

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 79 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 720 to 960 MHz.

900 MHz

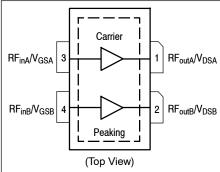
 Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc, I_{DQA} = 400 mA, V_{GSB} = 1.2 Vdc, P_{out} = 79 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
920 MHz	19.8	55.1	7.2	-32.7
940 MHz	19.7	55.9	7.1	-33.4
960 MHz	19.5	56.1	6.7	-33.9

800 MHz

 Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc, I_{DQA} = 400 mA, V_{GSB} = 1.0 Vdc, P_{out} = 79 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
790 MHz	18.4	55.0	7.6	-25.0
806 MHz	18.9	56.0	8.0	-28.0
821 MHz	18.1	53.0	8.0	-32.0


Features

- · Advanced High Performance In-Package Doherty
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- · Designed for Digital Predistortion Error Correction Systems

A2V09H300-04NR3

720-960 MHz, 79 W AVG., 48 V AIRFAST RF POWER LDMOS TRANSISTOR

Note: Exposed backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +105	Vdc
Gate-Source Voltage	V _{GS}	−6.0, +10	Vdc
Operating Voltage	V _{DD}	55, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 76°C, 79 W Avg., W-CDMA, 48 Vdc, I _{DQA} = 400 mA, V _{GSB} = 1.2 Vdc, 940 MHz	$R_{ heta JC}$	0.34	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾	<u>.</u>				
Zero Gate Voltage Drain Leakage Current (V _{DS} = 105 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 48 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	=	_	1	μAdc
On Characteristics - Side A, Carrier	<u>.</u>		•	-	•
Gate Threshold Voltage	Voorus	1 3	1 Ω	2.3	Vdc

Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 90 μ Adc)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Gate Quiescent Voltage (V_{DD} = 48 Vdc, I_{D} = 400 mAdc, Measured in Functional Test)	V _{GSA(Q)}	2.0	2.4	3.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.9 Adc)	V _{DS(on)}	0.1	0.21	0.3	Vdc

On Characteristics - Side B, Peaking

Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 140 μAdc)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Drain-Source On-Voltage ($V_{GS} = 10 \text{ Vdc}$, $I_D = 1.3 \text{ Adc}$)	V _{DS(on)}	0.1	0.21	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

|--|

Functional Tests (1,2) (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 400 mA, V_{GSB} = 1.2 Vdc,

P_{out} = 79 W Avg., f = 940 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	19.1	19.7	21.1	dB
Drain Efficiency	η_{D}	50.0	55.9	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.5	7.1	_	dB
Adjacent Channel Power Ratio	ACPR	_	-33.4	-30.0	dBc

Load Mismatch (2) (In Freescale Doherty Test Fixture, 50 ohm system) $I_{DQA} = 400$ mA, $V_{GSB} = 1.2$ Vdc, f = 940 MHz, 12 μ sec(on), 10% Duty Cycle

VSWR 10:1 at 50 Vdc, 319 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 223 W Pulsed CW Rated Power)	

Typical Performance (2) (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 48 \text{ Vdc}$, $I_{DQA} = 400 \text{ mA}$, $V_{GSB} = 1.2 \text{ Vdc}$, 920-960 MHz Bandwidth

020 000 Mil iz Ballawiati					
Pout @ 1 dB Compression Point, CW	P1dB	_	223	_	W
Pout @ 3 dB Compression Point (3)	P3dB	_	400	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 920-960 MHz frequency range)	Φ	_	-12.3	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	70	_	MHz
Gain Flatness in 40 MHz Bandwidth @ Pout = 79 W Avg.	G _F	_	0.3	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG		0.004	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.012	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A2V09H300-04NR3	R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel	OM-780-4L

- 1. Part internally input matched.
- 2. Measurement made with device in an asymmetrical Doherty configuration.
- 3. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

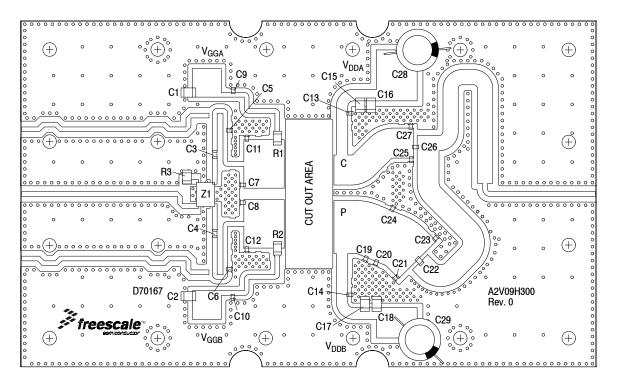


Figure 2. A2V09H300-04NR3 Test Circuit Component Layout

Table 7. A2V09H300-04NR3 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2, C15, C16, C17, C18	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
C3, C9, C10, C13, C14, C22	100 pF Chip Capacitors	ATC600F101JT250XT	ATC
C4, C26	20 pF Chip Capacitors	ATC600F200JT250XT	ATC
C5, C25, C27	5.1 pF Chip Capacitors	ATC600F5R1BT250XT	ATC
C6	4.3 pF Chip Capacitor	ATC600F4R3BT250XT	ATC
C7, C8, C11, C12	8.2 pF Chip Capacitors	ATC600F8R2BT250XT	ATC
C19, C20, C24	2.2 pF Chip Capacitors	ATC600F2R2BT250XT	ATC
C21	5.6 pF Chip Capacitor	ATC600F5R6BT250XT	ATC
C23	4.7 pF Chip Capacitor	ATC600F4R7BT250XT	ATC
C28, C29	330 μF, 63 V Electrolytic Capacitors	MCRH63V337M13X21-RH	Multicomp
R1, R2	2.2 Ω, 1/4 W Chip Resistors	CRCW12062R20JNEA	Vishay
R3	50 Ω, 8 W Termination Resistor	C8A50Z4A	Anaren
Z1	800-1000 MHz Band, 90°, 3 dB Hybrid Coupler	X3C09P1-03S	Anaren
PCB	Rogers RO4350B, 0.020", ε _r = 3.66	D70167	MTL

TYPICAL CHARACTERISTICS — 920-960 MHz

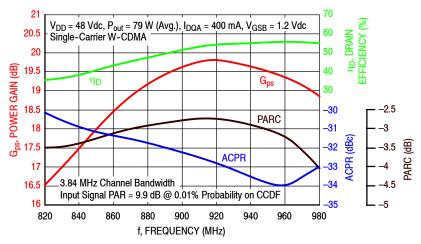


Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 79 Watts Avg.

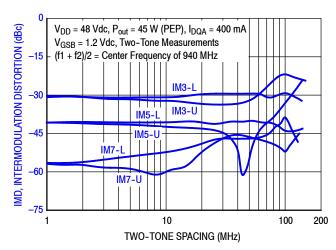


Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

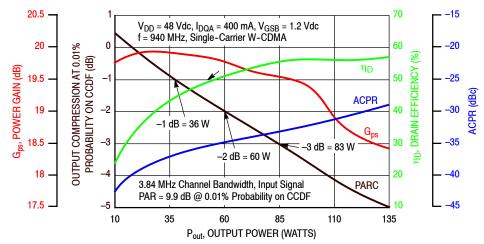


Figure 5. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

A2V09H300-04NR3

TYPICAL CHARACTERISTICS — 920-960 MHz

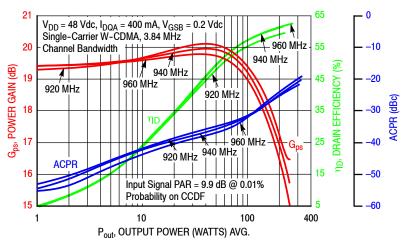


Figure 6. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

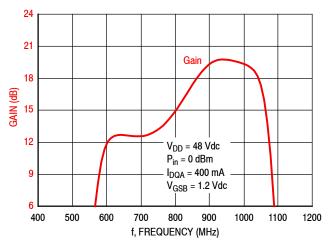
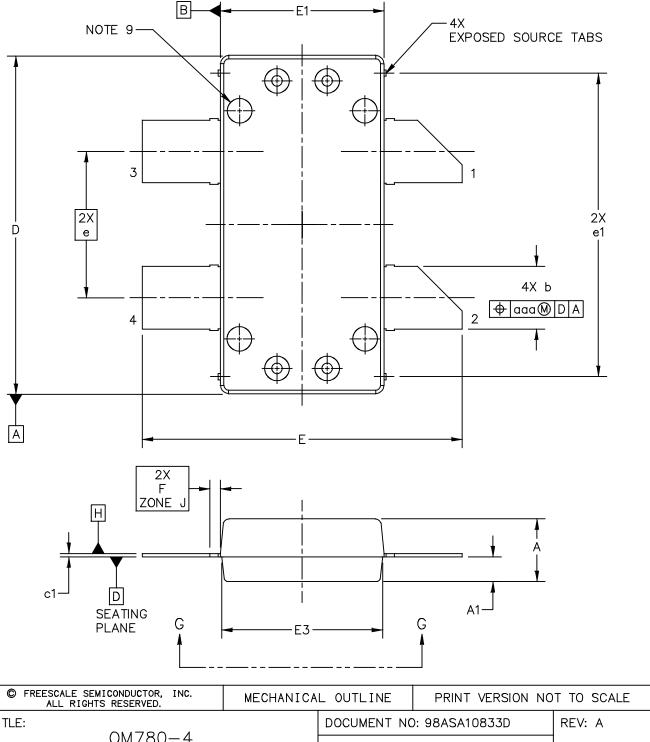
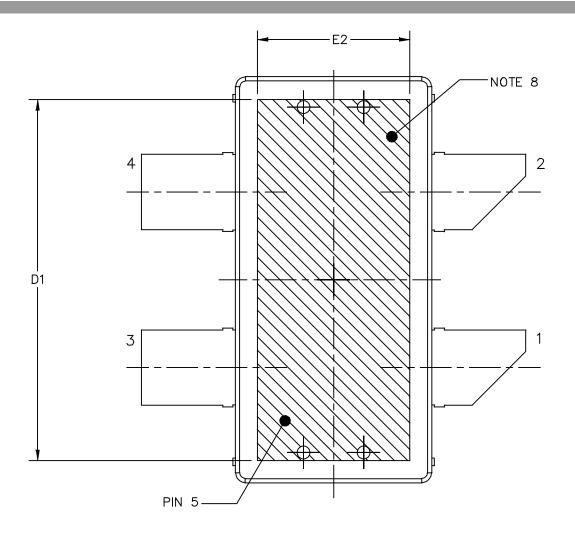




Figure 7. Broadband Frequency Response

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO): 98ASA10833D	REV: A
OM780-4 STRAIGHT LEAD		CASE NUMBER	10 FEB 2010	
3 MAIOITI EEAD		STANDARD: NO	DN-JEDEC	

BOTTOM VIEW VIEW G-G

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCAL	
TITLE:		DOCUMENT NO): 98ASA10833D	REV: A
OM780-4 STRAIGHT LEAD		CASE NUMBER	2: 2023–02	10 FEB 2010
STIVIOTT LEVE		STANDARD: NO	N-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A1 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.
- 9. DIMPLED HOLE REPRESENTS INPUT SIDE.

	IN	CH	MIL	LIMETER		INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MA	λX
A	0.148	.152	3.76	3.86	b	.147	.153	3.73	3 3	.89
A1	.059	.065	1.50	1.65	c1	.007	.011	0.18	3 0	.28
D	.808	.812	20.52	20.62	е	.3	50 BSC	8.89 BSC		
D1	.720		18.29		e1	.721	.729	18.3	1 18	3.52
E	.762	.770	19.36	19.56						
E1	.390	.394	9.91	10.01	aaa		.004		0.10	
E2	.306		7.77							
E3	.383	.387	9.72	9.83						
F	.025	5 BSC	0	.635 BSC						
							T			
	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			AL OU	ΓLINE	PRINT VER	SION NO	T TO SC	ALE	
TITLE:				DOC	JMENT NO): 98ASA10833	3D	REV: A		
	Ç-		0M780-4 AIGHT LEAD CASE NUMBER: 2023			R: 2023-02		10 FEB	2010	
	J	INAIGITI	LLAD		STANDARD: NON-JEDEC					

A2V09H300-04NR3

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Feb. 2016	Initial release of data sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2016 Freescale Semiconductor, Inc.

