

Technical Data

RF Power LDMOS Transistor Enhancement-Mode Lateral MOSFET

Designed primarily for CW large-signal output and driver applications with frequencies up to 600 MHz. Devices are unmatched and are suitable for use in military and commercial CW and pulse applications, such as radio communications and radar.

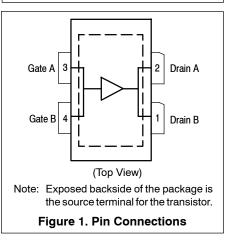
Typical Performance: $V_{DD} = 50 \text{ Vdc}, T_A = 25^{\circ}\text{C}$

Frequency (MHz)	Signal Type	Type (W)		η _D (%)
450	CW	300	22	60

Capable of Handling 10:1 VSWR @ 50 Vdc, 450 MHz, 300 W CW Output
Power

Features

- Characterized with series equivalent large-signal impedance parameters
- Qualified for operation at 50 Vdc
- Integrated ESD protection
- Greater negative gate-source voltage range for improved Class C operation
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13-inch Reel.


√RoHS

MMRF1318NR1

10–600 MHz, 300 W, 50 V BROADBAND RF POWER LDMOS TRANSISTOR

Table 1. Maximum Ratings

Rating	Sym	bol	Value	Unit			
Drain-Source Voltage	V _D	SS	-0.5, +110	Vdc			
Gate-Source Voltage	VG	àS	-6.0, +10	Vdc			
Storage Temperature Range		Tsi	tg	-65 to +150	°C		
Case Operating Temperature Range		T	c	-40 to +150	°C		
Operating Junction Temperature Range (1,2)		T,	J	-40 to +225	°C		
Fable 2. Thermal Characteristics							
Characteristic	Sym	bol	Value ^(2,3)	Unit			
Thermal Resistance, Junction to Case Case Temperature 83°C, 300 W CW, 50 Vdc, I _{DQ} = 900 mA, 450 MF	łz	R _θ	JC	0.24	°C/W		
Table 3. ESD Protection Characteristics							
Test Methodology				Class			
Human Body Model (per JESD22-A114)			1C, pa	asses 1950 V			
Machine Model (per EIA/JESD22-A115)			A, pa	1C, passes 1950 V A, passes 150 V			
Charge Device Model (per JESD22-C101)		IV, passes 2000 V					
Table 4. Moisture Sensitivity Level	·						
Test Methodology Rating			Package Peak Temperature				
Per JESD22-A113, IPC/JEDEC J-STD-020	3		260		°C		
Table 5. Electrical Characteristics (T _A = 25°C unless otherwise n	oted)						
Characteristic	Symbol	Min	Тур	Max	Unit		
Off Characteristics							
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—	_	10	μAdo		
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 150 mAdc)	V _{(BR)DSS}	120		—	Vdc		
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	50	μAdo		
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	—	10	μAdo		
On Characteristics				I			
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 800 μAdc)		0.9	1.65	2.4	Vdc		
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_D = 900 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	1.9	2.7	3.4	Vdc		
Drain-Source On-Voltage	V _{DS(on)}		0.25		Vdc		

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. (Calculator available when part is in production.)

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.

(continued)

Table 5. Electrical Characteristics (T_A = 25° C unless otherwise noted) (continued)

Max	Unit
	pF
_	pF
-	pF
= 450 MHz, CW	
24.0	dB
_	%
-9	dB
f)	f = 450 MHz, CW) 24.0) —

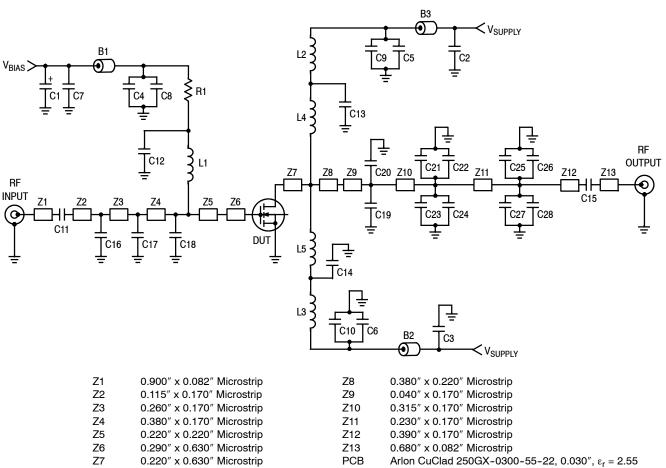


Figure 2. MMRF1318NR1 Test Circuit Schematic

Table 6.	MMRF1318NR1	Test Circuit	t Component	t Designations ar	nd Values

Part	Description	Part Number	Manufacturer Fair-Rite	
B1	Short Ferrite Bead	2743019447		
B2, B3	Long Ferrite Beads	2743021447	Fair-Rite	
C1	47 μF, 25 V, Tantalum Capacitor	T491B476M025AT	Kemet	
C2, C3	22 μF, 50 V, Chip Capacitors	C5750JF1H226ZT	TDK	
C4, C5, C6, C7	1 μF, 100 V, Chip Capacitors	C3225JB2A105KT	TDK	
C8, C9, C10	15 nF, 100 V, Chip Capacitors	C3225CH2A153JT	TDK	
C11, C12, C13, C14, C15	240 pF, Chip Capacitors	ATC100B241JT500XT	ATC	
C16	9.1 pF, Chip Capacitor	ATC100B9R1JT500XT	ATC	
C17	15 pF, Chip Capacitor	ATC100B150JT500XT	ATC	
C18	51 pF, Chip Capacitor	ATC100B510JT500XT	ATC	
C19, C20	5.6 pF, Chip Capacitors	ATC100B5R6JT500XT	ATC	
C21, C22, C23, C24	4.3 pF, Chip Capacitors	ATC100B4R3JT500XT	ATC	
C25, C26, C27, C28	4.7 pF, Chip Capacitors	ATC100B4R7JT500XT	ATC	
L1 27 nH Inductor		1812SMS-27NJLC	Coilcraft	
L2, L3	47 nH Inductors	1812SMS-47NJLC	Coilcraft	
L4, L5	5 Turn, #18 AWG Inductors, Hand Wound	Copper Wire		
R1	10 Ω, 1/4 W, Chip Resistor	CRCW120610R1FKEA	Vishay	

4

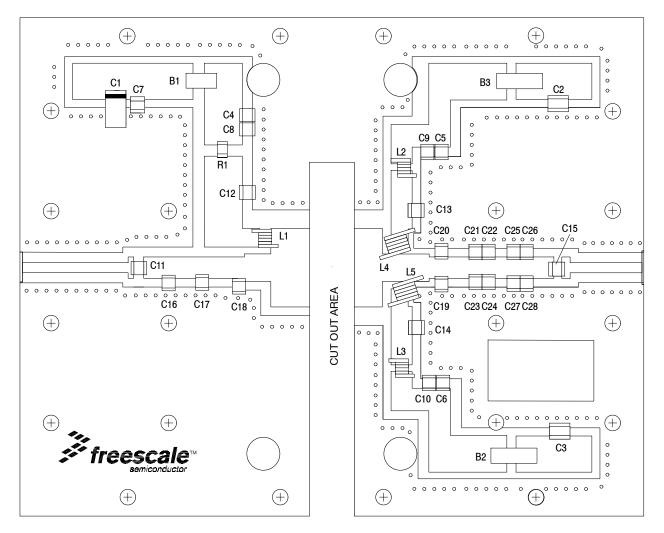
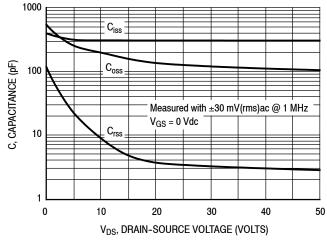
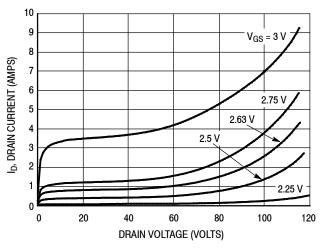
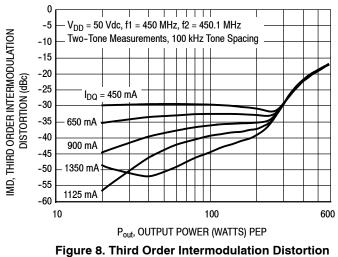




Figure 3. MMRF1318NR1 Test Circuit Component Layout


TYPICAL CHARACTERISTICS

versus Output Power

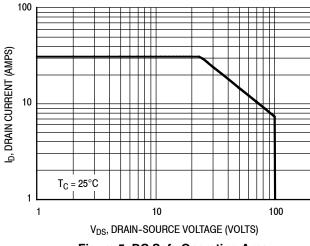
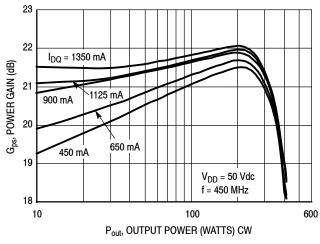
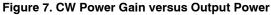
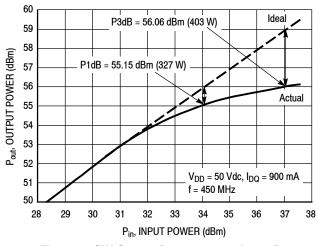
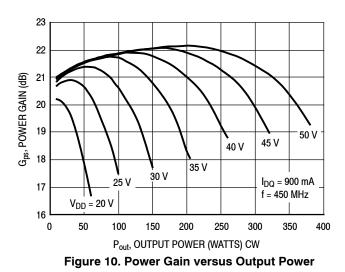




Figure 5. DC Safe Operating Area




Figure 9. CW Output Power versus Input Power

MMRF1318NR1

6

TYPICAL CHARACTERISTICS

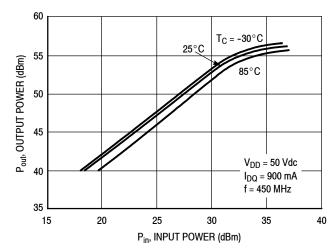
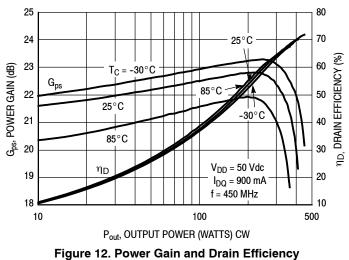
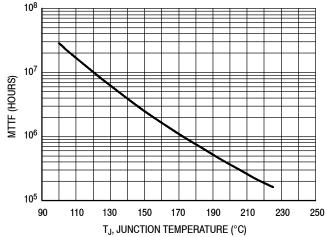
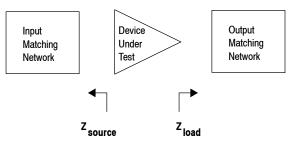




Figure 11. Power Output versus Power Input

versus CW Output Power

This above graph displays calculated MTTF in hours when the device is operated at V_DD = 50 Vdc, P_{out} = 300 W, and η_D = 60%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

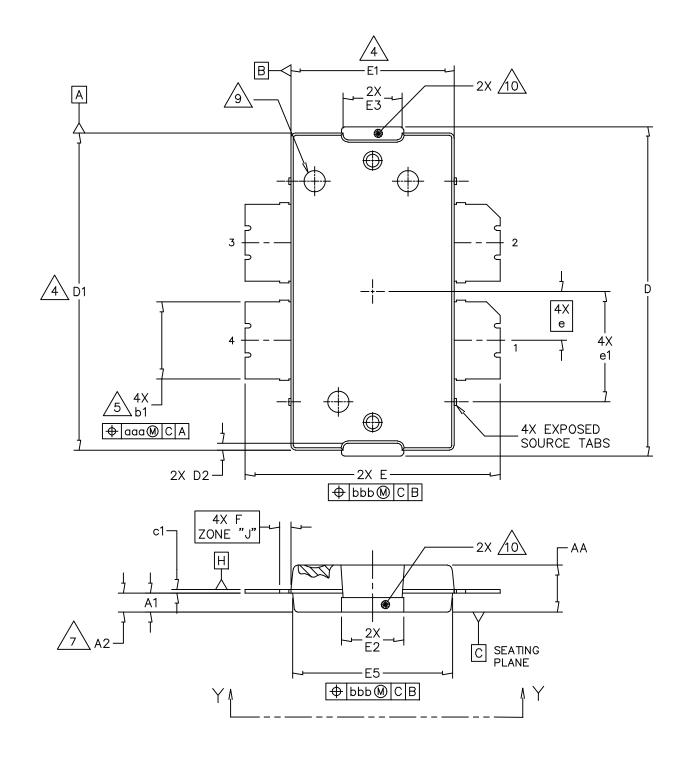

Figure 13. MTTF versus Junction Temperature

0.12 0.13 0.1 0.1 80 5 $Z_0 = 2 \Omega$ f = 450 MHz Z_{source} f = 450 MHz 2 18-1 13 $NI\left(\frac{G}{Y_0}\right)$ OR CONDUCTANCE COMPON K)

 V_{DD} = 50 Vdc, I_{DQ} = 900 mA, P_{out} = 300 W CW

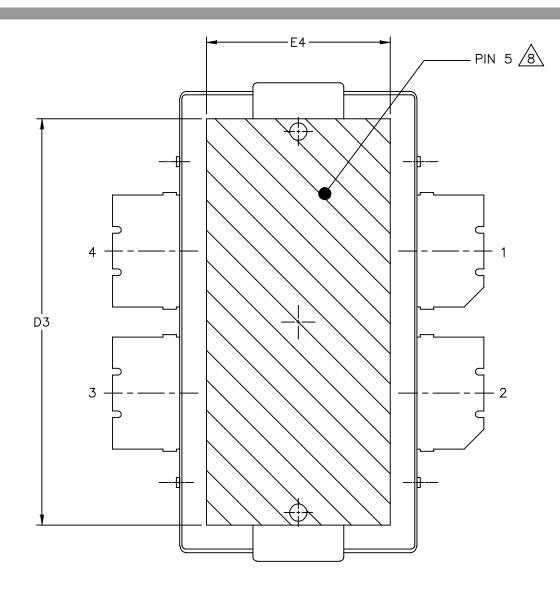
f	Z _{source}	Z _{load}
MHz	Ω	Ω
450	0.39 + j1.26	1.27 + j0.96

Z_{source} = Test circuit impedance as measured from gate to ground.



Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 14. Series Equivalent Source and Load Impedance



PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMEI	NT NO: 98ASA10577D	REV: E	
TO-270WB-4		STANDAF	RD: NON-JEDEC		
			27 /	AUG 2013	

MMRF1318NR1

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE
TITLE:		DOCUME	NT NO: 98ASA10577D REV: E
TO-270WB-4		STANDAF	RD: NON-JEDEC
			27 AUG 2013

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- A DIMENSIONS D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15MM) PER SIDE. DIMENSIONS D1 AND E1 D0 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- DIMENSIONS 61 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13MM) TOTAL IN EXCESS OF THE 61 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- \bigtriangleup DIMENSION A2 APPLIES WITHIN ZONE J ONLY.

A HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. DIMENSIONS D3 AND D4 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

DIMPLED HOLE REPRESENTS INPUT SIDE.

 $[\]frac{10}{10}$ these surfaces of the heat slug are not part of the solderable surfaces and may remain unplated.

	INCH		MIL	LIMETER		INCH		MILLIN	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.100	.104	2.54	2.64	F	.025 BSC		0.64 BSC	
A1	.039	.043	0.99	1.09	b1	.164	.170	4.17	4.32
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	0.28
D	.712	.720	18.08	18.29	е	.1	06 BSC	2.69	BSC
D1	.688	.692	17.48	17.58	e1	.239	INFO ONLY	6.07 IN	FO ONLY
D2	.011	.019	0.28	0.48	aaa		.004	0.10	
D3	.600		15.24		bbb		.008		20
E	.551	.559	14.00	14.20					
E1	.353	.357	8.97	9.07					
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35					
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
© I	© FREESCALE SEMICONDUCTOR, INC. MECHANIC					「LINE	PRINT VERS	SION NOT T	O SCALE
TITLE:	TITLE:					DOCUME	NT NO: 98ASA1	0577D	REV: E
	TO-270WB-4					STANDAR	RD: NON-JEDEC		
								27	AUG 2013

MMRF1318NR1

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to Software & Tools on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
0	Dec. 2014	Initial Release of Data Sheet	

MMRF1318NR1

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: MMRF1318N Rev. 0, 12/2014