

. eescale Semiconductor

Technical Data

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

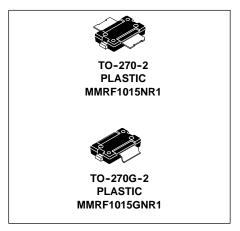
Designed for Class A or Class AB power amplifier applications with frequencies up to 2000 MHz. Suitable for analog and digital modulation and multicarrier amplifier applications.

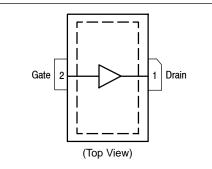
Typical Two-Tone Performance at 960 MHz: V_{DD} = 28 Vdc, I_{DQ} = 125 mA, P_{out} = 10 W PEP Power Gain — 18 dB Drain Efficiency — 32% IMD — -37 dBc

 Capable of Handling 10:1 VSWR @ 28 Vdc, 960 MHz, 10 W CW Output Power

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- · On-Chip RF Feedback for Broadband Stability
- Qualified Up to a Maximum of 32 V_{DD} Operation
- · Integrated ESD Protection
- 225°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units, 24 mm Tape Width, 13-inch Reel.


Document Number: MMRF1015N Rev. 0, 7/2014


7. 0, 1/2014

√RoHS

MMRF1015NR1 MMRF1015GNR1

1-2000 MHz, 10 W, 28 V CLASS A/AB RF POWER MOSFETs

Note: Exposed backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V_{GS}	-0.5, +12	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	T_J	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 80°C, 10 W PEP	$R_{\theta JC}$	2.85	°C/W

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	III

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 68 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 100 \mu \text{Adc})$	V _{GS(th)}	1.5	2.3	3	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 125 mAdc, Measured in Functional Test)	$V_{GS(Q)}$	2	3.1	4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.3 Adc)	V _{DS(on)}	0.15	0.27	0.35	Vdc
Dynamic Characteristics			•	•	
Reverse Transfer Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.32	_	pF
Output Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	10	_	pF
Input Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	23	_	pF

Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 125 \text{ mA}$, $P_{out} = 10 \text{ W PEP}$, f = 960 MHz, Two-Tone Test, 100 kHz Tone Spacing

Power Gain	G _{ps}	17.5	18	20.5	dB
Drain Efficiency	η_{D}	31	32	_	%
Intermodulation Distortion	IMD	_	-37	-33	dBc
Input Return Loss	IRL		-18	-10	dB

Typical Performance (In Freescale 450 MHz Demo Board, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 150 \text{ mA}$, $P_{out} = 10 \text{ W PEP}$, 420-470 MHz, Two-Tone Test, 100 kHz Tone Spacing

Power Gain	G _{ps}	_	20	_	dB
Drain Efficiency	ηD	_	33	_	%
Intermodulation Distortion	IMD	_	-40	_	dBc
Input Return Loss	IRL	_	-10	_	dB

^{1.} Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

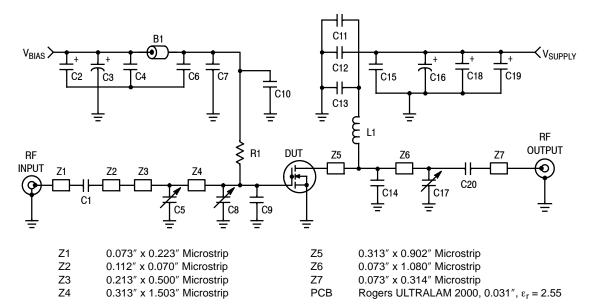


Figure 2. MMRF1015NR1 Test Circuit Schematic — 900 MHz

Table 6. MMRF1015NR1 Test Circuit Component Designations and Values — 900 MHz

Part	Description	Part Number	Manufacturer
B1	Ferrite Bead	2743019447	Fair-Rite
C1, C6, C11, C20	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C2, C18, C19	22 μF, 35 V Tantalum Capacitors	T491D226K035AT	Kemet
C3, C16	220 μF, 63 V Electrolytic Capacitors, Radial	2222-136-68221	Vishay
C4, C15	0.1 μF Chip Capacitors	CDR33BX104AKWS	Kemet
C5, C8, C17	0.8-8.0 pF Variable Capacitors, Gigatrim	272915L	Johanson
C7, C12	24 pF Chip Capacitors	ATC100B240JT500XT	ATC
C9, C10, C13	6.8 pF Chip Capacitors	ATC100B6R8JT500XT	ATC
C14	7.5 pF Chip Capacitor	ATC100B7R5JT500XT	ATC
L1	12.5 nH Inductor	A04T-5	Coilcraft
R1	1 kΩ, 1/4 W Chip Resistor	CRCW12061001FKEA	Vishay

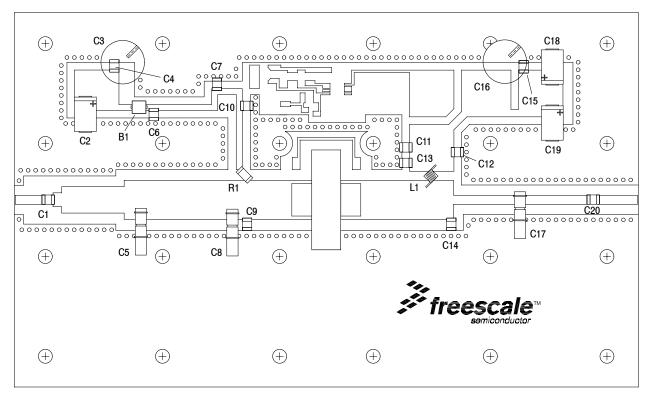


Figure 3. MMRF1015NR1 Test Circuit Component Layout — 900 MHz

TYPICAL CHARACTERISTICS — 900 MHz

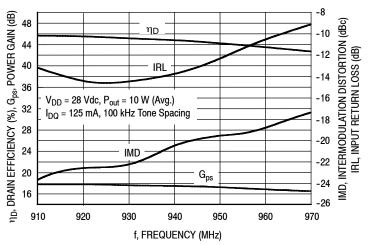


Figure 4. Two-Tone Wideband Performance
@ Pout = 10 Watts

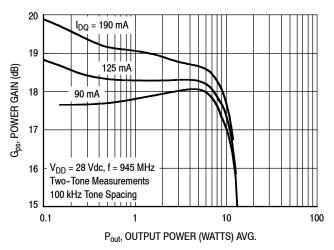


Figure 5. Two-Tone Power Gain versus
Output Power

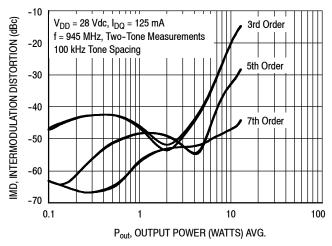


Figure 6. Intermodulation Distortion Products versus Output Power

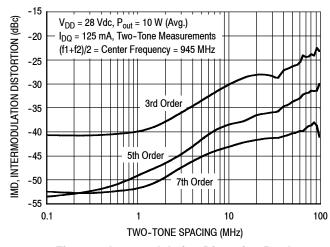


Figure 7. Intermodulation Distortion Products versus Tone Spacing

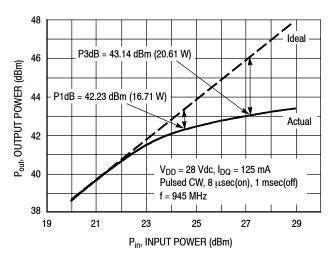
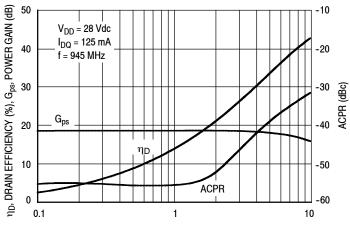



Figure 8. Pulse CW Output Power versus Input Power

TYPICAL CHARACTERISTICS — 900 MHz

 P_{out} , OUTPUT POWER (WATTS) AVG.

Figure 9. Single-Carrier CDMA ACPR, Power Gain and Power Added Efficiency versus Output Power

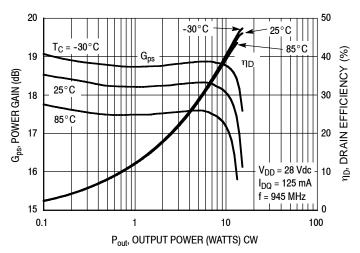


Figure 10. Power Gain and Power Added Efficiency versus Output Power

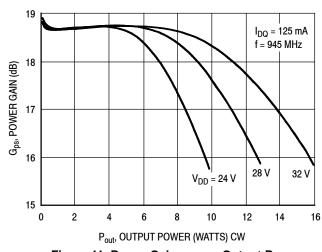


Figure 11. Power Gain versus Output Power

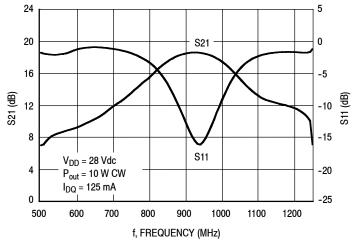
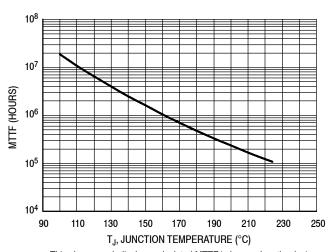
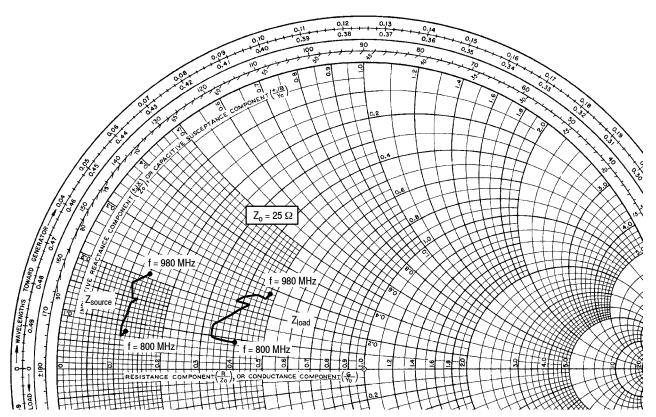



Figure 12. Broadband Frequency Response

TYPICAL CHARACTERISTICS



This above graph displays calculated MTTF in hours when the device is operated at V_DD = 28 Vdc, P_out = 10 W PEP, and η_D = 32%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 13. MTTF Factor versus Junction Temperature

 V_{DD} = 28 Vdc, I_{DQ} = 125 mA, P_{out} = 10 W PEP

		out
f MHz	$\mathbf{Z_{source}}_{\Omega}$	$oldsymbol{Z_{load}}{\Omega}$
800	3.1 + j1.9	10.1 + j2.3
820	2.8 + j1.7	8.3 + j2.5
840	2.7 + j2.2	8.2 + j3.3
860	3.1 + j3.4	9.8 + j4.8
880	3.3 + j3.8	10.6 + j5.6
900	2.9 + j3.7	9.5 + j5.5
920	2.8 + j4.4	10.1 + j5.9
940	3.0 + j4.7	11.0 + j6.4
960	3.2 + j4.9	11.8 + j6.6
980	3.6 + j5.2	12.1 + j7.1

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

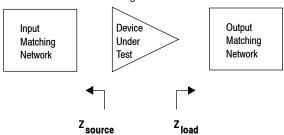


Figure 14. Series Equivalent Source and Load Impedance — 900 MHz

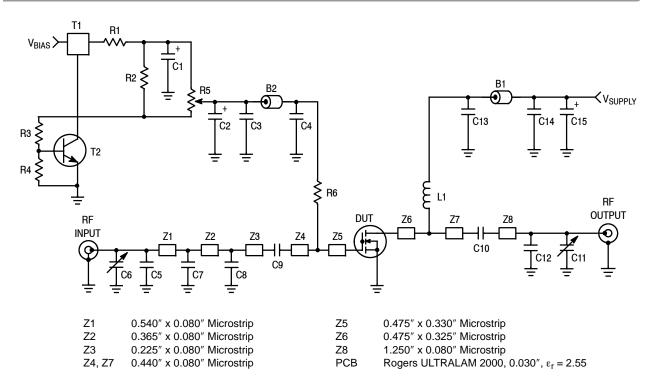


Figure 15. MMRF1015NR1 Test Circuit Schematic — 450 MHz

Table 7. MMRF1015NR1 Test Circuit Component Designations and Values — 450 MHz

Part	Part Description		Manufacturer
B1, B2	Ferrite Bead	2743019447	Fair-Rite
C1	1 μF, 35 V Tantalum Capacitor	T491C105K050AT	Kemet
C2, C15	22 μF, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C3, C14	0.1 μF Chip Capacitors	C1210C104K5RAC	Kemet
C4, C9, C10, C13	330 pF Chip Capacitors	ATC700A331JT150XT	ATC
C5	4.3 pF Chip Capacitor	ATC100B4R3JT500XT	ATC
C6, C11	0.6-8.0 pF Variable Capacitors	27291SL	Johanson
C7, C8, C12	4.7 pF Chip Capacitors	ATC100B4R7JT500XT	ATC
L1	39 μH Chip Inductor	ISC-1210	Vishay
R1	10 Ω Chip Resistor	CRCW080510R0FKEA	Vishay
R2	1 kΩ Chip Resistor	CRCW08051001FKEA	Vishay
R3	1.2 kΩ Chip Resistor	CRCW08051201FKEA	Vishay
R4	2.2 kΩ Chip Resistor	CRCW08052201FKEA	Vishay
R5	5 kΩ Potentiometer	1224W	Bourns
R6	1 kΩ Chip Resistor	CRCW12061001FKEA	Vishay
T1	5 Volt Regulator, Micro 8	LP2951CDMR2G	On Semiconductor
T2	NPN Transistor, SOT-23	BC847ALT1G	On Semiconductor

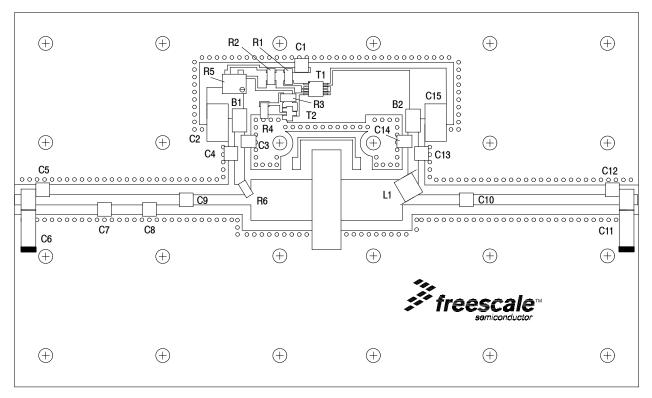


Figure 16. MMRF1015NR1 Test Circuit Component Layout — 450 MHz

TYPICAL CHARACTERISTICS — 450 MHz

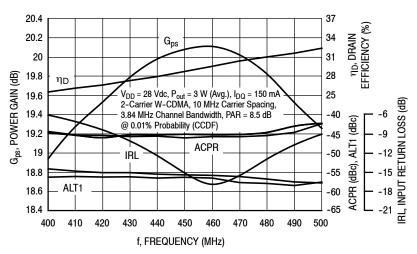


Figure 17. 2-Carrier W-CDMA Broadband Performance @ Pout = 3 Watts Avg.

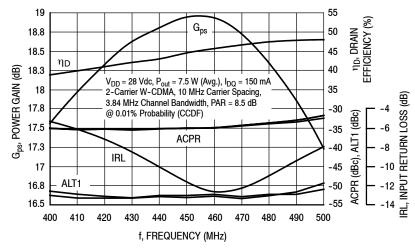


Figure 18. 2-Carrier W-CDMA Broadband Performance @ Pout = 7.5 Watts Avg.

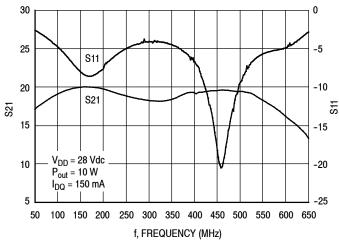


Figure 19. Broadband Frequency Response

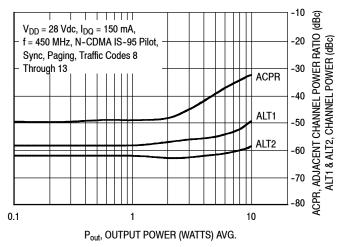
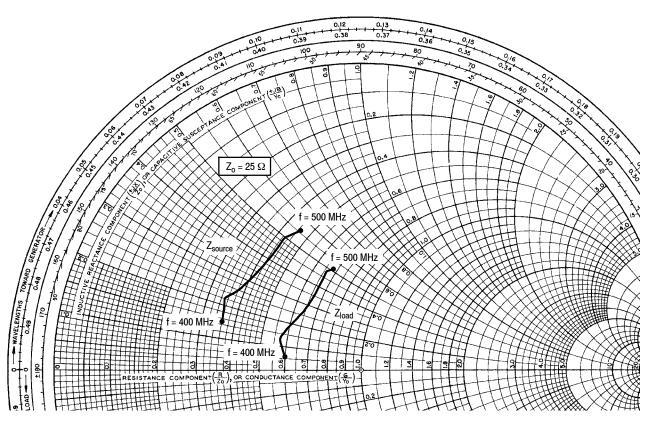



Figure 20. Single-Carrier N-CDMA ACPR, ALT1 and ALT2 versus Output Power

 V_{DD} = 28 Vdc, I_{DQ} = 150 mA, P_{out} = 10 W PEP

f MHz	$\mathbf{Z_{source}}_{\Omega}$	$\mathbf{Z_{load}}_{\Omega}$
400	9.0 + j3.8	15.0 + j1.4
420	8.8 + j5.4	14.3 + j3.3
440	9.6 + j6.6	15.0 + j4.7
460	10.6 + j9.5	16.3 + j7.3
480	10.7 + j12.6	16.4 + j11.1
500	11.5 + j13.9	16.9 + j12.7

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

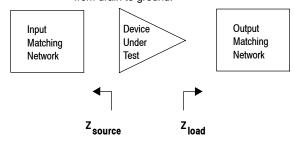
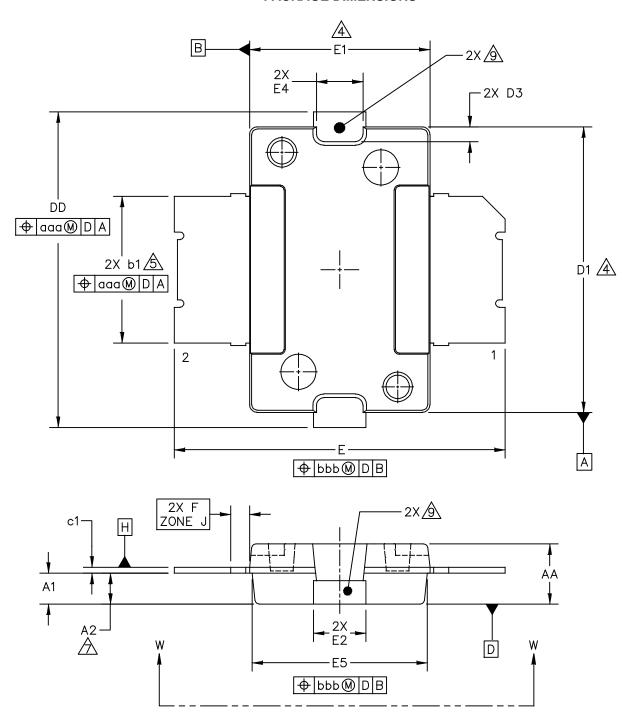
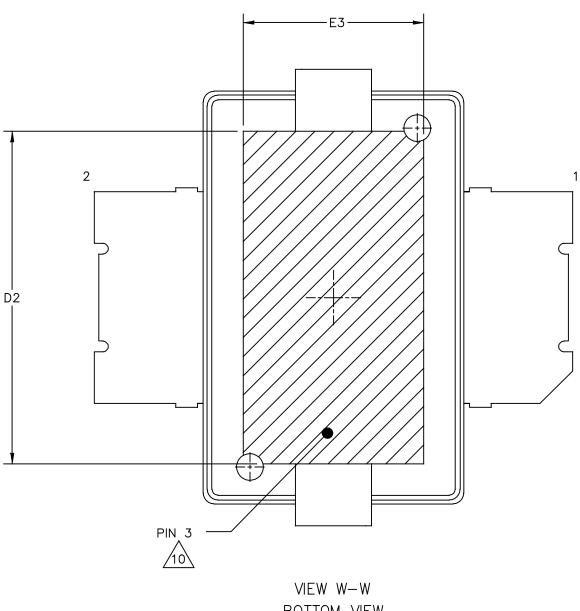



Figure 21. Series Equivalent Source and Load Impedance — 450 MHz



PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUME	NT NO: 98ASH98117A	REV: P
TO-270-2		STANDAF	RD: NON-JEDEC	
			02	JUN 2014

BOTTOM VIEW

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	INC. MECHANICAL OU		PRINT VERSION NOT TO	SCALE
TITLE:		DOCUME	NT NO: 98ASH98117A	REV: P
TO-270-2		STANDAF	RD: NON-JEDEC	
			02	JUN 2014

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.

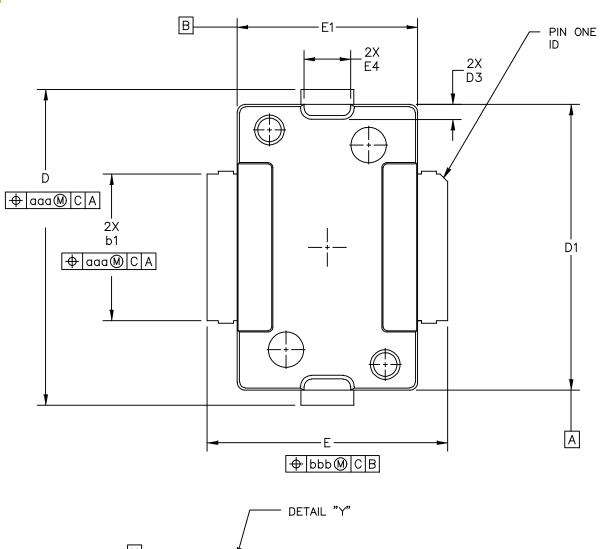
DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

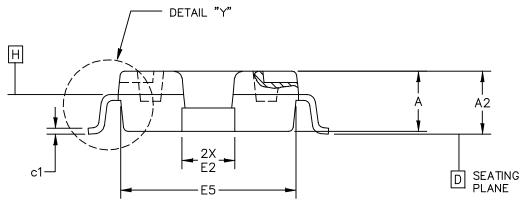
DIMENSION 61 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION.

- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

DIMENSION A2 APPLIES WITHIN ZONE J ONLY.

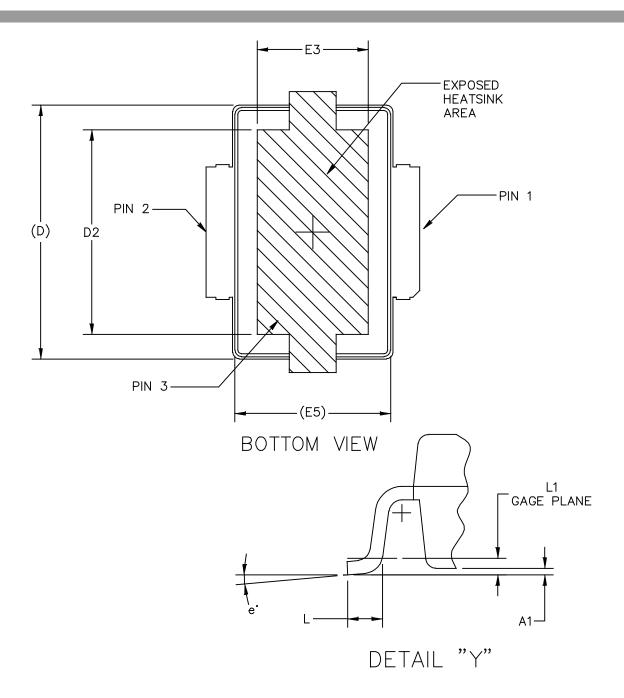
- 8. DIMENSIONS DD AND E2 DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH (10.92 MM) FOR DIMENSION DD AND 0.080 INCH (2.03 MM) FOR DIMENSION E2. DIMENSIONS DD AND E2 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE D.


THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.


10). HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. DIMENSIONS D2 AND E3 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF THE HEAT SLUG.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.078	.082	1.98	2.08	E4	.058	.066	1.47	1.68
A1	.039	.043	0.99	1.09	E5	.231	.235	5.87	5.97
A2	.040	.042	1.02	1.07	F	.025 BSC		0.64 BSC	
DD	.416	.424	10.57	10.77	b1	.193	.199	4.90	5.06
D1	.378	.382	9.60	9.70	c1	.007	.011	0.18	0.28
D2	.290		7.37		aaa	.0.	04	0.	10
D3	.016	.024	0.41	0.61	bbb	.0	08	0.	20
Е	.436	.444	11.07	11.28					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150		3.81						

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE TITLE: DOCUMENT NO: 98ASH98117A REV: P T0 - 270 - 2STANDARD: NON-JEDEC 02 JUN 2014



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO: 98ASA99301D		REV: C
TO-270 GULL WING		CASE NUMBER: 1265A-03		02 JUL 2007
GOLL WING		STANDARD: JE	DEC TO-270 BA	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO	REV: C		
TO-270 GULL WING		CASE NUMBER: 1265A-03		02 JUL 2007	
GOLL WING		STANDARD: JE	DEC TO-270 BA		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION 61 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS "D AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

STYLE 1:

PIN 1 - DRAIN PIN 2 - GATE PIN 3 - SOURCE

	INCH MIL		MILL	LIMETER		INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.078	.082	1.98	2.08	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1		.01 BSC 0		0.25 BSC	
A2	.077	.088	1.96	2.24	b1	.193	.199	4.90	5.06	
D	.416	.424	10.57	10.77	c1	.007	.011	0.18	0.28	
D1	.378	.382	9.60	9.70	е	2.	8.	2.	8.	
D2	.290	_	7.37	_	aaa	.004 0.10		.10		
D3	.016	.024	0.41	0.61						
Е	.316	.324	8.03	8.23						
E1	.238	.242	6.04	6.15						
E2	.066	.074	1.68	1.88						
E3	.150	_	3.81	-						
E4	.058	.066	1.47	1.68						
E5	.231	.235	5.87	5.97						
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			MECHANICA	AL OUT	LINE	PRINT VER	SION NOT T	O SCALE	

TITLE:

TO - 270GULL WING DOCUMENT NO: 98ASA99301D CASE NUMBER: 1265A-03

02 JUL 2007

REV: C

STANDARD: JEDEC TO-270 BA

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	July 2014	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: MMRF1015N Rev. 0, 7/2014