√RoHS

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These 750 W CW transistors are designed for industrial, scientific and medical (ISM) applications in the 700 to 1300 MHz frequency range. The transistors are capable of CW or pulse power in narrowband operation.

Typical Performance: V_{DD} = 50 Vdc

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
915(1)	CW	750	19.3	67.1
915 (2)	Pulse (100 μsec, 10% Duty Cycle)	850	20.4	71.0
1300	CW	700	18.0	56.0

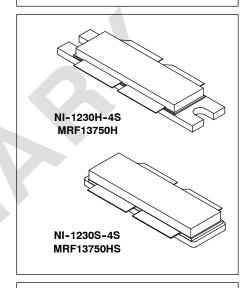
Load Mismatch/Ruggedness

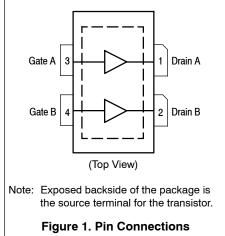
Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
915(2)	Pulse (100 μsec, 20%	> 10:1 at all Phase	15.9 Peak (3 dB	50	No Device Degradation
	Duty Cycle)	Angles	Overdrive)		

- 1. Measured in 915 MHz reference circuit (page 4).
- 2. Measured in 915 MHz narrowband production test fixture (page 7).

Features

- · Internally input matched for ease of use
- Device can be used single-ended or in a push-pull configuration
- · Characterized for 30 to 50 V for ease of use
- Suitable for linear applications with appropriate biasing
- Integrated ESD protection
- Recommended driver: MRFE6VS25GN (25 W)
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch


Typical Applications


- 915 MHz industrial heating/welding systems
- · 1300 MHz particle accelerators

MRF13750H MRF13750HS

PREPRODUCTION

700–1300 MHz, 750 W CW, 50 V RF POWER LDMOS TRANSISTORS

This document contains information on a preproduction product. Specifications and information herein are subject to change without notice.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	-0.5, +105	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V_{DD}	55, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	TBD TBD	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature TBD°C, 750 W CW, 50 Vdc, I _{DQ(A+B)} = TBD mA, 915 MHz	$R_{ heta JC}$	TBD	°C/W
Thermal Impedance, Junction to Case Pulse: Case Temperature TBD°C, 750 W Peak, TBD μsec Pulse Width, TBD% Duty Cycle, 50 Vdc, I _{DQ(A+B)} = TBD mA, 915 MHz	$Z_{ heta JC}$	TBD	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	TBD, passes TBD V
Charge Device Model (per JESD22-C101)	TBD, passes TBD V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

* **					
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (4)					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 105 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 10 \mu\text{A})$	V _{(BR)DSS}	105	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 55 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics			_		
Gate Threshold Voltage ⁽⁴⁾ (V _{DS} = 10 Vdc, I _D = 275 μAdc)	V _{GS(th)}	1.3	1.9	2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _{DQ(A+B)} = 200 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.8	2.2	2.3	Vdc
Drain-Source On-Voltage (4) (V _{GS} = 10 Vdc, I _D = 2.8 Adc)	V _{DS(on)}	0.1	0.21	0.6	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators. (Calculator available when part is in production.)
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Each side of device measured separately.

(continued)

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (1) (In NVD Nevrousband Test Finture 50 above system) V 50 Vda I 000 mA D 050 W Deak					

Functional Tests (1) (In NXP Narrowband Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, $I_{DQ(A+B)}$ = 200 mA, P_{out} = 850 W Peak (170 W Avg.), f = 915 MHz, 100 μ sec Pulse Width, 10% Duty Cycle

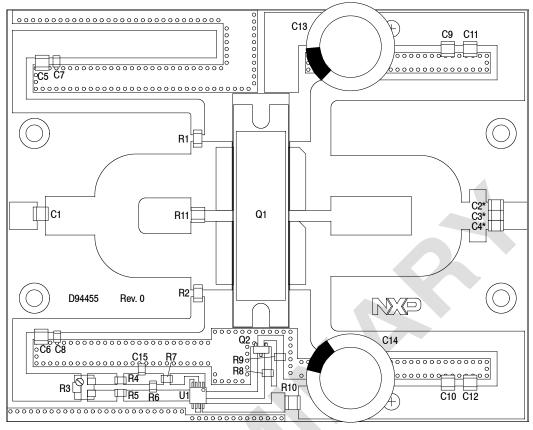
Power Gain	G _{ps}	19.0	20.4	22.0	dB
Drain Efficiency	η_{D}	66.0	71.0	_	%

 $\textbf{Table 5. Load Mismatch/Ruggedness} \text{ (In NXP Test Fixture, 50 ohm system) } I_{DQ(A+B)} = 200 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
915	Pulse (100 μsec, 20% Duty Cycle)	> 10:1 at all Phase Angles	15.9 Peak (3 dB Overdrive)	50	No Device Degradation

^{1.} Part internally input matched.

915 MHz REFERENCE CIRCUIT $-3.0" \times 3.8"$ (7.6 cm \times 9.7 cm)


Table 6. 915 MHz Performance (In NXP Reference Circuit, 50 ohm system)

 V_{DD} = 50 Vdc, $I_{DQ(A+B)}$ = 150 mA, P_{in} = 8.8 W, T_{C} = 25°C

Frequency	Signal	P _{out}	G _{ps}	η _D
(MHz)	Type	(W)	(dB)	(%)
915	CW	750	19.3	67.1

915 MHz REFERENCE CIRCUIT $-3.0" \times 3.8"$ (7.6 cm \times 9.7 cm)

^{*}C2, C3 and C4 are mounted vertically.

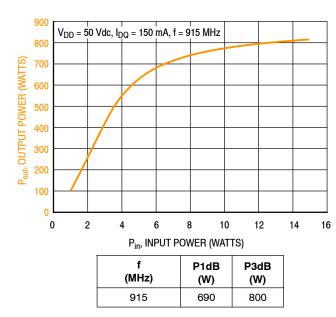
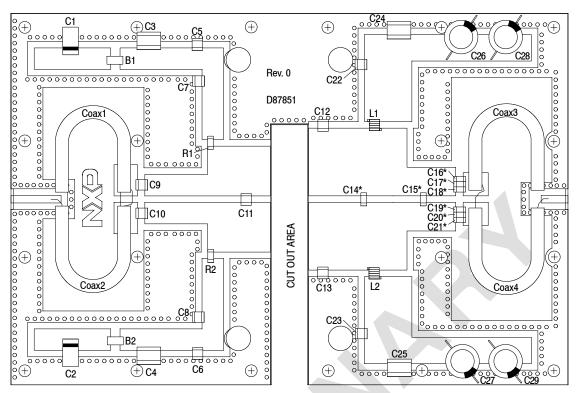

Figure 2. PRF13750H Reference Circuit Component Layout - 915 MHz

Table 7. PRF13750H Reference Circuit Component Designations and Values – 915 MHz

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6, C11, C12	47 pF Chip Capacitor	ATC100B470JT500XT	ATC
C7, C8, C15	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata
C9, C10	1000 pF Chip Capacitor	ATC100B102JT50XT	ATC
C13, C14	470 μF, 100 V Electrolytic Capacitor	MCGPR100V477M16X32-RH	Multicomp
Q1	RF Power LDMOS Transistor	MRF13750H	NXP
Q2	NPN Bipolar Transistor	BC847ALT1G	ON Semiconductor
R1, R2	10 Ω, 1/4 W Chip Resistor	CRCW120610R0JNEA	Vishay
R3	5 kΩ Multi-turn Cermet Trimmer Potentiometer	3224W-1-502E	Bourns
R4	20 kΩ, 1/10 W Chip Resistor	RR1220P-203-B-T5	Susumu
R5	4.7 kΩ, 1/10 W Chip Resistor	RR1220P-472-D	Susumu
R6, R8	1.2 kΩ, 1/8 W Chip Resistor	CRCW08051K20FKEA	Vishay
R7	10 Ω, 1/8 W Chip Resistor	CRCW080510R0FKEA	Vishay
R9	2.2 kΩ, 1/8 W Chip Resistor	CRCW08052K20JNEA	Vishay
R10	4.7 kΩ, 1/2 W Chip Resistor	CRCW12104K70FKEA	Vishay
R11	2 Ω, 1/2 W Chip Resistor	ERJ-14YJ2R0U	Panasonic
U1	Voltage Regulator 5 V, Micro8	LP2951ACDMR2G	ON Semiconductor
PCB	Rogers TC600, 0.025", ε _r = 6.15	D94455	MTL

MRF13750H MRF13750HS

TYPICAL CHARACTERISTICS – 915 MHz REFERENCE CIRCUIT



 $V_{DD} = 50 \text{ Vdc}, I_{DQ} = 150 \text{ mA}, f = 915 \text{ MHz}$ ηD, DRAIN EFFICIENCY (%) G_{ps}, POWER GAIN (dB) P_{out}, OUTPUT POWER (WATTS)

Figure 4. Power Gain and Drain Efficiency versus CW Output Power

Figure 3. CW Output Power versus Input Power

915 MHz NARROWBAND PRODUCTION TEST FIXTURE – $4.0" \times 6.0"$ (10.2 cm \times 15.2 cm)

*C14, C15, C16, C17, C18, C19, C20 and C21 are mounted vertically.

Figure 5. PRF13750H Narrowband Test Fixture Component Layout – 915 MHz

Table 8. PRF13750H Narrowband Test Fixture Component Designations and Values - 915 MHz

Part	Description	Part Number	Manufacturer
B1, B2	RF Bead, Short	2743019447	Fair-Rite
C1, C2	22 μF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C3, C4	2.2 μF Chip Capacitor	C1825C225J5RAC	Kemet
C5, C6	0.1 μF Chip Capacitor	CDR33BX104AKWS	AVX
C7, C8, C22, C23	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C9, C10	10 pF Chip Capacitor	ATC100B100JT500XT	ATC
C11	13 pF Chip Capacitor	ATC100B130JT500XT	ATC
C12, C13	12 pF Chip Capacitor	ATC100B120JT500XT	ATC
C14, C15	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
C16, C17, C18, C19, C20, C21	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C24, C25	0.01 μF Chip Capacitor	C1825C103K1GAC-TU	Kemet
C26, C27, C28, C29	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
Coax1, 2, 3, 4	25 Ω, Semi Rigid Coax, 2.2" Shield Length	UT-141C-25	Micro Coax
L1, L2	5 nH Inductor	A02TKLC	Coilcraft
R1, R2	10 Ω, 3/4 W Chip Resistor	CRCW201010R0FKEF	Vishay
PCB	Arlon, AD255A, 0.03", ε _r = 2.55	D87851	MTL

TYPICAL CHARACTERISTICS – 915 MHz PRODUCTION TEST FIXTURE

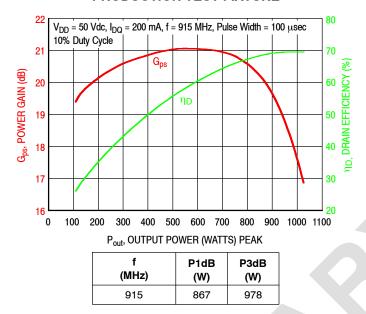


Figure 6. Power Gain and Drain Efficiency versus Output Power

915 MHz NARROWBAND PRODUCTION TEST FIXTURE

f	Z _{source}	Z _{load}			
MHz	Ω	Ω			
915	3.46 - j1.76	2.39 + j3.92			

Z_{source} = Test fixture impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test fixture impedance as measured from drain to drain, balanced configuration.

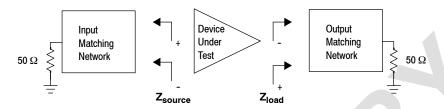
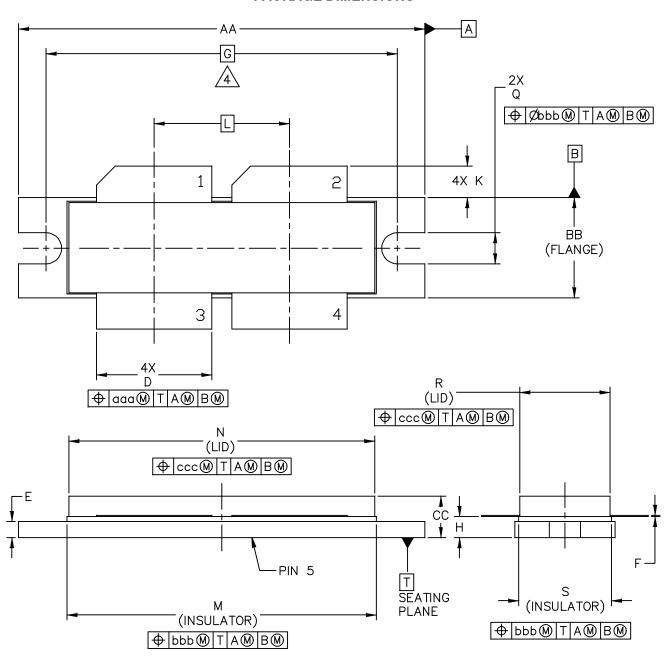
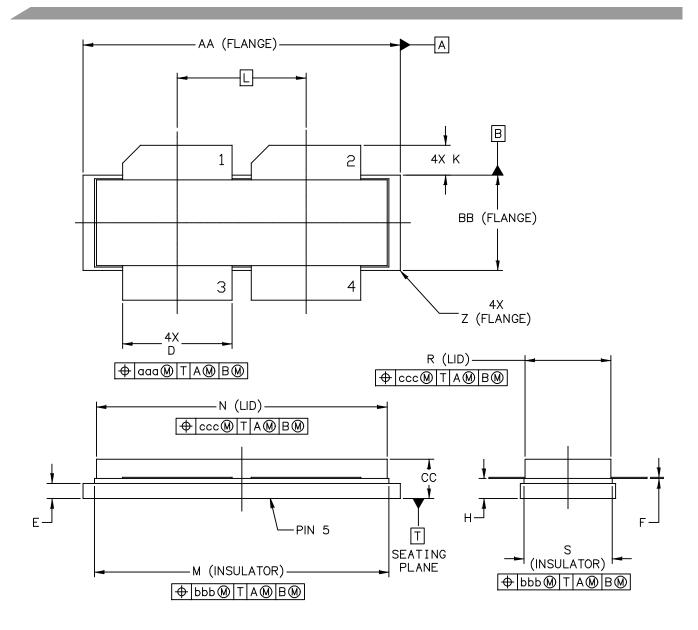



Figure 7. Narrowband Series Equivalent Source and Load Impedance – 915 MHz

PACKAGE DIMENSIONS


© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUME	NT NO: 98ASB16977C	REV: G	
NI-1230-4H		STANDAF	RD: NON-JEDEC		
		S0T1787	-1 03	3 MAR 2016	

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.

RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.615	1.625	41.02	41.28	N	1.218	1.242	30.94	31.55
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30
CC	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
Е	.062	.066	1.57	1.68					
F	.004	.007	0.10	0.18					
G	G 1.400 BSC		35.	35.56 BSC			.013	0.33	
Н	.082	.090	2.08	2.29	bbb	.010		0.25	
K	.117	.137	2.97	3.48	ccc	.020		0.51	
L	.540	BSC	13.	72 BSC					
М	1.219	1.241	30.96	31.52					
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL				L OUT	OUTLINE PRINT VERSION NOT TO S			O SCALE	
TITLE: DOCUMENT NO: 98ASB16							6977C	REV: G	
	NI-1230-4H					STANDARD: NON-JEDEC			
							- 1	03	MAR 2016

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION N	OT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ARB18247C	REV: H
NI-1230-4S	STANDARD: NON-JEDEC			
		S0T1829	9–1	19 FEB 2016

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

	INCHES		MILLIMETERS			INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27
BB	.395	.405	10.03	10.29	s	.365	.375	9.27	9.53
СС	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02
D	.455	.465	11.56	11.81					
E	.062	.066	1.57	1.68	aaa		.013	0.	33
F	.004	.007	0.10	0.18	bbb		.010	0.	25
Н	.082	.090	2.08	2.29	ccc	.020		0.51	
К	.117	.137	2.97	3.48					
L	L .540 BSC 13		13	.72 BSC					
М	1.219	1.241	30.96	31.52					
N	1.218	1.242	30.94	31.55					
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OUT						JTLINE PRINT VERSION NOT TO SCALE			
TITLE: DOCUMENT NO: 98ARB18247C REV:							REV: H		
NI-1230-4S					STANDARD: NON-JEDEC				
						SOT1829-1 19 FEB 2016			

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2017 NXP B.V.

