

. 'eescale Semiconductor Technical Data

Document Number: MRFE6P3300H

Rev. 2, 12/2009

VRoHS

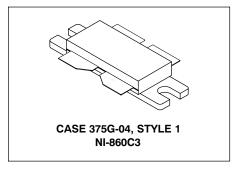
RF Power Field Effect Transistor

N-Channel Enhancement-Mode Lateral MOSFET

Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain and broadband performance of this device make it ideal for large- signal, common- source amplifier applications in 32 volt analog or digital television transmitter equipment.

• Typical Narrowband Two-Tone Performance @ 860 MHz: V_{DD} = 32 Volts, I_{DQ} = 1600 mA, P_{out} = 270 Watts PEP

Power Gain — 20.4 dB Drain Efficiency — 44.8% IMD — -28.8 dBc


 Capable of Handling 10:1 VSWR, @ 32 Vdc, 860 MHz, 3 dB Overdrive, Designed for Enhanced Ruggedness

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Designed for Push-Pull Operation Only
- Qualified Up to a Maximum of 32 V_{DD} Operation
- Integrated ESD Protection
- · RoHS Compliant
- In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
 R5 Suffix = 50 Units per 56 mm, 13 inch Reel.

MRFE6P3300HR3

860 MHz, 300 W, 32 V LATERAL N-CHANNEL RF POWER MOSFET

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +66	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +12	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 80°C, 300 W CW		0.23	
Case Temperature 82°C, 220 W CW		0.24	
Case Temperature 79°C, 100 W CW		0.27	
Case Temperature 81°C, 60 W CW		0.27	

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
 Select Documentation/Application Notes AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22-A114)	3B (Minimum)		
Machine Model (per EIA/JESD22-A115)	C (Minimum)		
Charge Device Model (per JESD22-C101)	IV (Minimum)		

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (1)	·				
Zero Gate Voltage Drain Leakage Current ⁽⁴⁾ (V _{DS} = 66 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current ⁽⁴⁾ (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics (1)					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 350 μAdc)	V _{GS(th)}	1	2.2	3	Vdc
Gate Quiescent Voltage ⁽³⁾ (V _{DD} = 32 Vdc, I _D = 1600 mAdc, Measured in Functional Test)	V _{GS(Q)}	2	2.8	4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2.4 Adc)	V _{DS(on)}	_	0.22	0.3	Vdc
Dynamic Characteristics (1,2)					
Reverse Transfer Capacitance ⁽⁴⁾ (V _{DS} = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	1.22	_	pF
Output Capacitance (4) (V _{DS} = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	217	_	pF
Input Capacitance (1) $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc} \pm 30 \text{ mV(rms)ac } @ 1 \text{ MHz})$	C _{iss}	_	1060	_	pF

Functional Tests $^{(3)}$ (In Freescale Narrowband Test Fixture, 50 ohm system) V_{DD} = 32 Vdc, I_{DQ} = 1600 mA, P_{out} = 270 W PEP, f1 = 857 MHz, f2 = 863 MHz

Power Gain	G _{ps}	19	20.4	23	dB
Drain Efficiency	η_{D}	41	44.8	_	%
Intermodulation Distortion	IMD	_	-28.8	-27	dBc
Input Return Loss	IRL	_	-18.4	-9	dB

- 1. Each side of the device measured separately.
- 2. Part internally matched both on input and output.
- 3. Measurement made with device in push-pull configuration.
- 4. Drains are tied together internally as this is a total device value.

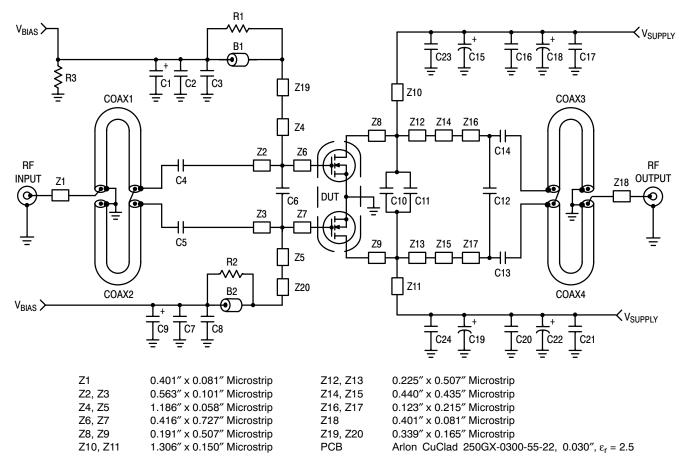


Figure 1. 820-900 MHz Narrowband Test Circuit Schematic

Table 5. 820-900 MHz Narrowband Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
B1, B2	Ferrite Beads, Short	2743019447	Fair-Rite
C1, C9	1.0 μF, 50 V Tantulum Chip Capacitors	T491C105K050AT	Kemet
C2, C7, C17, C21	0.1 μF, 50 V Chip Capacitors	CDR33BX104AKYS	Kemet
C3, C8, C16, C20	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C4, C5, C13, C14	100 pF Chip Capacitors	ATC100B101JT500XT	ATC
C6, C12	8.2 pF Chip Capacitors	ATC100B8R2JT500XT	ATC
C10	9.1 pF Chip Capacitor	ATC100B9R1BT500XT	ATC
C11	1.8 pF Chip Capacitor	ATC100B1R8BT500XT	ATC
C15, C19	47 μF, 50 V Electrolytic Capacitors	EMVY500ADA470MF80G	Nippon
C18, C22	470 μF, 63 V Electrolytic Capacitors	ESME630ELL471MK25S	United Chemi-Con
C23, C24	22 pF Chip Capacitors	ATC100B220FT500XT	ATC
Coax1, 2, 3, 4	50 Ω, Semi Rigid Coax, 2.06" Long	UT-141A-TP	Micro-Coax
R1, R2	10 Ω, 1/4 W Chip Resistors	CRCW120610R0FKEA	Vishay
R3	1 kΩ, 1/4 W Chip Resistor	CRCW12061001FKEA	Vishay

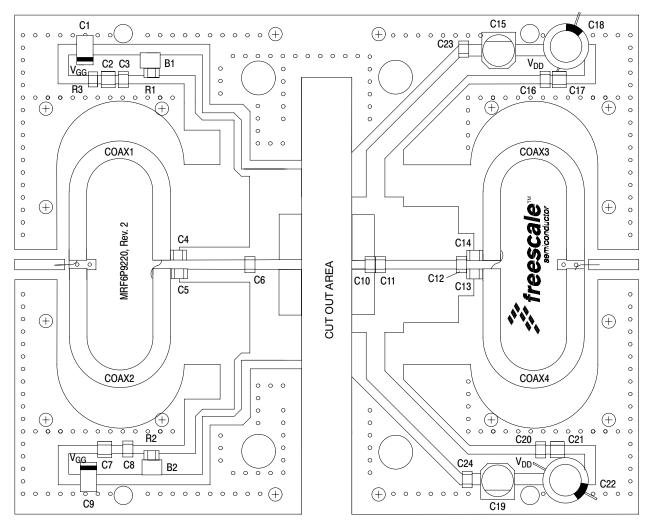


Figure 2. 820-900 MHz Narrowband Test Circuit Component Layout

TYPICAL NARROWBAND CHARACTERISTICS

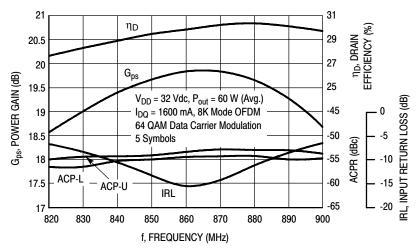


Figure 3. Single-Carrier OFDM Broadband Performance @ 60 Watts Avg.

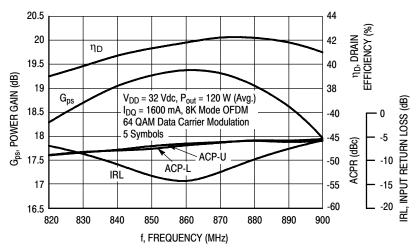


Figure 4. Single-Carrier OFDM Broadband Performance @ 120 Watts Avg.

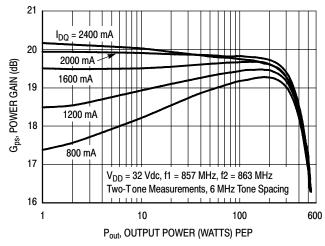


Figure 5. Two-T one Power Gain versus
Output Power

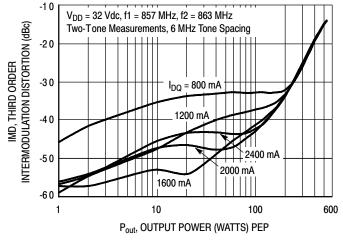


Figure 6. Third Order Intermodulation Distortion versus Output Power

MRFE6P3300HR3

TYPICAL NARROWBAND CHARACTERISTICS

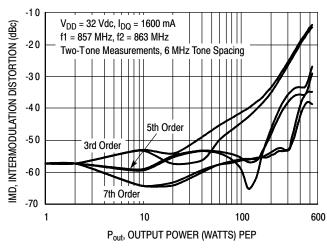


Figure 7. Intermodulation Distortion Products versus Output Power

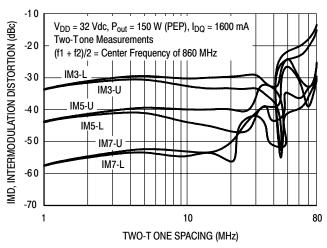


Figure 8. Intermodulation Distortion Products versus Tone Spacing

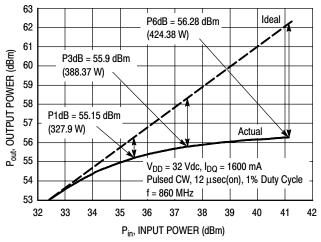


Figure 9. Pulsed CW Output Power versus Input Power

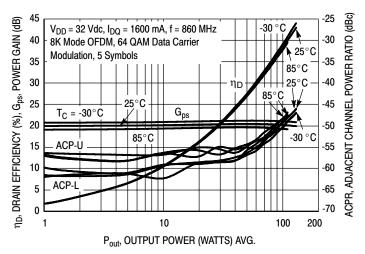
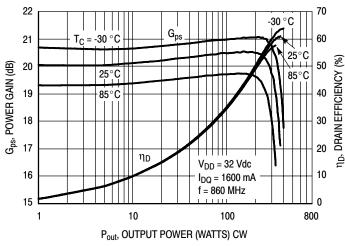
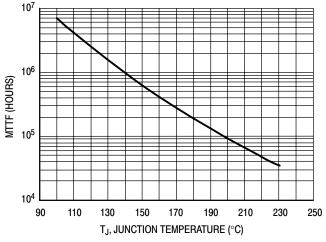



Figure 10. Single-Carrier DVBT OFDM ACPR, Power Gain and Drain Efficiency versus Output Power


TYPICAL NARROWBAND CHARACTERISTICS

21 20 Gps, POWER GAIN (dB) 19 18 17 I_{DQ} = 1600 mA 32 V f = 860 MHz V_{DD} = 28 V 30 V 16 0 50 100 150 200 250 300 350 400 Pout, OUTPUT POWER (WATTS) CW

Figure 11. Power Gain and Drain Efficiency versus CW Output Power

Figure 12. Power Gain versus Output Power

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 32 Vdc, P_{out} = 270 W PEP, and η_D = 44.8%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 13. MTTF versus Junction Temperature

DIGITAL TEST SIGNALS

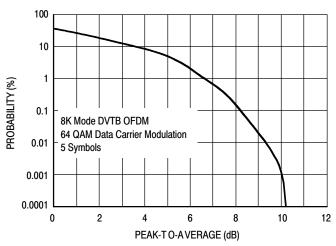


Figure 14. Single-Carrier DVTB OFDM

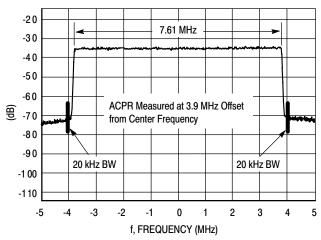
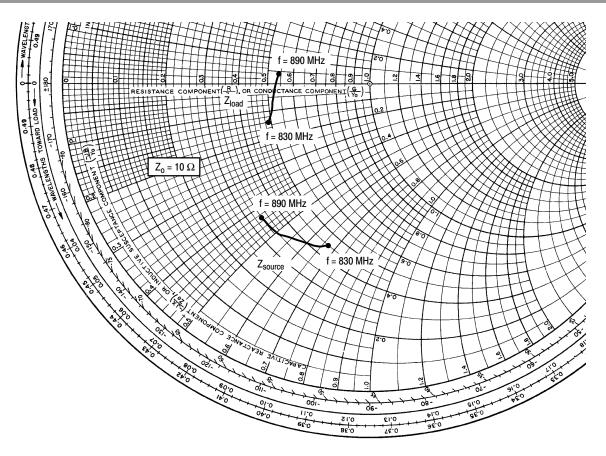



Figure 15. 8K Mode DVBT OFDM Spectrum

 V_{DD} = 32 Vdc, I_{DQ} = 1600 mA, P_{out} = 270 W PEP

f MHz	$\mathbf{Z_{source}}_{\Omega}$	$\mathbf{Z_{load}}_{\Omega}$
830	4.52 - j6.73	4.89 - j1.35
845	4.22 - j6.38	5.06 - j1.01
860	3.89 - j5.81	5.18 - j0.58
875	3.54 - j5.10	5.27 - j0.11
890	3.39 - j4.32	5.36 + j0.43

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

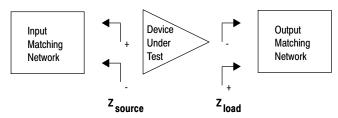
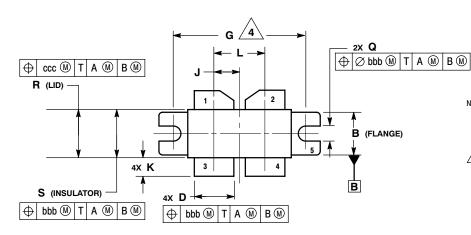
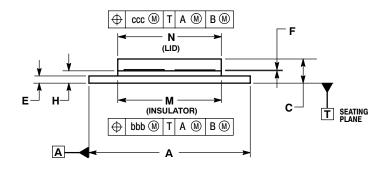




Figure 16. 820-900 MHz Narrowband Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS

CASE 375G-04 ISSUE G NI-860C3

- NOTES:
 1. CONTROLLING DIMENSION: INCH.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
 3. DIMENSION H TO BE MEASURED 0.030 (0.762)
 AWAY FROM PACKAGE BODY.
 4. RECOMMENDED BOLT CENTER DIMENSION OF 1.140 (28.96) BASED ON 3M SCREW.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.335	1.345	33.91	34.16
В	0.380	0.390	9.65	9.91
С	0.180	0.224	4.57	5.69
D	0.325	0.335	8.26	8.51
E	0.060	0.070	1.52	1.78
F	0.004	0.006	0.10	0.15
G	1.100 BSC		27.94 BSC	
Н	0.097	0.107	2.46	2.72
J	0.212	5 BSC	5.397 BSC	
K	0.135	0.165	3.43	4.19
L	0.425	BSC	10.8	BSC
M	0.852	0.868	21.64	22.05
N	0.851	0.869	21.62	22.07
Q	0.118	0.138	3.00	3.30
R	0.395	0.405	10.03	10.29
S	0.394	0.406	10.01	10.31
bbb	0.010 REF 0.25 RE		REF	
ccc	0.015 REF		0.38	REF

- STYLE 1:
 PIN 1. DRAIN
 2. DRAIN
 3. GATE
 4. GATE
 5. SOURCE

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2007	Initial Release of Data Sheet
1	Dec. 2008	Table 4, Dynamic Characteristics, corrected C _{iss} test condition to indicate AC stimulus on the V _{GS} connection versus the V _{DS} connection, corrected Typ value from 106 to 1060 pF, p. 2
		• Fig. 1, Test Circuit Schematic, Z-list, changed Z4, Z5 from 1.013" x 0.058" Microstrip to 1.186" x 0.058" Microstrip; Z10, Z11 from 1.054" x 0.150" Microstrip to 1.306" x 0.150" Microstrip; and Z19, Z20 from 0.165" x 0.339" Microstrip to 0.339" x 0.165" Microstrip; also separated Z1 and Z18 into two lines in Z-list, p. 3
		Updated PCB information to show more specific material details, Fig. 1, Test Circuit Schematic, p. 3
		Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part numbers, p. 3
2	Dec. 2009	Data sheet revised to reflect part status change, removing MRFE6P3300HR5. Refer to PCN13420. (See Rev. 1 data sheet for MRFE6P3300HR5.)

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140

Fax: +1-303-675-2150

LDCF or Free scale Semiconductor @hibbert group.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2009. All rights reserved.

