RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These 300 W CW high efficiency RF power transistors are designed for consumer and commercial cooking applications operating in the 2450 MHz ISM band.

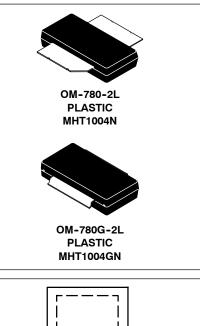
Typical Performance: V_{DD} = 32 Vdc, I_{DQ} = 100 mA

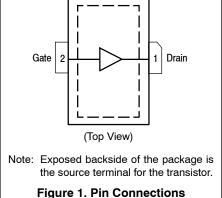
Frequency (MHz)	Signal Type	G _{ps} (dB)	PAE (%)	P _{out} (W)
2450	CW	15.2	57.9	300

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
2450	CW	> 5:1 at all Phase Angles	15.0 (2 dB Overdrive)	32	No Device Degradation

Features


- Characterized with series equivalent large-signal impedance parameters and common source S-parameters
- · Internally matched for ease of use
- Qualified for operation at 32 Vdc
- Integrated ESD protection
- 150°C case operating temperature
- 225°C die temperature capability


Target Applications

- Consumer cooking
- Commercial cooking

2450 MHz, 300 W CW, 32 V RF POWER LDMOS TRANSISTORS FOR CONSUMER AND COMMERCIAL COOKING

Rating		Symbol	Va	ue	Unit	
Drain-Source Voltage		V _{DSS}	-0.5,	+65	Vdc	
Gate-Source Voltage		V _{GS}	-6.0,	+10	Vdc	
Operating Voltage			32,	+0	Vdc	
Storage Temperature Range			-65 to	+150	°C	
Case Operating Temperature Range			-40 to	+150	°C	
Operating Junction Temperature Range (1,2)		TJ	-40 to	+225	°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C			83 4.1		W W/°C	
Table 2. Thermal Characteristics						
Characteristic		Symbol	Value	e ^(2,3)	Unit	
Thermal Resistance, Junction to Case Case Temperature 88°C, 300 W CW, 32 Vdc, I _{DQ} = 100 mA, 2450 MHz		$R_{ extsf{ heta}JC}$	0.2	24	°C/W	
Table 3. ESD Protection Characteristics						
Test Methodology			Cla	ass		
Human Body Model (per JESD22-A114)			2, passes 2500 V			
Machine Model (per EIA/JESD22-A115)			B, passes 250 V			
Charge Device Model (per JESD22-C101)			IV, passes 2000 V			
Fable 4. Moisture Sensitivity Level						
Test Methodology	Rating	Package Peak Temperature U			Uni	
Per JESD22-A113, IPC/JEDEC J-STD-020	3		260		°C	
Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise	se noted)					
Characteristic	Symbol	Min	Тур	Max	Uni	
Off Characteristics						
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	10	μAde	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	1	μAd	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—		1	μAd	
On Characteristics						
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 303 μAdc)	V _{GS(th)}	1.6	2.0	2.4	Vdo	
Gate Quiescent Voltage (V _{DS} = 32 Vdc, I _D = 100 mAdc)	V _{GS(Q)}	—	2.5	_	Vdo	
$(v_{DS} = 32 vuc, ID = 100 IIIAuc)$						

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.nxp.com/RF/calculators</u>.
 Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <u>http://www.nxp.com/RF</u> and search for AN1955.

Table 6. Typical Performance

In Freescale Reference Circuit, 50 ohm system, V_{DD} = 32 Vdc, I_{DQ} = 100 mA, P_{out} = 300 W, 2450 MHz

Characteristic	Symbol	Min	Тур	Мах	Unit
Power Gain	G _{ps}	—	15.2	_	dB
Power Added Efficiency	PAE	—	57.9	_	%
P _{out} @ 1 dB Compression Point	P1dB	—	280	_	W
P _{out} @ 3 dB Compression Point, CW	P3dB	—	320	_	W
Gain Variation over Temperature (+25°C to +125°C)	ΔG	—	-0.05 (1)	_	dB/°C
Output Power Variation over Temperature (+25°C to +125°C)	∆P1dB	—	-0.009		dB/°C

Table 7. Load Mismatch/Ruggedness

In Freescale Reference Circuit, 50 ohm system, I_{DQ} = 100 mA

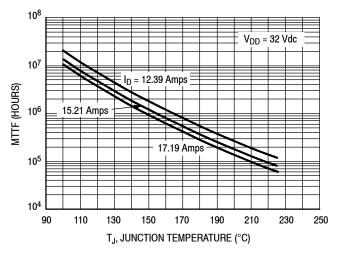

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
2450	CW	> 5:1 at all Phase Angles	15.0 (2 dB Overdrive)	32	No Device Degradation

Table 8. Ordering Information

Device	Tape and Reel Information	Package	
MHT1004NR3	D2 Suffix 250 Unite 22 mm Tana Width 12 inch Bool	OM-780-2L	
MHT1004GNR3	R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel	OM-780G-2L	

1. Extrapolated from measured power up to 275 W at 125°C.

TYPICAL CHARACTERISTICS

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.nxp.com/RF. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 2. MTTF versus Junction Temperature - CW

2450 MHz REFERENCE CIRCUIT — $2'' \times 3''$ (5.1 cm \times 7.6 cm)

Table 9. 2450 MHz Performance (In Freescale Reference Circuit, 50 ohm system) V_{DD} = 32 Vdc, I_{DQ} = 100 mA, T_A = 25°C

Frequency (MHz)	P _{in} (W)	G _{ps} (dB)	η _D (%)	PAE (%)	P _{out} (W)
2400	8.6	15.4	59.3	57.7	300
2450	9.0	15.2	59.6	57.9	300
2500	15.0	13.0	58.9	56.3	300

Table 10. Load Mismatch/Ruggedness (In Freescale Reference Circuit)

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
2450	CW	> 5:1 at all Phase Angles	15.0 (2 dB Overdrive)	32	No Device Degradation

2450 MHz REFERENCE CIRCUIT — 2" × 3" (5.1 cm × 7.6 cm)

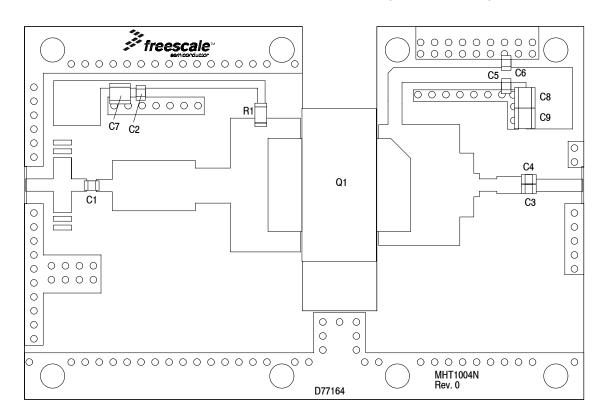


Figure 3. MHT1004N Production Test Circuit Component Layout

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6	27 pF Chip Capacitors	ATC600F270JT250XT	ATC
C7, C8, C9	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
Q1	RF Power LDMOS Transistor	MHT1004N	NXP
R1	10 Ω, 1/4 W Chip Resistor	CRCW120610R0JNEA	Vishay
РСВ	Rogers RT6035HTC, 0.030", $\varepsilon_r = 3.5$	D77164	MTL

6

TYPICAL CHARACTERISTICS — 2450 MHz REFERENCE CIRCUIT

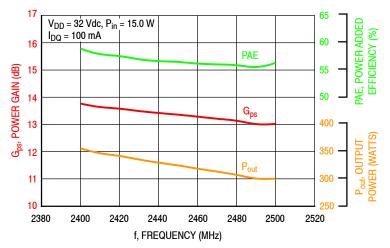


Figure 4. Power Gain, Power Added Efficiency and Output Power versus Frequency at a Constant Input Power

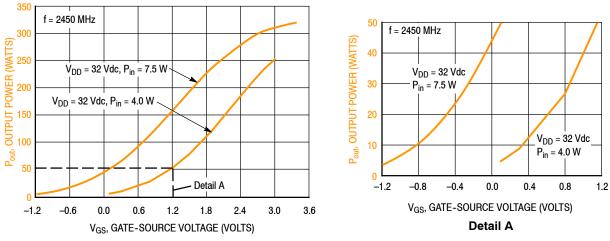


Figure 5. Output Power versus Gate-Source Voltage

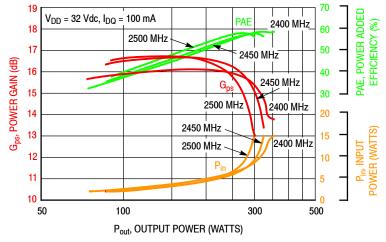


Figure 6. Power Gain, Power Added Efficiency and Input Power versus Output Power and Frequency

TYPICAL CHARACTERISTICS — 2450 MHz REFERENCE CIRCUIT

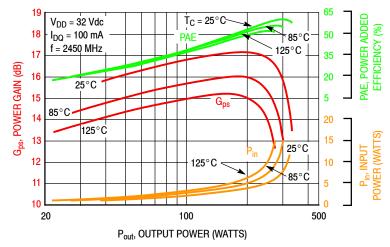
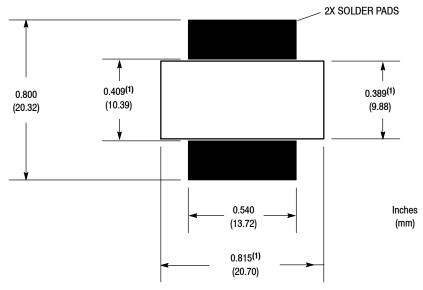



Figure 7. Power Gain, Power Added Efficiency and Input Power versus Output Power and Temperature

8

1. Slot dimensions are minimum dimensions and exclude milling tolerances

Figure 8. PCB Pad Layout for OM-780-2L

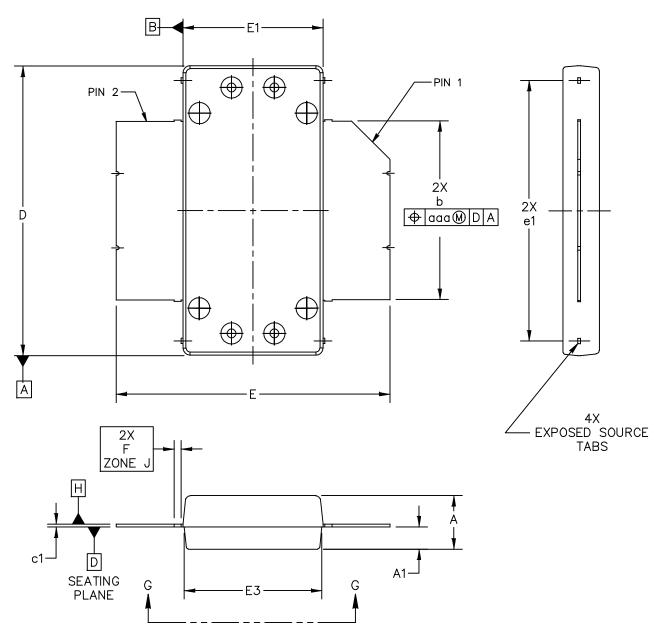



Figure 9. PCB Pad Layout for OM-780G-2L

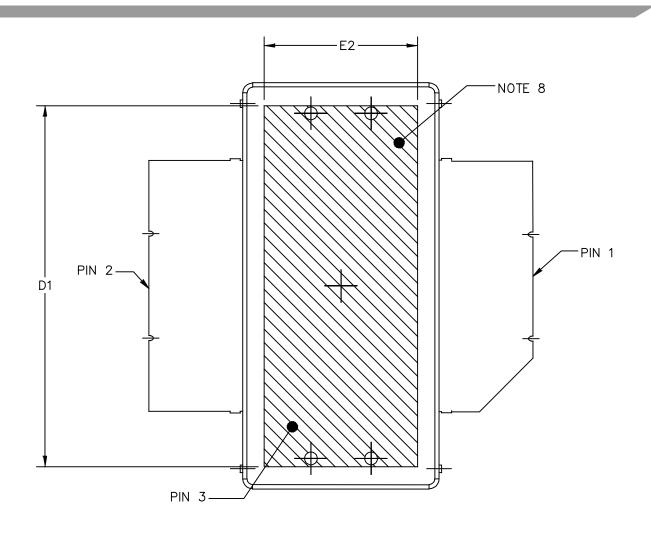


Figure 10. Product Marking

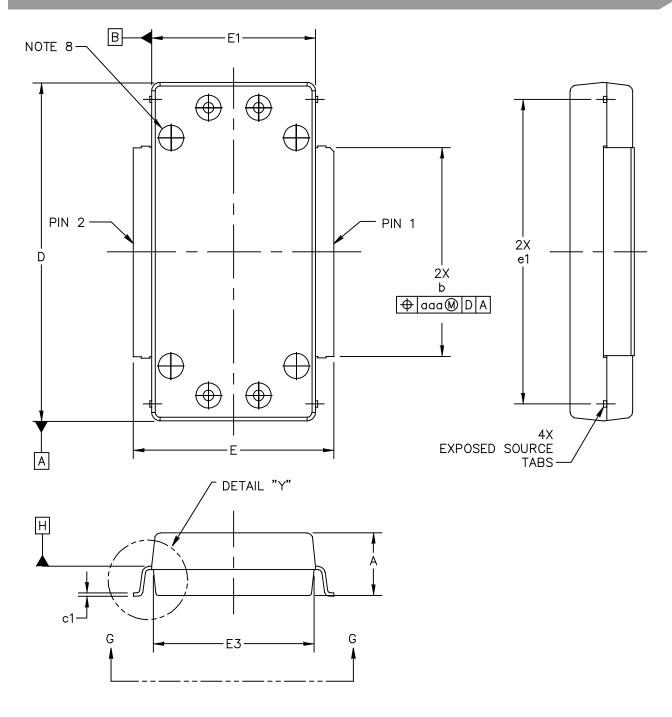
PACKAGE DIMENSIONS

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUME	NT NO: 98ASA10831D	REV: C
OM780-2 STRAIGHT LEAD		STANDAF	D: NON-JEDEC	
		SOT1693	-1	22 JAN 2016

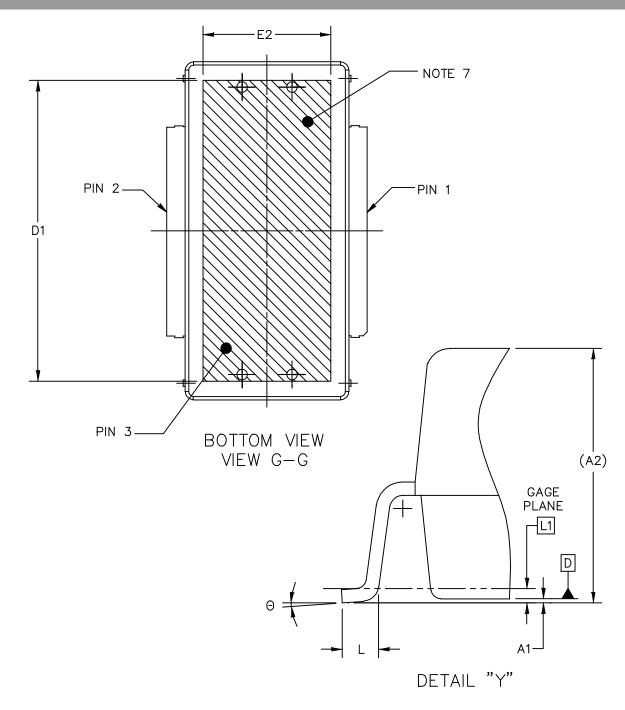
BOTTOM VIEW VIEW G-G

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA10831D	REV: C
OM780-2 STRAIGHT LEAD		STANDAF	RD: NON-JEDEC	
		SOT1693	-1	22 JAN 2016

NOTES:


- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A1 APPLIES WITHIN ZONE "J" ONLY
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

STYLE 1:			
PIN	1	_	DRAIN
PIN	2	_	GATE
PIN	3	—	SOURCE


	ING	INCH		MILLIMETER		IN	ICH	MILLIM	IETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	0.148	. 152	3. 76	3.86	b	. 497	. 503	12. 62	12. 78
A 1	. 059	. 065	1. 50	1.65	c1	. 007	. 011	0.18	0. 28
D	. 808	. 812	20. 52	20. 62	e1	. 721	. 729	18. 31	18. 52
D1	. 720		18. 29						
E	. 762	. 770	19.36	19.56	aaa		004	0.	10
E1	. 390	. 394	9.91	10.01					
E2	. 306		7.77						
E3	. 383	. 387	9. 73	9.83					
F	. 025	BSC	0.6	35 BSC					
(NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OUTLINE PRINT VERSION NOT TO SCAL				O SCALE			
TITLE:	TITLE: OM780-2					DOCUMENT NO: 98ASA10831D REV: C			
						STANDARD: NON-JEDEC			
	STRAIGHT LEAD				-	SOT1693-1 22 JAN 2016			

MHT1004N MHT1004GN

12

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00442D	REV: A
OM-780-2 GULI	OM-780-2 GULL		D: NON-JEDEC	
		SOT1815-	-1	05 FEB 2016

©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:			DOCUMEN	IT NO: 98ASA00442D	REV: A
OM-780-2 GULL			STANDAR	D: NON-JEDEC	
			SOT1815-	-1	05 FEB 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM A AND B TO BE DETERMINED AT DATUM PLANE H.
- 7. HATCHING REPRESENT THE EXPOSED AREA OF THE HEAT SLUG.THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.
- 8. DIMPLED HOLE REPRESENTS INPUT SIDE.
- 9. DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM D. THE POSITIVE VALUE IMPLIES THAT THE BOTTOM OF THE PACKAGE IS HIGHER THAN THE BOTTOM OF THE LEAD.

	IN	INCH		MILLIMETER		I	NCH	MILLIN	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	. 148	. 152	3. 76	3.86	b	. 497	. 503	12.62	12. 78
A1	003	. 003	-0.08	0.08	c1	. 007	. 011	0. 18	0. 28
A2	(.1	50)	(3	. 81)	Θ	0°	8°	0°	8°
D	. 808	. 812	20. 52	20.62	e1	. 721	. 729	18. 31	18. 52
D1	. 720		18. 29		aaa	.	. 004	0.	10
E	. 472	. 480	11.99	12.19					
E1	. 390	. 394	9.91	10.01					
E2	. 306		7.77						
E3	. 383	. 387	9. 73	9.83					
L	. 018	. 024	0.46	0.61					
L1	. 01	BSC	0.25 BSC						
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL				AL OU	TLINE	PRINT VER	SION NOT T	O SCALE	
TITLE:						DOCUMENT NO: 98ASA00442D REV: A			
OM-780-2 GULL						STANDARD: NON-JEDEC			
					SOT1815-	-1	05	FEB 2016	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

1. Go to http://www.nxp.com/RF

- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2016	Initial Release of Data Sheet
1	Aug. 2016	 Typical Performance table: updated Gain Variation over Temperature and Output Power Variation over Temperature typical values to reflect measured data, p. 3

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2016 Freescale Semiconductor, Inc.

Document Number: MHT1004N Rev. 1, 8/2016