

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

74ALVCH162244

16-bit buffer/line driver with 30Ω termination resistor (3-State)

Product specification

1998 Jun 29

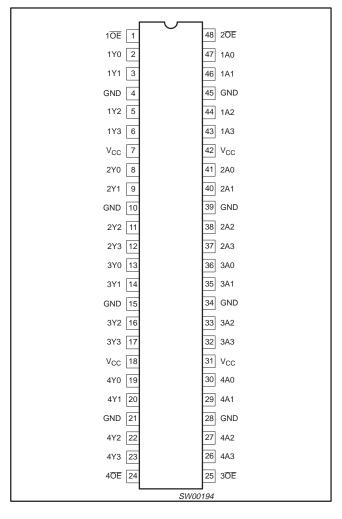
IC24 Data Handbook

16-bit buffer/line driver with 30 Ω termination resistor (3-State)

74ALVCH162244

FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- Bus hold on all data inputs
- Integrated 30Ω termination resistor


DESCRIPTION

The 74ALVCH162244 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The 74ALVCH162244 is a 16-bit non-inverting buffer/line driver with 3-State outputs. The device can be used as four 4-bit buffers, two 8-bit buffers or one 16-bit buffer. The 3-State outputs are controlled by the output enable inputs $1\overline{OE}$ and $2\overline{OE}$. A HIGH on $n\overline{OE}$ causes the outputs to assume a high impedance OFF-state. The 74ALVCH162244 is designed with 30Ω series resistors in both HIGH and LOW output states.

The 74ALVCH162244 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

PIN CONFIGURATION

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

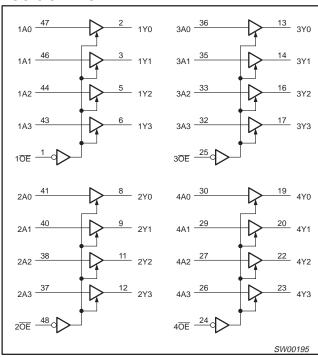
SYMBOL	PARAMETER	CONDITION	NS	TYPICAL	UNIT	
t _{PHL} /t _{PLH}	Propagation delay An to Yn	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$	3.0 2.7	ns		
C _I	Input capacitance		5.0	pF		
C	Power dissipation capacitance per buffer	$V_{L} = GND \text{ to } V_{CC}^{-1}$	Outputs enabled	25	pF	
C _{PD}	Power dissipation capacitance per buner	AI = GIAD to ACC.	Outputs disabled	4	PΓ	

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where: } f_i = \text{input frequency in MHz; } C_L = \text{output load capacitance in pF; } f_o = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs.}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	–40°C to +85°C	74ALVCH162244 DL	ACH162244 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVCH162244 DGG	ACH162244 DGG	SOT362-1


16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

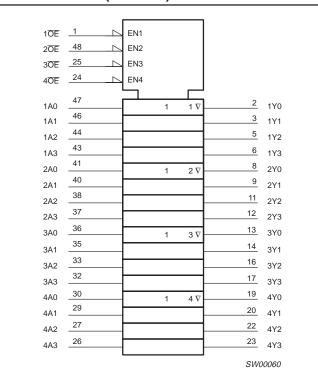
PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	1 OE	Output enable input (active LOW)
2, 3, 5, 6	1Y0 to 1Y3	Data outputs
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage
8, 9, 11, 12	2Y0 to 2Y3	
13, 14, 16, 17 3Y0 to 3Y3		Data outputs
19, 20, 22, 23	4Y0 to 4Y3	
24	4ŌE	Output enable input (active LOW)
25	3 OE	Output enable input (active LOW)
30, 29, 27, 26	4A0 to 4A3	
36, 35, 33, 32	3A0 to 3A3	Data inputa
41, 40, 38, 37	2A0 to 2A3	Data inputs
47, 46, 44, 43 1A0 to 1A3		
48	2ŌE	Output enable input (active LOW)

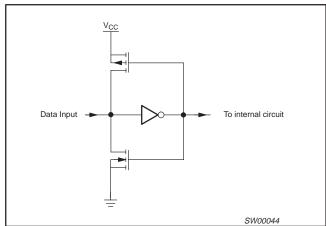
LOGIC SYMBOL

FUNCTION TABLE

INP	OUTPUT	
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	Х	Z


H = HIGH voltage level

L = LOW voltage level


X = don't care

Z = high impedance OFF-state

LOGIC SYMBOL (IEEE/IEC)

BUS HOLD CIRCUIT

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	ITS	UNIT
STWIBOL	PARAIVIETER	CONDITIONS	MIN	MAX	UNIT
V	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V
V _I	DC Input voltage range		0	V _{CC}	V
V _O	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage	For data inputs with bus hold ¹	-0.5 to V _{CC} +0.5	V
٧١	DC Input Voltage	For control pins ¹	-0.5 to +4.6]
lok	DC output diode current	$V_O > V_{CC}$ or $V_O < 0$	±50	mA
Vo	DC output voltage	Note 1	-0.5 to V _{CC} +0.5	V
Io	DC output source or sink current	$V_O = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
Ртот	Power dissipation per package -plastic medium-shrink (SSOP) -plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K	850 600	mW

4

NOTE:

1998 Jun 29

^{1.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp :	= -40°C to +8	5°C	דואט
			MIN	TYP ¹	MAX]
	LUCI Havel January veltage	V _{CC} = 2.3 to 2.7V	1.7	1.2		\ \ \
V_{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		\ \
V	LOW love language		1.2	0.7	V	
V_{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8]
		$V_{CC} = 2.3 \text{ to } 3.6\text{V}; V_{I} = V_{IH} \text{ or } V_{IL}; I_{O} = -100\mu\text{A}$	V _{CC} -0.2	V _{CC}		
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -4mA$	V _{CC} -0.4	V _{CC} -0.11]
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -6mA$	V _{CC} -0.6	V _{CC} -0.17]
V_{OH}	HIGH level output voltage	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -4mA$	V _{CC} -0.5	V _{CC} -0.09		V
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -8mA$	V _{CC} -0.7	V _{CC} -0.19]
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -6mA$	V _{CC} -0.6	V _{CC} -0.13]
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -1.0	V _{CC} -0.27]
		$V_{CC} = 2.3 \text{ to } 3.6 \text{V}; \ \ V_I = V_{IH} \text{ or } V_{IL}; \ I_O = 100 \mu \text{A}$		GND	0.20	
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 4mA$		0.07	0.40	1
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.11	0.55	1
V_{OL}	LOW level output voltage	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 4mA$		0.06	0.40	V
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 8mA$		0.13	0.60	1
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.09	0.55	1
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.19	0.80	
l _l	Input leakage current	V_{CC} = 2.3 to 3.6V; $V_I = V_{CC}$ or GND		0.1	5	μА
I _{OZ}	3-State output OFF-state current	V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	10	μА
I _{CC}	Quiescent supply current	$V_{CC} = 2.3 \text{ to } 3.6 \text{V}; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$		0.2	40	μΑ
ΔI_{CC}	Additional quiescent supply current	$V_{CC} = 2.3V \text{ to } 3.6V; V_I = V_{CC} - 0.6V; I_O = 0$		150	750	μΑ
I _{BHL} ²	Bus hold LOW sustaining current	$V_{CC} = 2.3V; V_I = 0.7V$	45	_		μA
'BHL	Bus floid LOW sustaining current	$V_{CC} = 3.0V; V_I = 0.8V$	75	150] μΑ
12	Rue hold HIGH eustaining current	V _{CC} = 2.3V; V _I = 1.7V	-45			^
I _{BHH} ²	Bus hold HIGH sustaining current	V _{CC} = 3.0V; V _I = 2.0V	– 75	-175		μΑ
I _{BHLO} ²	Bus hold LOW overdrive current	V _{CC} = 3.6V	500			μА
I _{BHHO} ²	Bus hold HIGH overdrive current	V _{CC} = 3.6V	-500			μА

5

1998 Jun 29

All typical values are at T_{amb} = 25°C.
 Valid for data inputs of bus hold parts.

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE AND V_{CC} < 2.3V

 $GND = 0V; \ t_f = t_f \leq 2.0ns; \ C_L = 30pF$

SYMBOL	PARAMETER	WAVEFORM	V	UNIT		
			MIN	TYP ¹	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	1, 3	1.0	3.0	4.9	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nYn	2, 3	1.0	4.0	6.8	ns
t _{PHZ} /t _{PLZ}	3-State output disable time	2, 3	1.0	2.3	6.3	ns

NOTES:

AC CHARACTERISTICS FOR $V_{CC} = 3.0 \text{V}$ TO 3.6V RANGE AND $V_{CC} = 2.7 \text{V}$

 $GND = 0V; \ t_r = t_f \leq 2.5 ns; \ C_L = 50 pF$

			LIMITS								
SYMBOL	PARAMETER	WAVEFORM	Vc	$_{\text{C}}$ = 3.3 \pm 0	.3V	\	UNIT				
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX			
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	1, 3	1.0	2.7	4.2	1.0	3.3	4.7	ns		
t _{PZH} /t _{PZL}	3-State output enable time nOE to nYn	2, 3	1.0	3.5	5.6	1.0	4.6	6.7	ns		
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nYn	2, 3	1.0	2.9	5.5	1.0	3.2	5.7	ns		

6

NOTES:

1998 Jun 29

^{1.} All typical values are measured at T_{amb} = 25°C and V_{CC} = 2.5V.

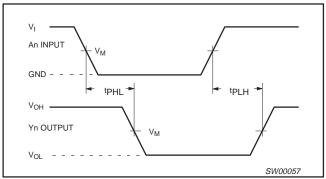
^{1.} All typical values are measured at $T_{amb} = 25$ °C.

^{2.} Typical value is measured at $V_{CC} = 3.3V$

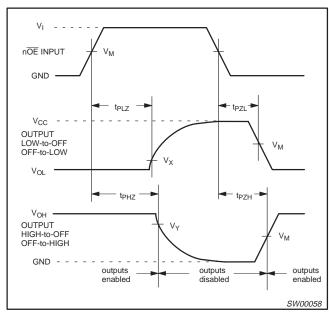
16-bit buffer/line driver with 30 Ω termination resistor (3-State)

74ALVCH162244

AC WAVEFORMS FOR $V_{CC} = 2.3V$ TO 2.7V AND V_{CC} < 2.3V RANGE

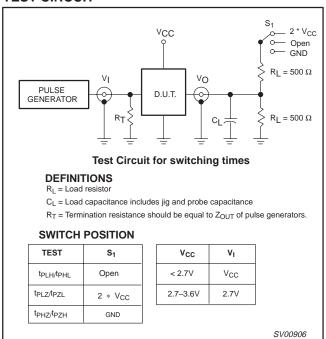

 $V_{M} = 0.5 V_{CC}$ $V_{X} = V_{OL} + 0.15 V$ $V_Y = V_{OH} - 0.15V$

Vol. and VoH are the typical output voltage drop that occur with the output load.


AC WAVEFORMS FOR $V_{CC} = 3.0V \text{ TO } 3.6V \text{ AND}$ V_{CC} = 2.7V RANGE

 $V_{M} = 1.5 \text{ V}$ $V_{X} = V_{OL} + 0.3 \text{V}$

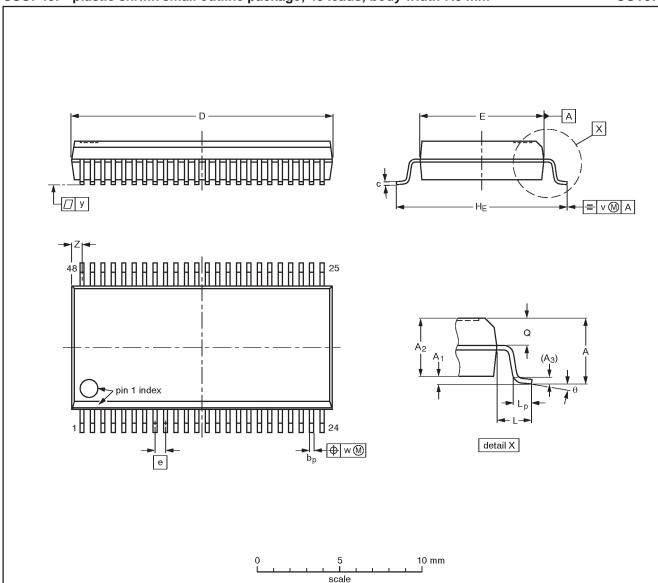
 $V_Y = V_{OH}^{C} - 0.3V$ V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load. $V_1 = 2.7V$



Waveform 1. Input (An) to output (Yn) propagation delay times

Waveform 2. 3-State enable and disable times

TEST CIRCUIT


Waveform 3. Load circuitry for switching times

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

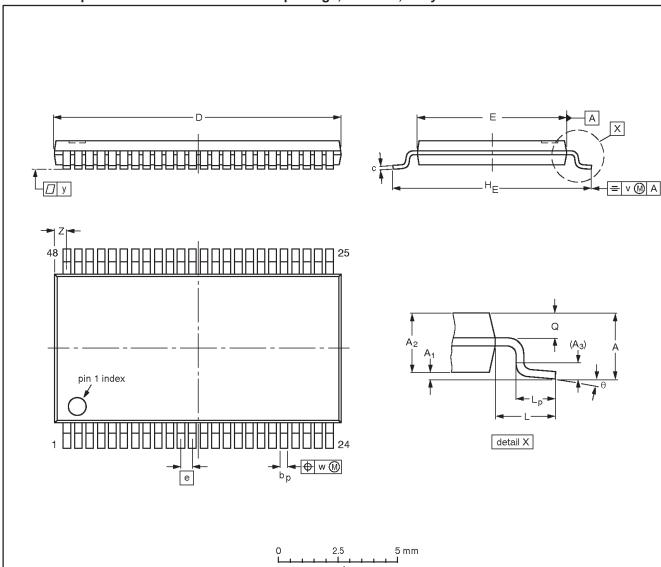
SOT370-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC JEDEC		EIAJ		PROJECTION	ISSUE DATE
SOT370-1		MO-118AA				-93-11-02- 95-02-04

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	12.6 12.4	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.8 0.4	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES					EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ			PROJECTION	ISSUE DATE
SOT362-1		MO-153ED					-93-02-03- 95-02-10

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

NOTES

16-bit buffer/line driver with 30Ω termination resistor (3-State)

74ALVCH162244

Data sheet status

Data sheet status	Product status	Definition [1]	
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.	
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.	
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible produc	

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Date of release: 06-98

Document order number: 9397-750-04537

Let's make things better.

Philips Semiconductors

