

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 112 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 616 to $870~\mathrm{MHz}$.

717-768 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc, I_{DQA} = 900 mA, V_{GSB} = V_{GSC} = 1.0 Vdc⁽¹⁾, P_{out} = 112 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.(2)

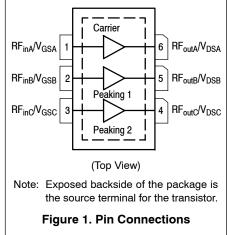
Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
717 MHz	16.9	52.8	8.0	-30.7
742 MHz	17.0	51.3	8.1	-32.0
768 MHz	17.1	51.8	7.7	-32.4

616-870 MHz(3)

• Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc, I_{DQA} = 900 mA, V_{GSB} = V_{GSC} = 1.1 Vdc⁽¹⁾, P_{out} = 112 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
616 MHz	18.2	45.4	7.7	-32.4
632 MHz	18.5	47.1	7.7	-31.9
650 MHz	18.7	47.7	7.8	-31.0
717 MHz	19.1	44.4	8.3	-36.2
732 MHz	19.1	43.4	8.5	-38.3
750 MHz	19.2	42.9	8.5	-39.5
840 MHz	19.1	44.9	8.1	-33.3
850 MHz	18.7	43.9	8.1	-32.7
860 MHz	18.4	42.8	8.0	-32.6
870 MHz	18.0	41.7	7.8	-32.4

- 1. $V_{GSB} = V_{GSC}$ = peaking bias voltage.
- 2. All data measured in fixture with device soldered to heatsink.
- 3. Fixture designed with a wideband match.


Features

- · Advanced high performance in-package Doherty
- Greater negative gate-source voltage range for improved Class C operation
- · Designed for digital predistortion error correction systems

A3V07H600-42N

616–870 MHz, 112 W Avg., 48 V AIRFAST RF POWER LDMOS TRANSISTOR

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +105	Vdc
Gate-Source Voltage	V _{GS}	−6.0, +10	Vdc
Operating Voltage	V_{DD}	55, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 88°C, 112 W Avg., W-CDMA, 48 Vdc, I _{DQA} = 900 mA, V _{GSB} = 1.0 Vdc, 742 MHz	$R_{ heta JC}$	0.28	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2
Charge Device Model (per JS-002-2014)	СЗ

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (4)	•				
Zero Gate Voltage Drain Leakage Current (V _{DS} = 105 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 55 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 10 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	=	_	1	μAdc
On Characteristics — Sides A, B and C ⁽⁴⁾					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 194 \mu\text{Adc})$	V _{GS(th)}	1.0	1.8	2.5	Vdc
Gate Quiescent Voltage (V _{DD} = 48 Vdc, I _D = 900 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.0	2.4	3.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.9 Adc)	V _{DS(on)}	0.1	0.3	0.5	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com.
- $3. \ \ Refer to \ AN1955, \textit{Thermal Measurement Methodology of RF Power Amplifiers}. \ Go \ to \ \underline{\text{http://www.nxp.com/RF}} \ and \ search \ for \ AN1955.$
- 4. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

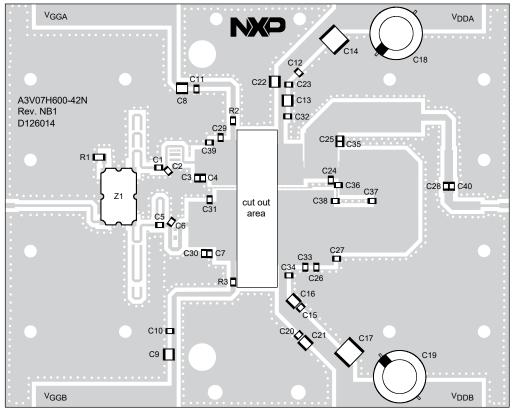
Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

Functional Tests $^{(1)}$ (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 48$ Vdc, $I_{DQA} = 900$ mA, $V_{GSB} = V_{GSC} = 1.0$ Vdc, $P_{out} = 112$ W Avg., f = 717 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	15.7	16.9	19.0	dB
Drain Efficiency	η_{D}	43.0	49.5	_	%
Pout @ 3 dB Compression Point, CW	P3dB	57.0	59.0	_	dB
Adjacent Channel Power Ratio	ACPR	_	-34.8	-28.0	dBc

Wideband Ruggedness (In NXP Doherty Test Fixture, 50 ohm system) $I_{DQA} = 900 \text{ mA}$, $V_{GSB} = V_{GSC} = 1.0 \text{ Vdc}$, f = 742 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

_		
	ISBW of 300 MHz at 55 Vdc, 229 W Avg. Modulated Output Power	No Device Degradation
	(3 dB Input Overdrive from 112 W Avg. Modulated Output Power)	


 $\textbf{Typical Performance} \text{ (In NXP Doherty Test Fixture, 50 ohm system) } V_{DD} = 48 \text{ Vdc, I}_{DQA} = 900 \text{ mA}, V_{GSB} = V_{GSC} = 1.0 \text{ Vdc, } 717-768 \text{ MHz} \\ \textbf{Bandwidth}$

P _{out} @ 3 dB Compression Point (2)	P3dB	_	794	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 717–768 MHz frequency range)	Φ	_	-16	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		105		MHz
Gain Flatness in 51 MHz Bandwidth @ P _{out} = 112 W Avg.	G _F	_	0.12	_	dB
Gain Variation over Temperature (–40°C to +85°C)	ΔG		0.001		dB/°C
Output Power Variation over Temperature (-40°C to +85°C)	ΔP1dB		0.014		dB/°C

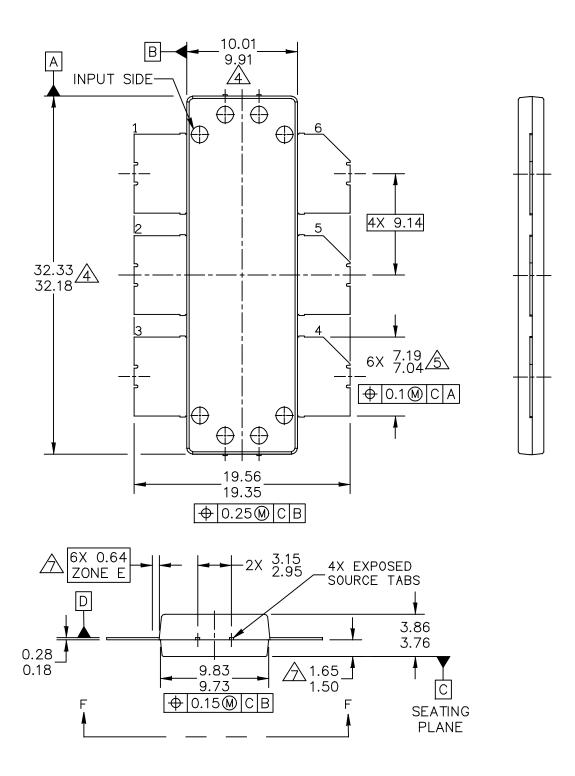
Table 6. Ordering Information

Device	Tape and Reel Information	Package
A3V07H600-42NR6	R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel	OM-1230-6L

- 1. Part internally input matched.
- 2. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

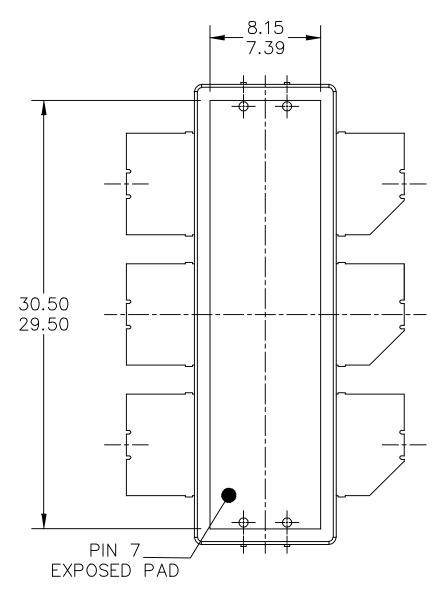
aaa-038657

Figure 2. A3V07H600-42N Production Test Circuit Component Layout


Table 7. A3V07H600-42N Production Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C5, C10, C11, C12, C15, C32	100 pF Chip Capacitor	600F101JT250XT	ATC
C2, C33	4.7 pF Chip Capacitor	600F4R7BT250XT	ATC
СЗ	3.3 pF Chip Capacitor	600F3R3BT250XT	ATC
C4	3 pF Chip Capacitor	600F3R0BT250XT	ATC
C6, C7	6.8 pF Chip Capacitor	600F6R8BT250XT	ATC
C8, C9	10 μF Chip Capacitor	C3225X7S1H106K	TDK
C13, C16	4.7 μF Chip Capacitor	C4532X7S2A475M	TDK
C14, C17	10 μF Chip Capacitor	C5750X7S2A106M	TDK
C18, C19	220 μF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26	Multicomp
C20, C23	0.01 μF Chip Capacitor	GRM319R72A103KA01D	Murata
C21, C22	0.1 μF Chip Capacitor	GRM319R72A104KA01D	Murata
C24, C29, C31, C34	5.6 pF Chip Capacitor	600F5R6BT250XT	ATC
C25	12 pF Chip Capacitor	600F120JT250XT	ATC
C26, C27	15 pF Chip Capacitor	600F150JT250XT	ATC
C28, C40	100 pF Chip Capacitor	600F101JT250XT	ATC
C30	8.2 pF Chip Capacitor	600F8R2BT250XT	ATC
C35, C37	2.2 pF Chip Capacitor	600F2R2BT250XT	ATC
C36, C38	3.9 pF Chip Capacitor	600F3R9BT250XT	ATC
C39	4.3 pF Chip Capacitor	600F4R3BT250XT	ATC
R1	50 Ω , 10 W Termination Chip Resistor	C8A50Z4	Anaren
R2, R3	3.9 Ω, 1/4 W Chip Resistor	CRCW12063R90FKEA	Vishay
Z1	700–900 MHz, 90°, 2 dB Asymmetric Coupler	CMX09A1P5	RN2 Technologies
PCB	RO4360, 0.020", $\varepsilon_r = 6.4$	D126014	MTL

A3V07H600-42N


H-PFM-F-6 I/O 32.255 X 9.96 X 3.81 PKG, 9.14 PITCH-6L 0M-1230-6L

S0T2025-1

🖸 NXP B. V.	ALL RIGHTS RESERVED		DATE: 19	SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01453D	Α	1 OF 3

A3V07H600-42N

BOTTOM VIEW VIEW F-F

R NXP B. V.	ALL RIGHTS RESERVED		DATE: 19	SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01453D	Α	2

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE D IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.

4 DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.15 MM PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE D.

 $\sqrt{5\lambda}$ dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.13 MM TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE D.

/7.\ DIMENSION APPLIES WITHIN ZONE E ONLY.

NXP B.V.	ALL RIGHTS RESERVED		DATE: 1	9 SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01453D	Α	3

A3V07H600-42N

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

- Electromigration MTTF Calculator
- .s2p File

Development Tools

· Printed Circuit Boards

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2020	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2020 NXP B.V.

Document Number: A3V07H600-42N Rev. 0, 08/2020