
BYV32F, BYV32EX series

FEATURES

- Low forward volt drop
- Fast switching
- · Soft recovery characteristic
- Reverse surge capability
- High thermal cycling performance
- · Isolated mounting tab

SYMBOL

QUICK REFERENCE DATA

$$V_{R} = 150 \text{ V}/200 \text{ V}$$

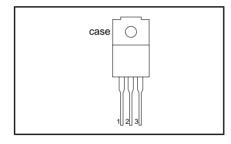
$$V_{F} \le 0.85 \text{ V}$$

$$I_{O(AV)} = 12 \text{ A}$$

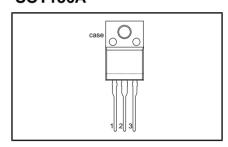
$$I_{RRM} = 0.2 \text{ A}$$

$$t_{rr} \le 25 \text{ ns}$$

GENERAL DESCRIPTION


Dual, ultra-fast, epitaxial rectifier diodes intended for use as output rectifiers in high frequency switched mode power supplies.

The BYV32F series is supplied in the SOT186 package. The BYV32EX series is supplied in the SOT186A package.


PINNING

PIN	DESCRIPTION		
1	anode 1 (a)		
2	cathode (k)		
3	anode 2 (a)		
tab	isolated		

SOT186

SOT186A

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.		UNIT
V _{RRM} V _{RWM} V _R	Peak repetitive reverse voltage Crest working reverse voltage Continuous reverse voltage	BYV32F / BYV32EX		-150 150 150 150	-200 200 200 200	V V
I _{O(AV)}	Average rectified output current (both diodes conducting) ¹	$\delta = 0.5$; $T_{hs} \le 95$ °C	-	1	2	A
I _{FRM}	Repetitive peak forward current per diode	$t = 25 \mu s; δ = 0.5;$ $T_{hs} \le 95 °C$	-	2	0	A
I _{FSM}	Non-repetitive peak forward current per diode	t = 10 ms t = 8.3 ms sinusoidal; with reapplied	-		25 37	A A
I _{RRM}	Repetitive peak reverse current per diode	$V_{\text{RWM(max)}} $ $t_p = 2 \ \mu \text{s}; \ \delta = 0.001$	-	0	.2	A
I _{RSM}	Non-repetitive peak reverse current per diode	$t_{p} = 100 \ \mu s$	-	0	.2	Α
${\mathsf T}_{stg} \atop {\mathsf T}_{\mathsf j}$	Storage temperature Operating junction temperature		-40 -		50 50	°C °C

¹ Neglecting switching and reverse current losses

BYV32F, BYV32EX series

ESD LIMITING VALUE

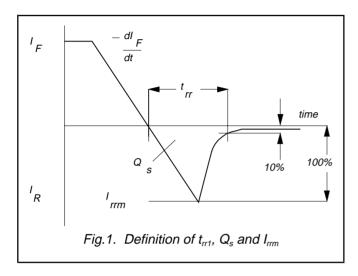
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _C	l a	Human body model; C = 250 pF; R = 1.5 kΩ	-	8	kV

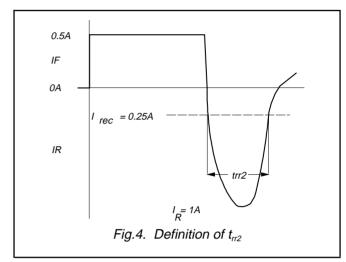
ISOLATION LIMITING VALUE & CHARACTERISTIC

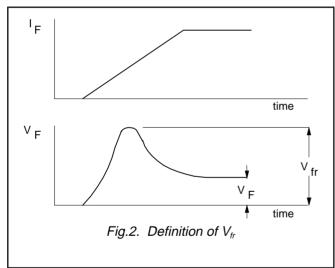
T_{hs} = 25 °C unless otherwise specified

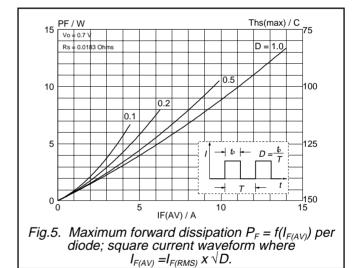
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	R.M.S. isolation voltage from all three terminals to external heatsink	SOT186A package; f = 50-60 Hz; sinusoidal waveform; R.H. ≤ 65%; clean and dustfree	1		2500	V
V _{isol}	Repetitive peak voltage from all three terminals to external heatsink	SOT186 package; R.H. ≤ 65%; clean and dustfree	-		1500	V
C _{isol}	Capacitance from pin 2 to external heatsink	f = 1 MHz	-	10	-	pF

THERMAL RESISTANCES


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$R_{th j-hs}$ $R_{th j-a}$	heatsink (per diode)	with heatsink compound without heatsink compound in free air		- - 55	5.0 7.0 -	K/W K/W K/W


ELECTRICAL CHARACTERISTICS


characteristics are per diode at T_i = 25 °C unless otherwise stated

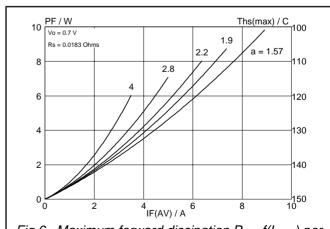
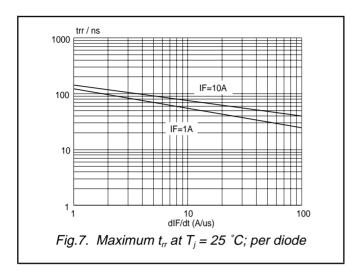
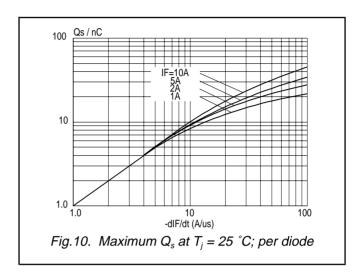
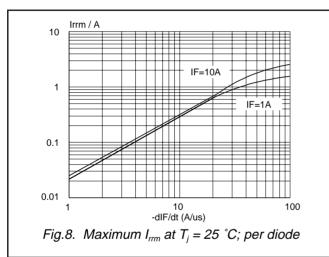

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	Forward voltage	$I_F = 8 \text{ A}; T_i = 150^{\circ}\text{C}$	1	0.72	0.85	V
		$I_{\rm F} = 20 {\rm A}^{ \prime}$	-	1.00	1.15	V
I _R	Reverse current	$\dot{V}_R = V_{RWM}$; $T_i = 100 ^{\circ}C$	-	0.2	0.6	mΑ
		$V_{R} = V_{RWM}$	-	6	30	μΑ
Q_s	Reverse recovery charge	$I_{\rm F} = 2 \text{ A}; V_{\rm R} \ge 30 \text{ V}; -dI_{\rm F}/dt = 20 \text{ A/}\mu\text{s}$	-	8	12.5	nC
t _{rr1}	Reverse recovery time	$I_F = 1 \text{ A}; V_R \ge 30 \text{ V};$	-	20	25	ns
	_	-dl ₌ /dt = 100 A/μs				
t _{rr2}	Reverse recovery time	$I_{\rm F} = 0.5 \text{A} \text{ to } I_{\rm R} = 1 \text{A}; I_{\rm rec} = 0.25 \text{A}$	-	10	20	ns
I I'rm	Peak reverse recovery current	$I_{\rm F} = 1 \text{ A}; V_{\rm R} \ge 30 \text{ V};$	-	1.5	2	Α
l	ĺ	$-dI_{\rm F}/dt = 50$ A/ μ s; $T_{\rm i} = 100$ °C				
V_{fr}	Forward recovery voltage	$I_F = 1 \text{ A}; dI_F/dt = 10 \text{ A/}\mu\text{s}$	-	1	-	V

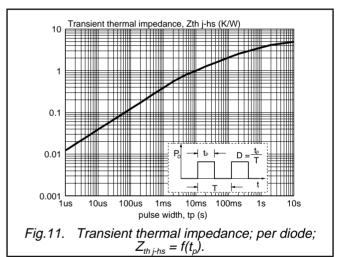
BYV32F, BYV32EX series

Voltage Pulse Source

Current shunt to 'scope

Fig. 3. Circuit schematic for t_{rr2}


Fig.6. Maximum forward dissipation $P_F = f(I_{F(AV)})$ per diode; sinusoidal current waveform where a = form factor $= I_{F(RMS)} / I_{F(AV)}$.

BYV32F, BYV32EX series

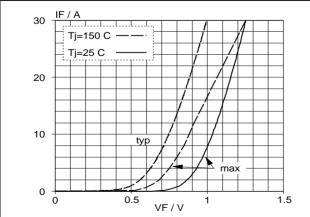
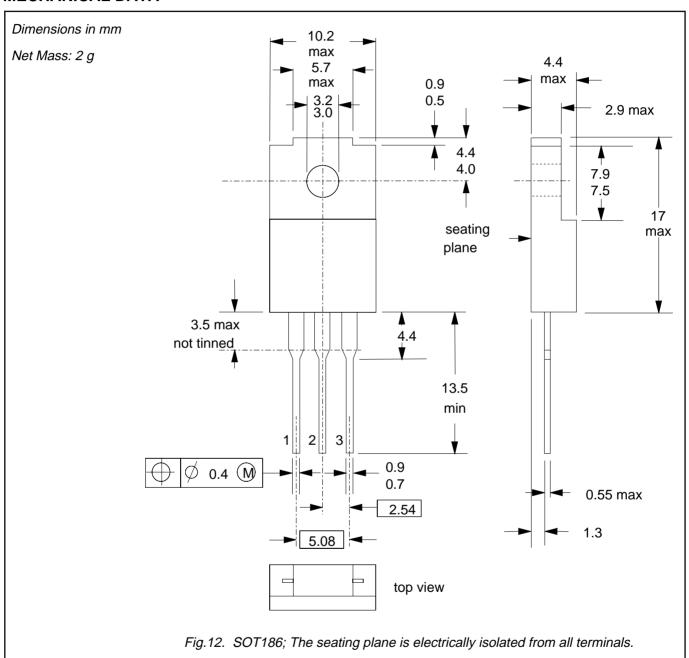
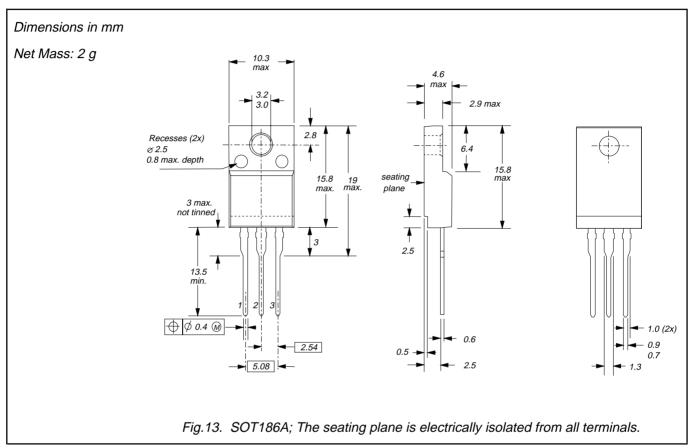



Fig.9. Typical and maximum forward characteristic $I_F = f(V_F)$; parameter T_j

BYV32F, BYV32EX series


MECHANICAL DATA

- Refer to mounting instructions for F-pack envelopes.
 Epoxy meets UL94 V0 at 1/8".

BYV32F, BYV32EX series

MECHANICAL DATA

- Notes
 1. Refer to mounting instructions for F-pack envelopes.
 2. Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Rectifier diodes ultrafast, rugged

BYV32F, BYV32EX series

DEFINITIONS

Data sheet status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification This data sheet contains preliminary data; supplementary data may be published late				
Product specification	This data sheet contains final product specifications.			
Limiting values				

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.