

. . eescale Semiconductor

Technical Data

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

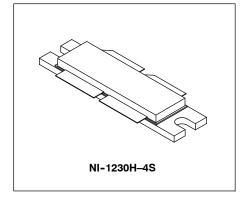
This high power transistor is designed for use in UHF TV broadcast applications. The device has an integrated input matching network for better power distribution and is ideal for use in both analog and digital TV transmitters.

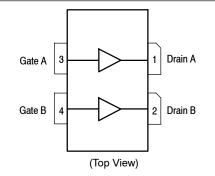
DBV-T Broadband Class AB Performance: $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 1400 \text{ mA}$, Channel Bandwidth = 8 MHz, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF.

Signal Type	P _{out} (W)	f (MHz)	G _{ps} (dB)	η _D (%)	Output PAR (dB)
DVB-T (8k OFDM)	140 Avg.	474	20.2	29.7	8.9
		610	20.7	34.5	8.2
		810	20.0	34.0	8.4

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{out} (W)	Test Voltage	Result
860	DVB-T (8k OFDM)	20:1 at all Phase Angles	125 (3 dB Overdrive)	50	No Device Degradation


Features


- **Excellent Thermal Characteristics**
- High Gain for Reduced PA Size
- High Efficiency for Class AB and Doherty Operations
- Integrated Input Matching. Unmatched Output.
- Extended Negative Gate-Source Voltage Range of -6.0 Vdc to +10 Vdc

Document Number: MRFE8VP8600H Rev. 0, 7/2015

MRFE8VP8600H

470-860 MHz, 140 W AVG., 50 V RF POWER LDMOS TRANSISTOR

Note: The backside of the package is the source terminal for the transistors.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	-0.5, +115	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1)	T _J	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1250 6.25	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.16	°C/W
Case Temperature 99°C, 125 W DVB-T (8k OFDM), 50 Vdc, I _{DQ} = 1400 mA, 860 MHz			

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	B, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Symbol	Min	Тур	Max	Unit
<u> </u>				
I _{GSS}	_	_	1	μAdc
V _{(BR)DSS}	115	118	_	Vdc
I _{DSS}	_	_	5	μAdc
I _{DSS}	_	_	20	μAdc
<u> </u>				
V _{GS(th)}	1.3	2.1	2.3	Vdc
$V_{GS(Q)}$	1.8	2.4	2.8	Vdc
V _{DS(on)}	0.1	0.3	0.5	Vdc
9fs	_	19.4	_	S
	I _{GSS} V _{(BR)DSS} I _{DSS} V _{GS(th)} V _{GS(Q)} V _{DS(on)}	I _{GSS}	Igss	I _{GSS} — — 1 V _{(BR)DSS} 115 118 — I _{DSS} — — 5 I _{DSS} — — 20 V _{GS(th)} 1.3 2.1 2.3 V _{GS(Q)} 1.8 2.4 2.8 V _{DS(on)} 0.1 0.3 0.5

Dynamic Characteristics (4)

•					
Reverse Transfer Capacitance (6) (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}		1.62	_	pF
Output Capacitance (6) (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	71.2	_	pF
Input Capacitance (7) (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	452	_	pF

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf/calculators.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
- 4. Each side of device measured separately.
- 5. Measurement made with device in push-pull configuration.
- 6. Part internally input matched.
- 7. Die capacitance value without internal matching.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests ⁽¹⁾ (In Freescale Narrowband Test Fixture, 50 ohm syster DVB-T (8k OFDM) Single Channel. ACPR measured in 7.61 MHz Signal B.					

Power Gain	G _{ps}	20.6	21.0	23.6	dB
Drain Efficiency	η_{D}	28.0	30.0	_	%
Adjacent Channel Power Ratio	ACPR	_	-61.0	-59.4	dBc
Input Return Loss	IRL	_	-12	-9	dB

Typical DVB-T (8k OFDM) Performance (In Freescale Narrowband Test Fixture, 50 ohm system) $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 1400 \text{ mA}$, f = 860 MHz, DVB-T (8k OFDM) Single Channel.

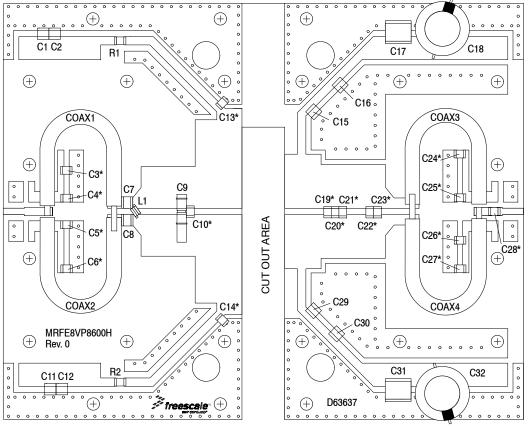

Output Peak-to-Average Ratio @ 0.01% Probability on CCDF, Pout = 125 W Avg.	PAR	=	7.8	_	dB
Load Mismatch VSWR 20:1 at all Phase Angles, 3 dB Overdrive from Rated P _{out} (125 W Avg.)	Ψ	No Degradation in Output Power		wer	

Table 5. Ordering Information

Device	Device Tape and Reel Information	
MRFE8VP8600R5	R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel	NI-1230H-4S

^{1.} Measurement made with device in push-pull configuration.

*C3, C4, C5, C6, C10, C13, C14, C19, C20, C21, C22, C23, C24, C25, C26, C27, and C28 are mounted vertically.

Figure 2. MRFE8VP8600H Test Circuit Component Layout — 860 MHz, DVB-T (8k OFDM)

Table 6. MRFE8VP8600H Test Circuit Component Designations and Values — 860 MHz, DVB-T (8k OFDM)

Part	Description	Part Number	Manufacturer
C1, C11	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
C2, C12	2.2 μF Chip Capacitors	C3225X7R1H225K250AB	TDK
C3, C4, C5, C6	30 pF Chip Capacitors	ATC100B300JT500XT	ATC
C7, C8	24 pF Chip Capacitors	ATC100B240JT500XT	ATC
C9	0.8–8.0 pF Variable Capacitor	27291SL	Johanson Components
C10	12 pF Chip Capacitor	ATC100B120JT500XT	ATC
C13, C14	8.2 pF Chip Capacitors	ATC100B8R2CT500XT	ATC
C15, C29	2.2 μF Chip Capacitors	C3225X7R2A225K230AB	TDK
C16, C25, C26, C28, C30	100 pF Chip Capacitors	ATC100B101JT500XT	ATC
C17, C31	4.7 μF Chip Capacitors	C575X7R2A475K230KA	TDK
C18, C32	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
C19	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
C20	3.3 pF Chip Capacitor	ATC100B3R3CT500XT	ATC
C21	3.0 pF Chip Capacitor	ATC100B3R0BT500XT	ATC
C22	3.9 pF Chip Capacitor	ATC100B3R9CT500XT	ATC
C23	5.1 pF Chip Capacitor	ATC100B5R1CT500XT	ATC
C24, C27	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
Coax1, 2	25 Ω Semi Rigid Coax, 2.0" Shield Length	UT-141C-25	Micro-Coax
Coax3, 4	25 Ω Semi Rigid Coax, 2.2" Shield Length	UT-141C-25	Micro-Coax
L1	2.5 nH, 1 Turn Inductor	A01TKLC	Coilcraft
R1, R2	10 Ω, 1/4 W Chip Resistors	CRCW120610R0JNEA	Vishay
PCB	Rogers RO4350B, 0.030", ε _r = 3.66	D63637	MTL

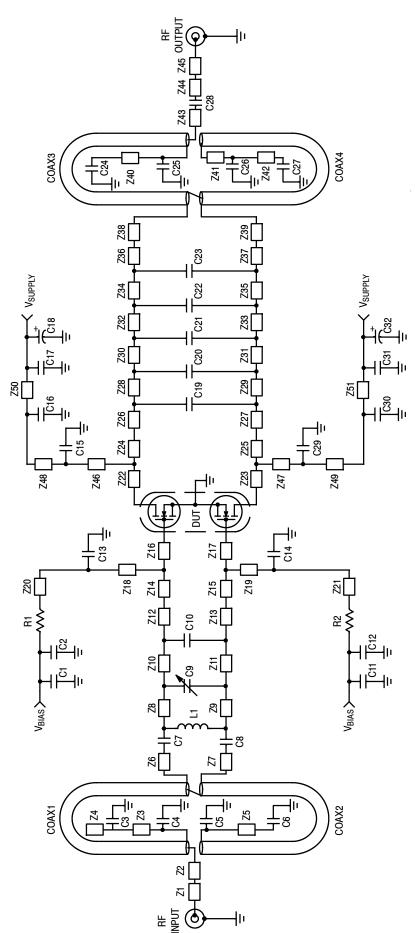


Figure 3. MRFE8VP8600H Test Circuit Schematic — 860 MHz DVB-T (8k OFDM)

Table 7. MRFE8VP8600H Test Circuit Schematic — 860 MHz DVB-T (8k OFDM)

Description

Microstrip

5" × 0.080" Microstrip 5" × 0.080" Microstrip 4" × 0.520" Microstrip 5" × 0.520" Microstrip 5" × 0.420" Microstrip 2" × 0.420" Microstrip × 0.420" Microstrip 5" × 0.420" Microstrip × 0.420" Microstrip 4" × 0.420" Microstrip

Description

Microstrip	Description	Microstrip	strip	
Z1	0.204" × 0.062" Microstrip	Z18, Z19	6	0.115
Z2	0.245" × 0.080" Microstrip	Z20*, Z21*	21*	1.026
Z3, Z4	0.220" × 0.060" Microstrip	Z22, Z23	33	0.164
Z5	0.410" × 0.062" Microstrip	Z24, Z25	55	0.186
Z6, Z7	0.019" × 0.100" Microstrip	Z26, Z27	72	0.015
Z8, Z9	0.341" × 0.400" Microstrip	Z28, Z29	6	0.072
Z10, Z11	0.083" × 0.400" Microstrip	Z30, Z31	Ξ.	0.072
Z12, Z13	0.065" × 0.400" Microstrip	Z32, Z33	33	0.275
Z14, Z15	0.208" × 0.850" Microstrip	Z34, Z35	35	0.072
Z16, Z17	0.242" × 0.960" Microstrip	Z36, Z37	37	0.074
*Line length	*Line length includes microstrip bends			

0
mi
es
pn
incl
th i
gu
9
Line
*

0.211" × 0.100" Microstrip	0.389" × 0.060" Microstrip	0.155" × 0.060" Microstrip	0.280" × 0.060" Microstrip	0.070" × 0.080" Microstrip	0.018" × 0.080" Microstrip	0.204" × 0.062" Microstrip	0.358" × 0.080" Microstrip	0.297" × 0.080" Microstrip	0.371" × 0.080" Microstrip
Z38, Z39	Z40	Z41	Z42	Z43	Z44	Z45	Z46, Z47	Z48*, Z49*	Z50, Z51

TYPICAL CHARACTERISTICS — 860 MHz

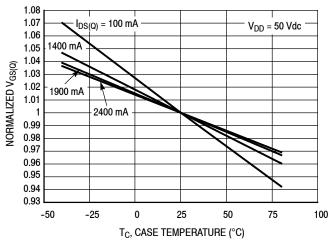


Figure 4. Normalized V_{GS} versus Quiescent Current and Case Temperature

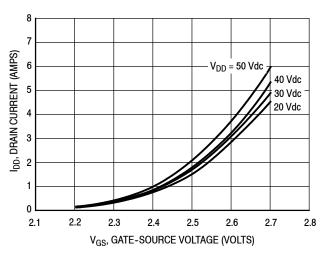
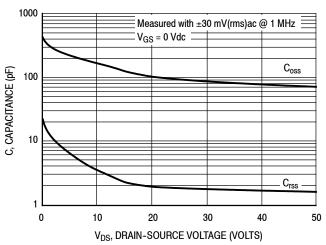



Figure 5. Drain Current versus Gate-Source Voltage

Note: Each side of device measured separately.

Figure 6. Capacitance versus Drain-Source Voltage

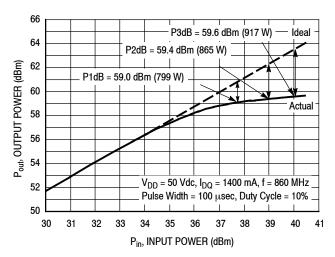


Figure 7. Pulse CW Output Power versus Input Power

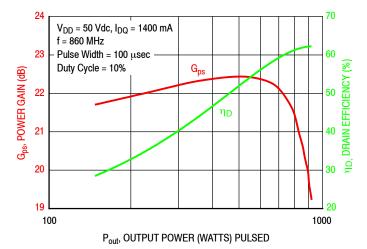


Figure 8. Pulse Power Gain and Drain Efficiency versus Output Power

TYPICAL CHARACTERISTICS — DVB-T (8k OFDM)

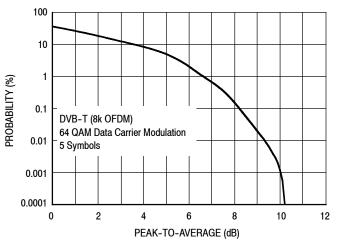


Figure 9. Source Peak-to-Average DVB-T (8k OFDM)

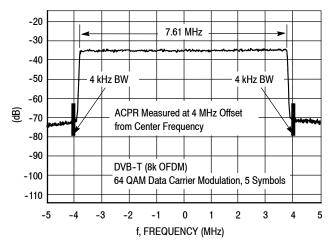
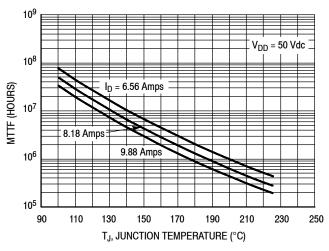
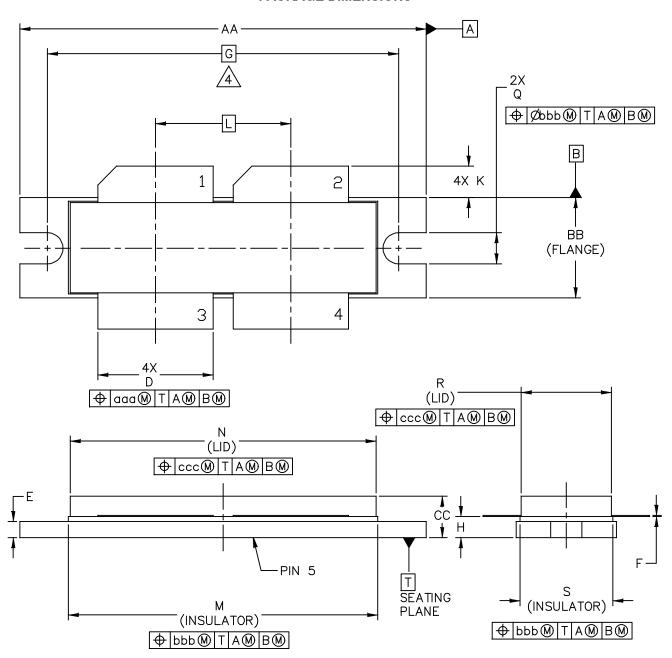



Figure 10. DVB-T (8k OFDM) Spectrum

TYPICAL CHARACTERISTICS

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

 ${\it MTTF\ calculator\ available\ at\ http://www.freescale.com/rf/calculators.}$


Figure 11. MTTF versus Junction Temperature - CW

	T MHz	Z _{source} Ω	∠ _{load} Ω	
	860	0.85 - j0.90	4.0 + j1.1	
	000.00	Test circuit impedance gate to gate, balance		
	loud	Test circuit impedand from drain to drain, b		ration.
5	out utching twork	Device Under Test Z source	Z _{load}	Output Matching Network

Figure 12. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUME	NT NO: 98ASB16977C	REV: F
NI-1230-4H		STANDAF	RD: NON-JEDEC	
				28 FEB 2013

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.

RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	IN	CH	MII	LLIMETER		INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.615	1.625	41.02	41.28	N	1.218	1.242	30.94	31.55
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30
CC	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
Е	.062	.066	1.57	1.68					
F	.004	.007	0.10	0.18					
G	1.400	BSC	35	5.56 BSC	aaa		.013	0.	33
Н	.082	.090	2.08	2.29	bbb		.010	0.25	
K	.117	.137	2.97	3.48	ссс		.020	0.	.51
L	.540	BSC	13	3.72 BSC					
М	1.219	1.241	30.96	31.52					
© FREESCALE SEMICONDUCTOR, INC. MECHANICAL O				L OUT	TLINE	PRINT VERS	SION NOT T	O SCALE	
TITLE:						DOCUME	NT NO: 98ASB1	6977C	REV: F
NI-1230-4H						STANDAF	RD: NON-JEDEC	2	
								28	FEB 2013

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	July 2015	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

