	45.9	39	54.9	-33		

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2620	27.1 - j17.7	26.5 + j18.9	8.56 - j16.9	10.5	46.7	47	57.3	-37		
2655	36.7 - j12.5	35.9 + j11.8	8.57 - j17.0	10.5	46.8	47	57.2	-38		
2690	39.5 - j2.23	39.4 + j1.33	9.02 - j18.1	10.4	46.6	46	55.6	-38		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

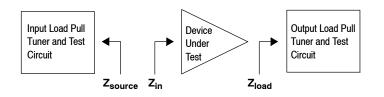
Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning

V_{DD} = 28 Vdc, V_{GSB} = 1.4 Vdc, Pulsed CW, 10 μ se	ec(on), 10% Duty Cycle
--	------------------------

			Max Drain Efficiency							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2620	27.1 - j17.7	21.4 + j21.6	13.6 - j7.07	14.1	44.4	28	68.7	-38		
2655	36.7 - j12.5	31.4 + j19.0	13.5 - j5.38	14.0	44.0	25	68.6	-40		
2690	39.5 - j2.23	39.1 + j10.8	13.5 - j7.10	13.9	44.2	26	67.7	-39		

			Max Drain Efficiency							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2620	27.1 - j17.7	25.3 + j21.2	13.9 - j7.07	12.1	44.9	31	68.0	-48		
2655	36.7 - j12.5	36.2 + j15.4	12.5 - j7.10	12.1	45.0	31	68.1	-49		
2690	39.5 - j2.23	41.9 + j4.53	12.5 - j6.42	12.0	44.6	29	66.9	-50		


Load impedance for optimum P1dB efficiency.
 Load impedance for optimum P3dB efficiency.

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 2655 MHz

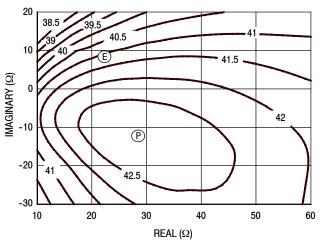


Figure 12. P1dB Load Pull Output Power Contours (dBm)

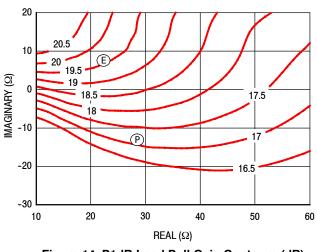


Figure 14. P1dB Load Pull Gain Contours (dB)

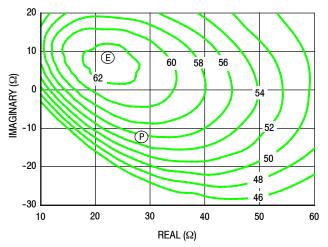


Figure 13. P1dB Load Pull Efficiency Contours (%)

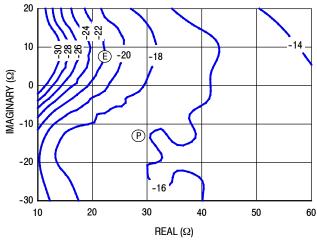
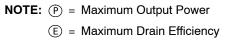



Figure 15. P1dB Load Pull AM/PM Contours (°)

RF Device Data Freescale Semiconductor, Inc.

P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 2655 MHz

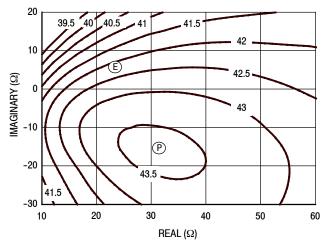
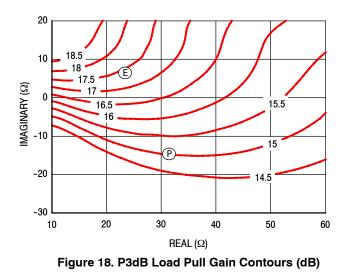



Figure 16. P3dB Load Pull Output Power Contours (dBm)

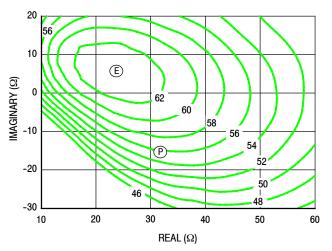
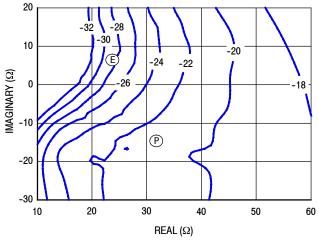
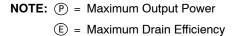
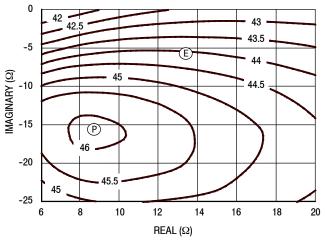


Figure 17. P3dB Load Pull Efficiency Contours (%)


Figure 19. P3dB Load Pull AM/PM Contours (°)

- Power Gain
 Drain Efficiency
- _____ Linearity
 - Output Power

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 2655 MHz

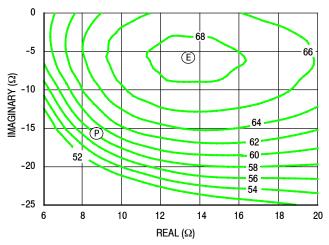
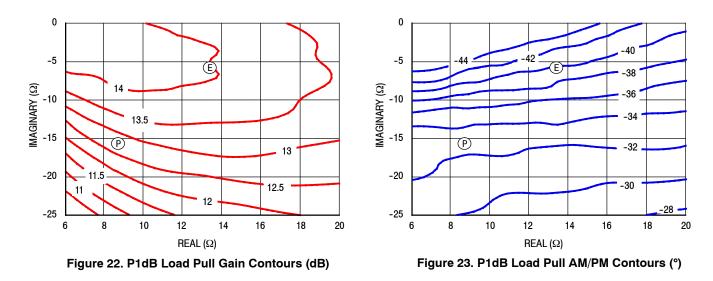



Figure 20. P1dB Load Pull Output Power Contours (dBm)

Figure 21. P1dB Load Pull Efficiency Contours (%)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 2655 MHz

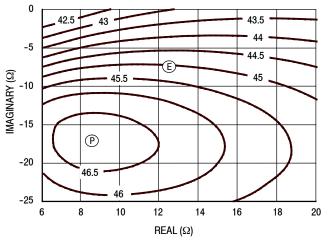


Figure 24. P3dB Load Pull Output Power Contours (dBm)

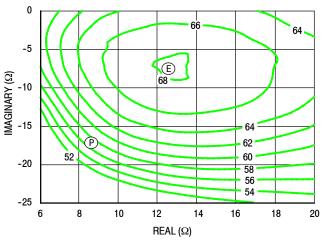
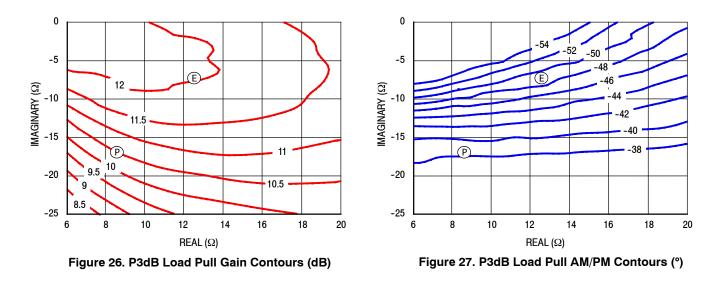
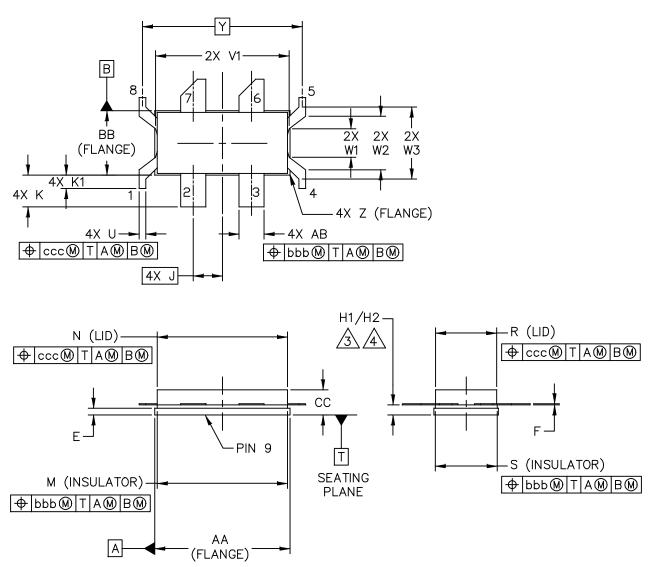



Figure 25. P3dB Load Pull Efficiency Contours (%)



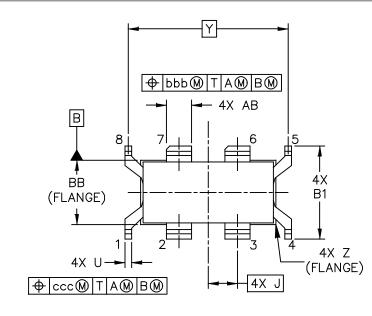
NOTE: (P) =	Maximum Output Power
(E) =	Maximum Drain Efficiency

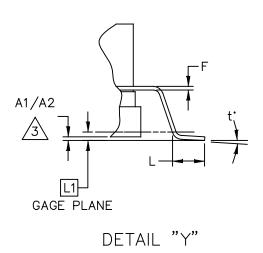
Power Gain
Drain Efficiency
Linearity
Output Power

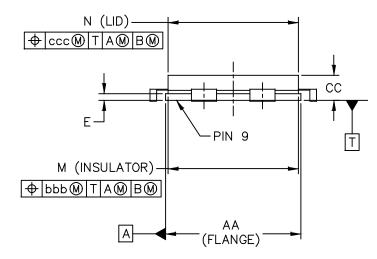
PACKAGE DIMENSIONS

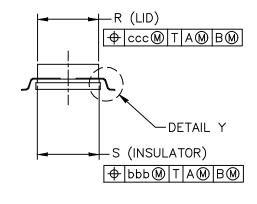
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE	E
TITLE:		DOCUMEN	IT NO: 98ASA00406D REV: 0	0
NI-780-4S4		STANDAF	RD: NON-JEDEC	
			08 MAR 201	3

NOTES:


- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.


3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 2, 3, 6 & 7. H2 APPLIES TO PINS 1, 4, 5 & 8.

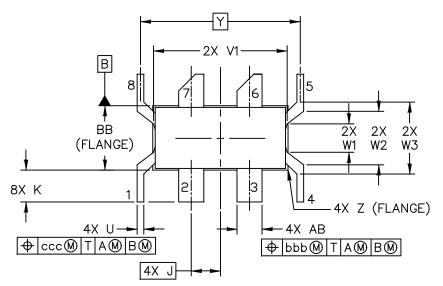

4. TOLERANCE OF DIMENSION H2 IS TENTATIVE AND COULD CHANGE ONCE SUFFICIENT MANUFACTURING DATA IS AVAILABLE.

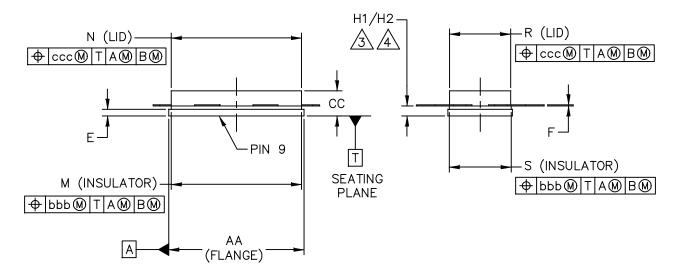

		INCH MILLIMETER						INCH	MILLIMET	ĒR
DIM	MIN	MAX	MIN		MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	815	20.4	5 —	20.70	R	.365	375	9.27 –	9.53
BB	.380	390	9.65	5 —	9.91	s	.365	375	9.27 —	9.53
CC	.125	170	3.18	_	4.32	U	.035	045	0.89 —	1.14
E	.035	045	0.89) _	1.14	V1	.795	805	20.19 —	20.45
F	.004	007	0.10	_	0.18	W1	.165	175	4.19 —	4.45
H1	.057	067	1.45	5 _	1.70	W2	.315	325	8.00 –	8.26
H2	.054	070	1.37	7 _	1.78	W3	.425	435	10.80 —	11.05
J	.17	5 BSC	4	.45 E	BSC	Υ	.9	56 BSC	24.28	BSC
ĸ	.170	210	4.32	2 _	5.33	Z	R.000	– R.040	R0.00 –	R1.02
K1	.070	090	1.78	_	2.29	AB	.145	155	3.68 –	3.94
М	.774	786	19.66	š —	19.96	aaa	_	.005 —	- 0.13	_
Ν	.772	788	19.61	_	20.02	bbb	-	.010 —	- 0.25	-
							-	.015 —	- 0.38	_
© F		SEMICONDUCTOR, GHTS RESERVED.	INC.	ME	ECHANICA	L 0U ⁻	Fline	PRINT VERS	SION NOT TO S	SCALE
TITLE:							DOCUME	NT NO: 98ASAC	0406D F	REV: 0
		NI-780-	4S4			Ī	STANDAF	RD: NON-JEDEC	;	
						-			08 MAI	R 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00407D	REV: O
NI-780-4S4 GUL	L	STANDAF	RD: NON-JEDEC	
			08	MAR 2013

NOTES:

1. CONTROLLING DIMENSION: INCH.


2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.



DIMENSION A1/A2 IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM. A1 APPLIES TO PINS 2, 3, 6 & 7. A2 APPLIES TO PINS 1, 4, 5 & 8

	INCH	MILLIMETER			NCH	MILLIMETER
DIM	MIN MAX	MIN MAX	DIM	MIN	MAX	MIN MAX
AA	.805 – .815	20.45 – 20.70	R	.365	375	9.27 – 9.53
A1	.000 – .010	0.00 — 0.25	s	.365	375	9.27 – 9.53
A2	003013	-0.08 - 0.33	U	.035	045	0.89 — 1.14
BB	.380 — .390	9.65 — 9.91	Y	.956	5 BSC	24.28 BSC
B1	.549 – .559	13.94 — 14.20	z	R.000	– R.040	R0.00 – R1.02
CC	.125170	3.18 – 4.32	AB	.145	155	3.68 – 3.94
E	.035 — .045	0.89 — 1.14	l t	0.	– 8 [.]	0' _ 8'
F	.004007	0.10 – 0.18	aaa	_	.005 —	_ 0.13 _
J	.175 BSC	4.45 BSC	bbb		.010 —	- 0.25 -
L	.038046	0.97 – 1.17	ccc		.015 —	- 0.38 -
L1	.01 BSC	0.25 BSC				0.00
М	.774 – .786	19.66 — 19.96				
N	.772 – .788	19.61 — 20.02				
©	FREESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.	INC. MECHANICA	L OUT	ILINE	PRINT VERS	SION NOT TO SCALE
TITLE:	NI-780-45	GULL		DOCUMENT	F NO: 98ASA0	0407D REV: 0
				STANDARD	: NON-JEDEC	;
						08 MAR 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT T	O SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00581D	REV: 0
NI-780S-4L4L		STANDAF	RD: NON-JEDEC	
			09 /	APR 2013

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 2, 3, 6 & 7. H2 APPLIES TO PINS 1, 4, 5 & 8.

4. TOLERANCE OF DIMENSION H2 IS TENTATIVE AND COULD CHANGE ONCE SUFFICIENT MANUFACTURING DATA IS AVAILABLE.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	5 20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Е	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.165	.175	4.19	4.45
H1	.057	.067	1.45	1.70	W2	.315	.325	8.00	8.26
H2	.054	.070	1.37	1.78	W3	.425	.435	10.80	11.05
J	.175 BSC		4.45 BSC		Y	.956 BSC		24.28 BSC	
к	.170	.210	4.32	5.33	Z	R.000	R.040	R0.00	R1.02
М	.774	.786	19.66	19.96	AB	.145	.155	3.68	3.94
N	.772	.788	19.61	20.02	aaa	.005		0.1	3
					bbb	.010		0.25	
					ccc	.015		0.38	
© I	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OL					TLINE PRINT VERSION NOT TO SCALE			
TITLE: DOCUMENT NO: 98ASA00581D REV: C						REV: 0			
NI-780S-4L4L					STANDARD: NON-JEDEC				
					09 APR 2013				

APPENDIX

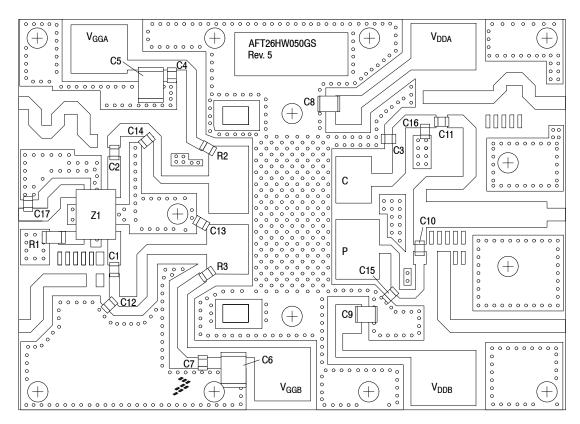


Figure A-1. AFT26HW050GSR3 Characterization Test Circuit Component Layout

Table A-1. AFT26HW050GSR3 Characterization	Test Circuit Compone	nt Designations and Values

Part	Description	Part Number	Manufacturer
C1	3.3 pF Chip Capacitor	08051J3R3CBTTR	AVX
C2, C4, C7, C10, C11	4.7 pF Chip Capacitors	08051J4R7CBTTR	AVX
C3, C12, C13, C15	0.5 pF Chip Capacitors	08051J0R5BBTTR	AVX
C5, C6	4.7 μF Chip Capacitors	C4532X7S2A475M230KB	TDK
C8, C9	3.3 µF Chip Capacitors	C3225X7S2A335M200AB	TDK
C14, C17	0.2 pF Chip Capacitors	08051J0R2ABTTR	AVX
C16	0.1 pF Chip Capacitor	08051J0R1ABTTR	AVX
R1	51 Ω, 1/4 W Chip Resistor	WCR1206-51FI	Welwyn
R2, R3	4.7 Ω, 1/8 W Chip Resistors	WCR0805-4R7FI	Welwyn
Z1	2300-2700 MHz Band, 90°, 5 dB Hybrid Coupler	X3C25P1-05S	Anaren
PCB	$0.030'', \epsilon_r = 3.5$	RF35A2	Taconic

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2013	Initial Release of Data Sheet
1	June 2013	 Added part number AFT26H050W26SR3, p. 1 Added NI-780S-4L4L package isometric, p. 1, and Mechanical Outline, p. 17, 18
2	July 2013	 AFT26HW050S data sheet frequency changed from 2620 MHz to 2496 MHz to show part performance capability in the 2496-2690 MHz frequency range, p. 1 Fig. 3, Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 9 Watts Avg., updated to reflect part performance in the 2496-2690 MHz frequency range, p. 5

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc.

Document Number: AFT26HW050S Rev. 2, 7/2013