

. . eescale Semiconductor

Technical Data

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

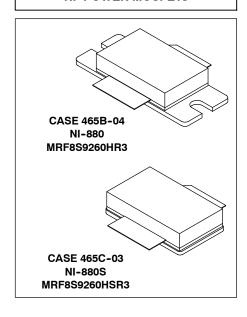
Designed for CDMA and multicarrier GSM base station applications with frequencies from 865 to 960 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats.

 Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ} = 1700 mA, P_{out} = 75 Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
920 MHz	18.8	36.0	6.3	-39.5
940 MHz	18.7	37.0	6.2	-38.6
960 MHz	18.6	38.5	5.9	-37.1

- Capable of Handling 7:1 VSWR, @ 32 Vdc, 940 MHz, 380 Watts CW (1)
 Output Power (3 dB Input Overdrive from Rated Pout), Designed for
 Enhanced Ruggedness
- Typical P_{out} @ 1 dB Compression Point ≈ 260 Watts CW

Features


- 100% PAR Tested for Guaranteed Output Power Capability
- Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source S-Parameters
- · Internally Matched for Ease of Use
- Integrated ESD Protection
- · Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- · Optimized for Doherty Applications
- In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.

Document Number: MRF8S9260H Rev. 1, 2/2012

VPOHS

MRF8S9260HR3 MRF8S9260HSR3

920-960 MHz, 75 W AVG., 28 V SINGLE W-CDMA LATERAL N-CHANNEL RF POWER MOSFETS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +70	Vdc
Gate-Source Voltage	V_{GS}	-6.0, +10	Vdc
Operating Voltage	V_{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (2,3)	TJ	225	°C
CW Operation @ T _C = 25°C Derate above 25°C	CW	280 1.5	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (3,4)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 80°C, 75 W CW, 28 Vdc, I _{DQ} = 1800 mA		0.37	
Case Temperature 80°C, 265 W CW, 28 Vdc, I _{DQ} = 1100 mA		0.31	

- 1. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.
- 2. Continuous use at maximum temperature will affect MTTF.
- 3. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 4. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

© Freescale Semiconductor, Inc., 2009, 2012. All rights reserved.

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1C
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

(A	,				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 70 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics	•		_		
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_{D} = 400 μ Adc)	V _{GS(th)}	1.5	2.3	3	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 1700 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.4	3.1	3.9	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 4.4 Adc)	V _{DS(on)}	0.1	0.2	0.3	Vdc

Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 1700 mA, P_{out} = 75 W Avg., f = 960 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ \pm 5 MHz Offset.

Power Gain	G _{ps}	17.5	18.6	20.0	dB
Drain Efficiency	η_{D}	36.0	38.5	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	5.5	5.9	_	dB
Adjacent Channel Power Ratio	ACPR	_	-37.1	-35.0	dBc
Input Return Loss	IRL	_	-14	-9	dB

Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ} = 1700$ mA, $P_{out} = 75$ W Avg., Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dB)	IRL (dB)
920 MHz	18.8	36.0	6.3	-39.5	-16
940 MHz	18.7	37.0	6.2	-38.6	-18
960 MHz	18.6	38.5	5.9	-37.1	-14

^{1.} Part internally matched both on input and output.

(continued)

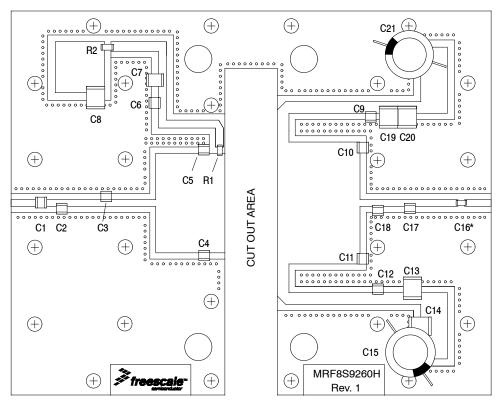


Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performance (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28	Vdc, I _{DQ} = 17	00 mA, 920-	960 MHz Bar	ndwidth	
P _{out} @ 1 dB Compression Point, CW	P1dB	_	260	_	W
IMD Symmetry @ 130 W PEP, P _{out} where IMD Third Order Intermodulation ≅ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)	IMD _{sym}	_	10	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	50	_	MHz
Gain Flatness in 40 MHz Bandwidth @ Pout = 75 W Avg.	G _F	_	0.2	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.024	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C) (1)	ΔP1dB	=	0.0075	=	dB/°C

^{1.} Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

*C16 is mounted vertically.

Figure 1. MRF8S9260HR3(HSR3) Test Circuit Component Layout

Table 5. MRF8S9260HR3(HSR3) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C6, C9, C12, C16	36 pF Chip Capacitors	ATC100B360JT500XT	ATC
C2	0.4 pF Chip Capacitor	ATC100B0R4BT500XT	ATC
C3	4.7 pF Chip Capacitor	ATC100B4R7BT500XT	ATC
C4, C5	8.2 pF Chip Capacitors	ATC100B8R2BT500XT	ATC
C7	4.7 μF, 50 V Chip Capacitor	C4532X5R1H475MT	TDK
C8, C13, C14, C19, C20	10 μF, 50 V Chip Capacitors	C5750X5R1H106MT	TDK
C10, C11	5.6 pF Chip Capacitors	ATC100B5R6BT500XT	ATC
C15, C21	470 μF, 63 V Electrolytic Capacitors	477KXM063M	Illinois Capacitor
C17	4.3 pF Chip Capacitor	ATC100B4R3BT500XT	ATC
C18	0.8 pF Chip Capacitor	ATC100B0R8BT500XT	ATC
R1	10 Ω, 1/4 W Chip Resistor	CRCW120610R0JKEA	Vishay
R2	0 Ω, 3.5 A Chip Resistor	CRCW12060000Z0EA	Vishay
PCB	$0.030''$, $\varepsilon_r = 3.5$	RF-35	Taconic

TYPICAL CHARACTERISTICS

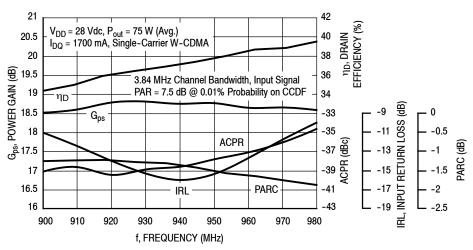


Figure 2. Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 75 Watts Avg.

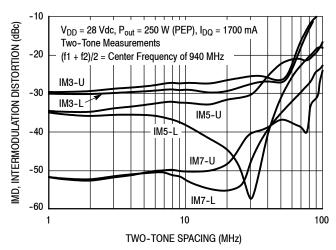


Figure 3. Intermodulation Distortion Products versus Two-Tone Spacing

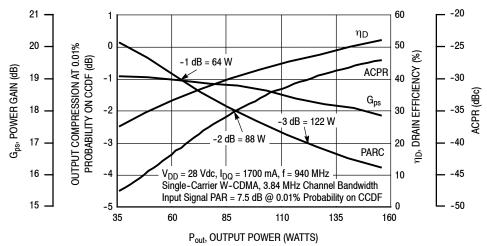


Figure 4. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

MRF8S9260HR3 MRF8S9260HSR3

TYPICAL CHARACTERISTICS

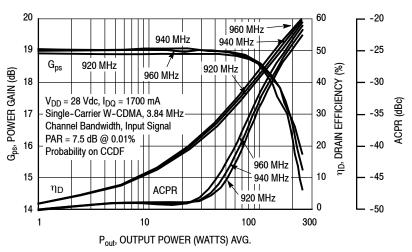


Figure 5. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

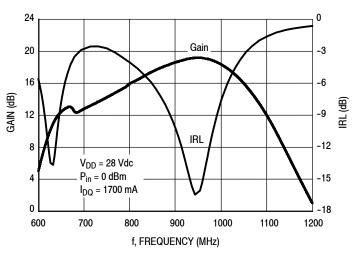


Figure 6. Broadband Frequency Response

W-CDMA TEST SIGNAL

Figure 7. CCDF W-CDMA IQ Magnitude Clipping, Single-Carrier Test Signal

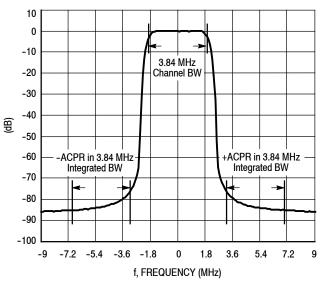


Figure 8. Single-Carrier W-CDMA Spectrum

 $\mbox{V}_{\mbox{DD}}$ = 28 Vdc, $\mbox{I}_{\mbox{DQ}}$ = 1700 mA, $\mbox{P}_{\mbox{out}}$ = 75 W Avg.

f MHz	Z _{source} Ω	Z _{load} Ω
820	2.25 - j2.59	1.93 - j1.63
840	2.21 - j2.51	1.91 - j1.45
860	2.16 - j2.46	1.90 - j1.28
880	2.11 - j2.40	1.90 - j1.14
900	1.98 - j2.37	1.91 - j1.02
920	1.87 - j2.29	1.90 - j0.91
940	1.75 - j2.23	1.89 - j0.83
960	1.61 - j2.14	1.87 - j0.76
980	1.46 - j2.03	1.84 - j0.69

 Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad = \quad \text{Test circuit impedance as measured from} \\ \text{drain to ground.}$

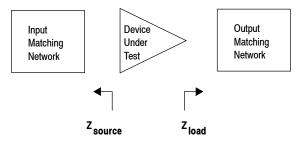
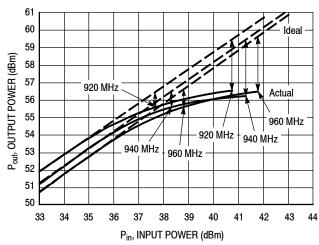



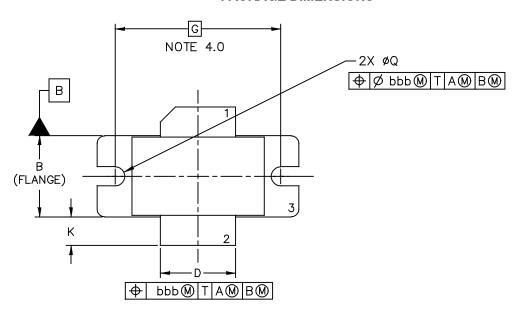
Figure 9. Series Equivalent Source and Load Impedance

ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS

 V_{DD} = 28 Vdc, I_{DQ} = 1700 mA, Pulsed CW, 10 $\mu sec(on),\,10\%$ Duty Cycle

NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 $\rm V$

f	P1dB		P3	dB
(MHz)	Watts	dBm	Watts	dBm
920	363	55.6	447	56.5
940	363	55.6	417	56.2
960	363	55.6	437	56.4


Test Impedances per Compression Level

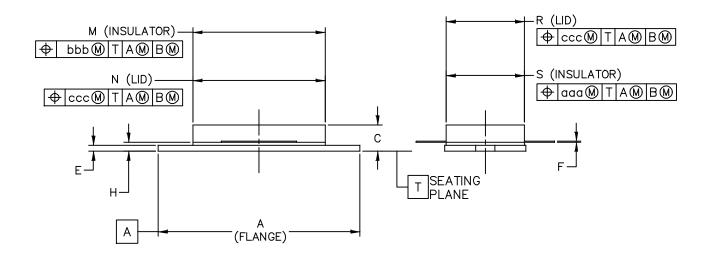
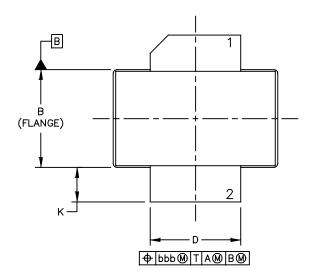
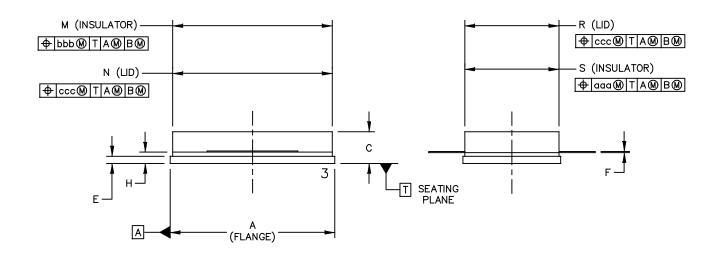

f (MHz)		$\mathbf{Z_{source}}_{\Omega}$	$oldsymbol{Z_{load}}{\Omega}$
920	P1dB	0.94 - j2.68	2.19 - j2.10
940	P1dB	1.18 - j2.65	2.18 - j2.52
960	P1dB	1.24 - j3.10	2.72 - j2.11

Figure 10. Pulsed CW Output Power versus Input Power @ 28 V

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	IOT TO SCALE	
TITLE:		DOCUMENT NO): 98ARB18493C	REV: F
NI-880		CASE NUMBER	R: 465B-04	26 MAY 2011
		STANDARD: NO	N-JEDEC	




NOTES:

- 1.0 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2.0 CONTROLLING DIMENSION: INCH.
- 3.0 DIMENSION H IS MEASURED .030 (0.762) AWAY FROM PACKAGE BODY.
- 4.0 RECOMMENDED BOLT CENTER DIMENSION OF 1.16 (29.57) BASED ON M3 SCREW.

	IN	CH	MIL	LIMETER		INCH			MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN		MAX	MIN		MAX
Α	1.335	1.345	33.91	34.16	R	.515	_	.525	13.08	3 –	13.34
В	.535	.545	13.59	13.84	S	.515	_	.525	13.08	B —	13.34
С	.147	.200	3.73	5.08	aaa	_	.007	_	_	0.178	3 –
D	.495	.505	12.57	12.83	bbb	_	.010	_	_	0.25	4 –
E	.035	.045	0.89	1.14	ccc	_	.015	_	_	0.38	1 —
F	.003	.006	0.08	0.15	_	_	_	_	_	_	_
G	1.100	BSC	27	7.94 BSC	_	_	_	_	_	_	_
Н	.057	.067	1.45	1.70	_	_	_	_	_	_	_
K	.175	.205	4.45	5.21	_	_	_	_	_	_	_
М	.872	.888	22.15	22.56	_	_	_	_	_	_	_
N	.871	.889	22.12	22.58	_	_	_	_	_	_	_
Q	ø.118	ø.138	ø3.00	ø3.51	_	_	_	_	_	_	_
© I	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHAN			MECHANICA	AL OUTLINE PRINT VERSIO			SION NO	т то	SCALE	
TITLE:	TITLE:				DOCUMENT NO: 98ARB18493C				REV:	F	
NI-880				CASE NUMBER: 465B-04 26 MA				MAY 11			
						DARD: NO	DN-JE	EDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO): 98ARB18660C	REV: E	
NI-880S		CASE NUMBER	26 MAY 2011		
		STANDARD: NO	DN-JEDEC		

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM PACKAGE BODY.

	INCH		MILI	MILLIMETER			INCH		М	ILLIMET	ER		
DIM	MIN		MAX	MIN		MAX	DIM	MIN		MAX	MIN		MAX
Α	.905	_	.915	22.99	-	23.24	aaa	_	.007	_	_	0.178	_
В	.535	_	.545	13.59	_	13.84	bbb	_	.010	_	_	0.254	_
С	.147	-	.200	3.73	_	5.08	ccc	_	.015	-	_	0.381	_
D	.495	_	.505	12.57	_	12.83	_	_	_	_	_	_	_
Ε	.035	-	.045	0.89	_	1.14	–	_	_	_	_	_	_
F	.003	-	.006	0.08	_	0.15	–	_	_	_	_	_	_
Н	.057		.067	1.45		1.70	_	_	_	_	_	_	_
K	.170	-	.210	4.32	_	5.33	_	_	_	_	_	_	_
М	.872	_	.888	22.15	_	22.56	_	_	_	_	_	-	_
Ν	.871	_	.889	22.12	_	22.58	_	_	_	_	_	_	_
R	.515	_	.525	13.08	_	13.34	_	_	_	_	_	_	_
S	.515	_	.525	13.08	_	13.34	_	_	_	_	_	_	_

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	L OUTLINE PRINT VERSION NO			
TITLE:	DOCUMENT NO	D: 98ARB18660C	REV: E		
NI-880S	CASE NUMBER	R: 465C-03	26 MAY 2011		
	STANDARD: N	ON-JEDEC			

PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE

Refer to the following documents, tools and software to aid your design process.

Application Notes

· AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2009	Initial Release of Data Sheet
1	Feb. 2012	Table 3, ESD Protection Characteristics, removed the word "Minimum" after the ESD class rating. ESD ratings are characterized during new product development but are not 100% tested during production. ESD ratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitive devices, p. 2.
		Replaced Case Outline 465B-03, Issue D, with 465B-04, Issue F, p. 1, 9-10. Deleted Style 1 pin note on Sheet 2. On Sheet 2, changed dimension B in mm from 13.6-13.8 to 13.59-13.84, changed dimension H in mm from 1.45-1.7 to 1.45-1.70, changed dimension K in mm from 4.44-5.21 to 4.45-5.21, changed dimension M in mm from 22.15-22.55 to 22.15-22.56, changed dimension N in mm from 19.3-22.6 to 22.12-22.58, changed dimension Q in mm from 3-3.51 to 3.00-3.51, changed dimension R and S in mm from 13.1-13.3 to 13.08-13.34.
		Replaced Case Outline 465C-02, Issue D, with 465C-03, Issue E, p. 1, 11-12. Deleted Style 1 pin note on Sheet 2. On Sheet 2, changed dimension B in mm from 13.6-13.8 to 13.59-13.84, changed dimension H in mm from 1.45-1.7 to 1.45-1.70, changed dimension M in mm from 22.15-22.55 to 22.15-22.56, changed dimension N in mm from 19.3-22.6 to 22.12-22.58, changed dimension R and S in mm from 13.1-13.3 to 13.08-13.34.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009, 2012. All rights reserved.

