

TDA18271HD

Silicon Tuner IC

Rev. 04 — 19 May 2009

Product data sheet

1. General description

The TDA18271HD is a Silicon Tuner IC designed mainly for terrestrial analog and digital TV reception. The TDA18271HD integrates the overall tuning function, including selectivity.

The TDA18271HD is compatible with all analog and digital TV standards and delivers a low IF signal to a demodulator (for analog TV) and/or channel decoder (for digital TV).

This specification is based on software version 3.4.

2. Features

- Fully integrated RF tracking filters for unwanted signal suppression
- Fully integrated IF selectivity (no need for external SAW filters)
- Worldwide multistandard terrestrial (all analog and digital worldwide terrestrial standards supported)
- Integrated loop-through and slave tuner output for straightforward multi-Silicon Tuner application
- Fully integrated oscillators with no external components
- Alignment free
- Integrated wide-band gain control
- Single 3.3 V power supply
- Low power consumption
- Crystal oscillator output buffer (16 MHz) for single crystal applications
- I²C-bus interface compatible with 3.3 V and 5 V microcontrollers
- Three Standby modes
- RoHS packaging

3. Applications

3.1 Target applications

- Hybrid (analog and digital TV) for PCTV, DVD-R and TV applications
- Application optimization is described in application notes *AN602*, *AN604* and *AN605*

2 of 70

3.2 Key benefits

- The TDA18271HD is a Silicon Tuner targeting digital and analog TV applications. The aim is to match the performance of conventional Can tuners while reducing the size of the tuner function. Additionally, the following benefits are provided:
 - ◆ Easy on-board integration
 - Easy dual tuner configuration
 - Drastic size reduction of the tuner function and power consumption

Quick reference data 4.

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF(STO)}	RF frequency on pin STO	slave tuner output	45	-	864	MHz
NF_{tun}	tuner noise figure	maximum gain	-	5.5	-	dB
ϕ_{n}	phase noise	1 kHz and 10 kHz	-	-89	-	dBc/Hz
Р	power dissipation		-	780	-	mW
$V_{i(max)}$	maximum input voltage	1 dB gain compression, one analog TV signal at RF input (–5 dBm)	-	103	-	dBμV
α_{image}	image rejection		-	65	-	dB
S _{dig}	digital sensitivity	DVB-T (64 QAM $\frac{2}{3}$); BER = 2.10 ⁻⁴	<u>[1]</u> -	-82	-	dBm
Sa	analog sensitivity	50 dB video SNR weighted 22 dB μ V (color loss)	[2] _	58	-	dBμV

^[1] Measured with TDA10048HN channel decoder.

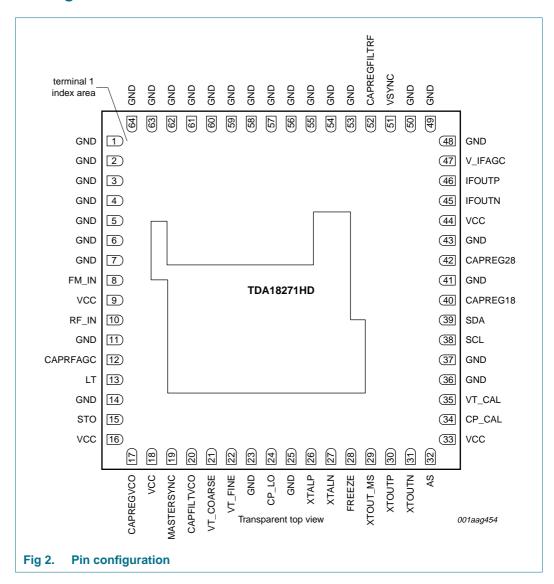
Ordering information 5.

Table 2. **Ordering information**


Type number	Package		
	Name	Description	Version
TDA18271HD/C2	HLQFN64R	plastic thermal enhanced low profile quad flat package; no leads; 64 terminals; resin based; body $9\times9\times1.6$ mm	SOT903-1

TDA18271HD 4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

^[2] Measured with TDA8295 IF modulator.


3 of 70

Block diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Pin	Description
1 to 7	ground
8	unbalanced FM input
9	3.3 V supply voltage
10	unbalanced RF (TV) input
11	ground
C 12	RF AGC filtering
13	loop-through output
	1 to 7 8 9 10 11 C 12

Table 3. Pin description ... continued

	Pin	
Symbol GND	Pin 14	Description
STO	15	ground
VCC	16	slave tuner output 3.3 V supply voltage
CAPREGVCO	17	
		VCO supply decoupling
VCC	18	3.3 V supply voltage
MASTERSYNC	19	synchronization signal for dual tuner applications; leave open for single tuner applications
CAPFILTVCO	20	VCO reference decoupling
VT_COARSE	21	LO tuning voltage input
VT_FINE	22	LO tuning voltage input
GND	23	ground
CP_LO	24	charge pump of the local synthesizer
GND	25	ground
XTALP	26	crystal oscillator input
XTALN	27	crystal oscillator input
FREEZE	28	synchronization signal for multi tuner applications; leave open for single tuner applications
XTOUT_MS	29	XTOUT mode and master/slave selection
XTOUTP	30	crystal oscillator output buffer
XTOUTN	31	crystal oscillator output buffer
AS	32	I ² C-bus address selection input
VCC	33	3.3 V supply voltage
CP_CAL	34	charge pump of the calibration synthesizer
VT_CAL	35	tuning voltage of the calibration synthesizer
GND	36, 37	ground
SCL	38	I ² C-bus clock input
SDA	39	I ² C-bus data input/output
CAPREG18	40	internal regulator decoupling
GND	41	ground
CAPREG28	42	internal regulator decoupling
GND	43	ground
VCC	44	3.3 V supply voltage
IFOUTN	45	IF output
IFOUTP	46	IF output
V_IFAGC	47	IF gain control input
GND	48 to 50	ground
VSYNC	51	vertical synchronization input for analog applications; connect to ground for digital applications
CAPREGFILTRF	52	internal regulator decoupling
GND	53 to 64	ground
GND	exposed die	ground

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

Product data sheet

5 of 70

8. Functional description

The RF input signal is driven to a low-noise amplifier. It is then band-pass filtered, amplified and fed to the image rejection mixer. The mixer downconverts the RF signal to a low IF depending on the channel bandwidth.

Standard IF filters are implemented for 1.5 MHz, 6 MHz, 7 MHz and 8 MHz channel bandwidths; see Table 43.

The Silicon Tuner can be used either as TV receiver or FM radio receiver.

The TDA18271HD requires a single 16 MHz crystal for clock generation. When bit XTOUT_ON = 1, a clock signal is available on pins XTOUTP and XTOUTN to drive a second tuner, a channel decoder or an IF demodulator (TDA8295) for analog TV reception and FM radio.

Remark: Most recent video decoders from NXP Semiconductors include a low IF demodulation function.

8.1 TV and FM reception

The Silicon Tuner can be used in two modes, selectable via the I²C-bus:

- TV reception: the RF signal must be connected to pin RF_IN
- FM reception: the RF signal must be connected to pin FM_IN or RF_IN

The RF_IN input pin can also be used for FM reception at the cost of software modification. The FM_IN input pin can only receive signals in the FM frequency range.

8.2 Master and slave operation

The TDA18271HD allows easy dual-tuner configuration.

Each individual tuner has to be set either to Master mode or Slave mode by applying a specific DC voltage to the XTOUT_MS pin; see <u>Table 4</u>. This will decide whether the crystal oscillator part is used as negative impedance connected to the crystal part or as a current buffer.

Table 4. Master/slave selection

Voltage on pin XTOUT_MS	Tuner type	Crystal oscillator function
0 V to 0.1V _{CC}	master	negative impedance presented to the crystal
$0.4V_{CC}$ to $0.6V_{CC}$	slave	current input buffer

In dual tuner applications:

- The first tuner is set to Master mode
- The second tuner has to be set to Slave mode

In single tuner applications:

• The tuner must be set to Master mode

7 of 70

8.3 Tuner outputs

The tuner provides a slave tuner output (pin STO) and a loop-through output (pin LT). These outputs are used to transmit the antenna signal to other tuners. Each output has its own characteristics (see Table 58 and Table 59).

8.3.1 Loop-through output

The gain between the antenna connector and the loop-through pin (pin LT) equals 0 dB. This pin can be connected to any consumer electronic equipment.

8.3.2 Slave tuner output

In dual tuner applications the slave tuner output (pin STO) must be connected to the RF input of the slave tuner TDA18271HD.

The gain between the antenna connector and the slave tuner output can change according to the input level. The slave tuner will automatically compensate for the gain change, using the MASTERSYNC and FREEZE signals.

8.4 Crystal input mode

The TDA18271HD requires a 16 MHz crystal reference. The chosen crystal must withstand at least 100 µW drive level and an additional shunt capacitor with a typical value of 5.6 pF as shown in Figure 1 is also needed. The quartz references for which the performances are guaranteed are:

- NDK NX5032
- Siward SX-5032
- TXC 9C series
- Chungho Elcom HC49S profile

Clock reference:

- In Master mode, the clock reference must be provided by a 16 MHz crystal connected between pins XTALP and XTALN of the master tuner
- In Slave mode, the clock reference must be provided by pins XTOUTP and XTOUTN of the tuner in Master mode to pins XTALP and XTALN of the tuner in Slave mode

8.5 Crystal output mode

Pins XTOUTP and XTOUTN deliver a symmetrical sine waveform to drive the channel decoder and/or IF demodulator. The load on these outputs should be made similar to ensure optimum performances. If only one crystal output is used, the unused output should be loaded by an equivalent capacitance.

9. Control interface

9.1 I²C-bus format, Write/Read mode

Remark: The I²C-bus read in the TDA18271HD must read the entire I²C-bus map, with required subaddress 00h. The number of bytes read is 16, or 39 in extended register mode; see <u>Table 7</u>. Reading write-only bits can return values that are different from the programmed values.

TDA18271HD_4 © NXP B.V. 2009. All rights reserved.

Table 5. I ² C-bus format	ormat									
Name	Byte					Bit	#			
	name	address	7	9	5	4	က	2	-	0
Address byte 1			_	-	0	0	0	MA[MA[1:0]	RW
Address byte 2	ı		0	0			AD[5:0]	5:0]		
ID byte	Ω	00h	_				[D:9]QI			
Thermo byte	M	01h	POR	LOCK	TM_RANGE	TM_ON]_MT	TM_D[3:0]	
Power level byte	Ы	02h				POWER_LEVEL[7:0]	EVEL[7:0]			
Easy prog byte 1	EP.	03h	POWER_ LEVEL[8]	DIS_ POWER_ LEVEL	0	RF_CAL_OK R_CAL_OK	IR_CAL_OK	ш	BP_FILTER[2:0]	
Easy prog byte 2	EP2	04h		RF_BAND[2:0]			Ó	GAIN_TAPER[4:0]	0]	
Easy prog byte 3	EP3	05h	SM	SM_LT	SM_XT	AGCK_MODE[1:0]	ODE[1:0]		STD[2:0]	
Easy prog byte 4	EP4	06h	FM_RFN	XTOUT_ON	_		IF_LEVEL[2:0]		CAL_MODE[1:0]	DE[1:0]
Easy prog byte 5	EP5	07h	EXTENDED _REG	=	IR_GSTEP[2:0]		0		IR_MEAS[2:0]	
Cal post-divider byte	CPD	08h				CAL_POST_DIV[7:0]	T_DIV[7:0]			
Cal divider byte 1	CD1	460	0			J	CAL_DIV[22:16]			
Cal divider byte 2	CD2	0Ah				CAL_DIV[15:8]	V[15:8]			
Cal divider byte 3	CD3	0Bh				CAL_DIV[7:0]	1V[7:0]			
Main post-divider byte	MPD	och	IF_NOTCH			MAI	MAIN_POST_DIV[6:0]	3:0]		
Main divider byte 1	MD1	0Dh	0			Σ	MAIN_DIV[22:16]	-		
Main divider byte 2	MD2	0Eh				MAIN_DIV[15:8]	IV[15:8]			
Main divider byte 3	MD3	0Fh				MAIN_DIV[7:0]	[0:2]\\[C			
Extended byte 1	EB1	10h			EB1[7:3]			CALVCO_ FORLON	AGC1_ ALWAYS_ MASTERN	AGC1_ FIRSTN
Extended byte 2	EB2	11h				EB2[7:0]	[0:2]			
Extended byte 3	EB3	12h				EB3[7:0]	[2:0]			
Extended byte 4	EB4	13h	EB4[7:6]	[5:6]	LO_FORCE SRCE			EB4[4:0]		
Extended byte 5	EB5	14h				EB5[7:0]	[7:0]			
Extended byte 6	EB6	15h				EB6[7:0]	[0:4]			

Product data sheet

9 of 70

EB23[0] 0 AGC1_GAIN[1:0] AGC2_GAIN[1:0] EB13[1:0] EB8[2:0] LP_FC IF_TOP[3:0] EB12[3:0] EB15[3:0] FORCELP_ FC2_EN EB20[4:0] EB7[4:0] 8 CID_GAIN[5:0] RFC_M[1:0] EB8[3] RFC_CPROG[7:0] က EB11[7:0] EB16[7:0] EB17[7:0] EB19[7:0] EB9[7:0] Bit PD_AGC2_ DET EB18[6:2] EB21[6:2] 4 PD_AGC1_ DET RF_TOP[2:0] RFC_K[2:0] FORCE_ LOCK CAL_ FORCE SRCE EB8[6:4] EB23[7:3] EB15[7:4] 9 EB20[7:6] EB10[7:6] EB12[7:6] EB7[7:6] AGC2_ LOOP_OFF AGC1_ LOOP_OFF CID_ALARM EB13[7] EB22[7] address I2C-bus format ...continued 1Ch 1Dh 1Ah 1Eh 1Fh 17h 18h 19h 1Bh 21h 22h 23h 24h 25h 26h 16h name EB10 EB13 EB15 EB16 EB18 EB12 EB14 EB17 EB19 EB20 EB11 EB22 EB23 EB21 EB9 EB8 EB7 Extended byte 13 Extended byte 15 Extended byte 16 Extended byte 18 Extended byte 19 Extended byte 10 Extended byte 12 Extended byte 14 Extended byte 17 Extended byte 20 Extended byte 22 Extended byte 23 Extended byte 11 Extended byte 21 Extended byte 8 Extended byte 9 Extended byte 7 Table 5. Name

FDA18271HD 4

© NXP B.V. 2009. All rights reserved.

9.2 I²C-bus at Power-On Reset

Table 6. I²C-bus at Power-On Reset

Name	Byte	Subaddress	7[1]	6 <u>[1]</u>	5 <u>[1]</u>	4 <u>[1]</u>	3[1]	2 <mark>[1]</mark>	1[1]	0[1]
Address byte 1	-	-	1	1	0	0	0	MA[1]	MA[0]	X
Address byte 2	-	-	Х	Х	AD[5]	AD[4]	AD[3]	AD[2]	AD[1]	AD[0]
ID byte	ID	00h	1	0	0	0	0	1	0	0
Thermo byte	TM	01h	1	0	0	0	Χ	Х	Х	Χ
Power level byte	PL	02h	X	X	X	X	X	Х	Х	X
Easy prog byte 1	EP1	03h	X	1	0	0	0	1	1	0
Easy prog byte 2	EP2	04h	1	1	0	1	1	1	1	1
Easy prog byte 3	EP3	05h	1	0	0	1	0	0	1	0
Easy prog byte 4	EP4	06h	0	1	1	0	0	0	0	0
Easy prog byte 5	EP5	07h	0	0	1	1	0	0	0	0
Cal post-divider byte	CPD	08h	0	0	0	0	0	0	0	0
Cal divider byte 1	CD1	09h	0	0	0	0	0	0	0	0
Cal divider byte 2	CD2	0Ah	0	0	0	0	0	0	0	0
Cal divider byte 3	CD3	0Bh	0	0	0	0	0	0	0	0
Main post-divider byte	MPD	0Ch	0	0	0	0	0	0	0	0
Main divider byte 1	MD1	0Dh	0	0	0	0	0	0	0	0
Main divider byte 2	MD2	0Eh	0	0	0	0	0	0	0	0
Main divider byte 3	MD3	0Fh	0	0	0	0	0	0	0	0
Extended byte 1	EB1	10h	1	1	1	1	1	1	1	1
Extended byte 2	EB2	11h	0	0	0	0	0	0	0	1
Extended byte 3	EB3	12h	1	0	0	0	0	1	0	0
Extended byte 4	EB4	13h	0	1	0	0	0	0	0	1
Extended byte 5	EB5	14h	0	0	0	0	0	0	0	1
Extended byte 6	EB6	15h	1	0	0	0	0	1	0	0
Extended byte 7	EB7	16h	0	1	0	0	1	0	0	0
Extended byte 8	EB8	17h	0	1	1	1	Х	1	0	1
Extended byte 9	EB9	18h	0	0	0	0	0	0	0	0
Extended byte 10	EB10	19h	Х	Х	Х	Х	Х	Х	Х	Х
Extended byte 11	EB11	1Ah	1	0	0	0	0	1	1	0
Extended byte 12	EB12	1Bh	0	0	0	0	0	1	1	1
Extended byte 13	EB13	1Ch	1	1	0	0	0	0	1	0
Extended byte 14	EB14	1Dh	0	0	0	0	0	0	0	0
Extended byte 15	EB15	1Eh	1	0	0	0	X	Х	Х	Χ
Extended byte 16	EB16	1Fh	0	0	0	Χ	X	Х	0	0
Extended byte 17	EB17	20h	0	0	0	Χ	Х	Х	Х	Χ
Extended byte 18	EB18	21h	0	0	0	0	0	0	0	0
Extended byte 19	EB19	22h	0	0	0	Χ	Х	Х	0	0
Extended byte 20	EB20	23h	1	0	0	X	Х	Х	Х	X

Table 6. I²C-bus at Power-On Reset ...continued

Name	Byte	Subaddress	7 <mark>[1]</mark>	6 <mark>[1]</mark>	5 <mark>[1]</mark>	4 <mark>[1]</mark>	3 <mark>[1]</mark>	2 <mark>[1]</mark>	1 <u>[1]</u>	0[1]
Extended byte 21	EB21	24h	0	0	1	1	0	0	1	1
Extended byte 22	EB22	25h	0	1	0	0	1	0	0	0
Extended byte 23	EB23	26h	1	0	1	1	0	0	0	0

^[1] X indicates a bit not changed on reset.

9.3 Description of symbols used in I²C-bus format table

Table 7. I²C-bus register bits explanation

Address	Byte	Symbol	Description	Reference
		MA[1:0]	programmable address bits	Table 8
		AD[5:0]	programmable address bits of the first programming byte	Table 9
Data byte	es			
00h	ID	ID[6:0]	chip identification number	Table 10
01h	TM	POR	Power-On Reset bit	Table 11
		LOCK	indicates that the main synthesizer is locked to the programmed frequency	
		TM_RANGE	range selection bit for the internal die sensor	
		TM_ON	enables die temperature measurement	
		TM_D[3:0]	data from die temperature measurement (read only)	
02h	PL	POWER_LEVEL[7:0]	Power level indicator value (read only)	Table 12
03h	EP1	POWER_LEVEL[8]		
DIS_POWER_LEVEL		DIS_POWER_LEVEL	disables the power-on level function	Table 13
		RF_CAL_OK	indicates that the RF tracking filter calibration procedure has been successful	
		IR_CAL_OK	indicates that the complete image rejection calibration procedure has been successful	
BP_FILTE		BP_FILTER[2:0]	RF band-pass filter selection	
04h	EP2	RF_BAND[2:0]	RF tracking filter band selection	Table 14
		GAIN_TAPER[4:0]	gain taper value	
05h	EP3	SM	Sleep mode, Standby modes	Table 15
		SM_LT		
		SM_XT		
		AGCK_MODE[1:0]	defines the standard	
		STD[2:0]	defines the standard	
06h	EP4	FM_RFN	selects which input is fed to RF filter	Table 18
		XTOUT_ON	provides the 16 MHz crystal reference on the XTOUTP and XTOUTN pins	
		IF_LEVEL[2:0]	IF output level selection	
		CAL_MODE[1:0]	calibration mode selection	
07h	EP5	EXTENDED_REG	enables the extended register addressing	Table 19
		IR_GSTEP[2:0]	gain step for image rejection calibration	
		IR_MEAS[2:0]	image rejection measurement frequency range	

Table 7. I²C-bus register bits explanation ...continued

Address	Byte	Symbol	Description	Reference
08h	CPD	CAL_POST_DIV[7:0]	calibration synthesizer post-divider	Table 20
09h	CD1	CAL_DIV[22:16]	calibration synthesizer main divider bits	Table 21
0Ah	CD2	CAL_DIV[15:8]		
0Bh	CD3	CAL_DIV[7:0]		
0Ch	MPD	IF_NOTCH	adds a DC notch in IF for a better adjacent channels rejection; depends on standards	Table 22
		MAIN_POST_DIV[6:0]	LO synthesizer post-divider bits	
0Dh	MD1	MAIN_DIV[22:16]	LO synthesizer main divider bits	Table 23
0Eh	MD2	MAIN_DIV[15:8]		
0Fh	MD3	MAIN_DIV[7:0]		
Extended	l bytes			
10h	EB1	CALVCO_FORLON	determines which VCO is used during Normal mode operations	Table 24
	AGC1_ALWAYS MASTERN		enables AGC1 normal operation whatever the tuner type (master or slave)	
		AGC1_FIRSTN	determines which AGC (1 or 2) will be detected when detectors 1 and 2 are up	
13h	EB4	LO_FORCESRCE	forces the main PLL charge pump to source current to the main PLL loop filter $$	
16h	EB7	CAL_FORCESRCE	forces the calibration PLL charge pump to source current to the calibration PLL loop filter	
17h	EB8	CID_ALARM	indicates that signal sensed by the power detector used during calibrations is out of range	
19h	EB10	CID_GAIN[5:0]	calibration power detector output	
1Bh	EB12	PD_AGC1_DET	power-down of AGC1 detector	
		PD_AGC2_DET	power-down of AGC2 detector	
1Ch	EB13	RFC_K[2:0]	parameter used during the RF tracking filter calibration	
		RFC_M[1:0]	parameter used during the RF tracking filter calibration	
1Dh	EB14	RFC_CPROG[7:0]	tuning word of the RF tracking filters	
21h	EB18	AGC1_LOOP_OFF	turns off the AGC1 loop	
		AGC1_GAIN[1:0]	AGC1 gain	
23h	EB20	FORCE_LOCK	forces the internal PLLs lock indicator to logic 1	
24h	EB21	AGC2_LOOP_OFF	turns off the AGC2 loop	
		AGC2_GAIN[1:0]	AGC2 gain	
25h	EB22	RF_TOP[2:0]	Take-Over Point (TOP) of the RF AGC, detection in RF	
		IF_TOP[3:0]	TOP of the RF AGC, detection in IF	
26h	EB23	FORCELP_FC2_EN	FM filter selection	
		LP_FC		

9.3.1 I²C-bus address selection

The programmable module address bits MA[1:0] allow up to four tuners to be addressed in one system. Bits MA1 and MA0 are programmed by a specific voltage (V_{AS}) applied to pin AS. The relationship between the status of bits MA[1:0] and the voltage applied to pin AS is shown in Table 8.

Table 8. Address byte 1 bit description

Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7 to 3	-	R/W	1 1000*	must be set to 1 1000
2 to 1	MA[1:0]	R/W		programmable address bits
			00	$V_{AS} = 0 V \text{ to } 0.1 \times V_{CC}$
			01	$V_{AS} = 0.2 \times V_{CC}$ to $0.3 \times V_{CC}$
			10	$V_{AS} = 0.4 \times V_{CC}$ to $0.6 \times V_{CC}$
			11	$V_{AS} = 0.9 \times V_{CC}$ to V_{CC}
0	R/W	R/W	0	write mode
			1	read mode

Table 9. Address byte 2 bit description

Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7 to 6	-	R/W	00	must be set to 00
5 to 0	AD[5:0]	R/W	-	programmable address bits of the first programming byte

9.3.2 Description of chip ID byte

Table 10. ID - identification byte (subaddress 00h) bit description

Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7	-	R	1*	must be 1
6 to 0	ID[6:0]	R	000 0100*	TDA18271HD/C2 identification number

9.3.3 Description of temperature sensor byte

The temperature sensor is not available in Device-off mode, as it requires a 16 MHz clock to operate.

Table 11. TM - Thermo byte (subaddress 01h) bit description

Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7	POR	R	1*	power supply falls below the power-on reset level and is reset after a read operation ending with a stop condition
			0	power supply is above the power-on reset level
6	LOCK	R	1	main synthesizer is locked to the programmed frequency
			0*	main synthesizer is not locked to the programmed frequency
5	TM_RANGE	R/W		temperature range selection for the internal die sensor (see Table 52)
			1	92 °C to 122 °C
			0*	60 °C to 90 °C
4	TM_ON	R/W	1	enables die temperature measurement (see Table 52)
	0*		0*	disables die temperature measurement (see <u>Table 52</u>)
3 to 0	TM_D[3:0]	R	XXXX	data from die temperature measurement (see <u>Table 52</u>)

9.3.4 Description of power level byte (read mode)

There are 9 power level bits sent in power level bytes 2 and 3. They indicate the composite voltage gain of the LNA, the loaded attenuator voltage gains, and the level at the input of the RF AGC.

Table 12. PL - Power level (address 02h and 03h) bit description

Legend: * power-on reset value.

Address	Register	Bit	Symbol	Access	Value	Description
03h	EP1	7	POWER_LEVEL[8]	R		AGC2 gain, attenuator voltage gain including load,
02h PL	PL	7	POWER_LEVEL[7]			the attenuator load is 50 Ω (allows the maximum gain of –6 dB)
					00	–15 dB
					01	–12 dB
					10	−9 dB
					11	−6 dB
		6 to 5 P	POWER_LEVEL[6:5]			AGC1 gain, LNA voltage gain, the LNA voltage gain assumes a 75 Ω source impedance and a low output impedance
					00	6 dB
					01	9 dB
					10	12 dB
					11	15 dB
		4 to 0	POWER_LEVEL[4:0]			sensed level at the input of the RF AGC, detector slope is –1 dB/step
					0 0000	103 dBμV (RMS value)
					0 0001	102 dBμV (RMS value)
					1 1110	73 dBμV (RMS value)
					1 1111	72 dBμV (RMS value)

9.3.5 Description of Easy prog byte 1

Table 13. EP1 - Easy prog byte 1 (subaddress 03h) bit description Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7	POWER_LEVEL[8]	R		see <u>Table 12</u>
6	6 DIS_POWER_LEVEL R/W		1*	power level disabled
			0	power level enabled
5	-	R/W	0*	must be set to 0
4	4 RF_CAL_OK R/W			RF tracking filter calibration procedure (see Section 9.4.9); updated each time the procedure is started
			1	successful
			0*	not successful

16 of 70

Table 13. EP1 - Easy prog byte 1 (subaddress 03h) bit description ...continued Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
3	IR_CAL_OK	R/W		complete image rejection calibration procedure (see Section 9.4.4); can only be reset with POR
			1	successful
			0*	not successful
2 to 0	BP_FILTER[2:0]	R/W	110*	RF band-pass filter selection (see <u>Table 44</u>)

9.3.6 Description of Easy prog byte 2

Table 14. EP2 - Easy prog byte 2 (subaddress 04h) bit description Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7 to 5	RF_BAND[2:0]	R/W	110*	RF tracking filter band selection (see <u>Table 45</u>)
4 to 0	GAIN_TAPER[4:0]	R/W		gain taper value (see <u>Table 49</u>)
	1 1111*		1 1111*	minimum attenuation
			0 0000	maximum attenuation

9.3.7 Description of Easy prog byte 3

The TDA18271HD has three different Standby modes. Two Standby modes are dedicated to special application demands; the third Standby mode is called 'device-off'. It represents the smallest achievable power consumption.

Table 15. EP3 - Easy prog byte 3 (subaddress 05h) bit description Legend: * power-on reset value.

_				
Bit	Symbol	Access	Value	Description
7 to 5	SM, SM_LT, SM_XT	R/W	100	Power modes <u>Table 16</u>
4 to 3	AGCK_MODE[1:0]	R/W	10010*	defines the standard
2 to 0	STD[2:0]	R/W	_	description of standards (see <u>Table 43</u>)

Table 16. Power modes

Bit	Bit					Mode ^[1]
SM	SM_LT	SM_XT	Loop- through	Slave- tuner output	Crystal oscillator	
0	0	0	on	on	on	Normal mode
1	0	0	on	on	on	Standby mode with crystal oscillator, slave-tuner output and loop-through output on
1	1	0	off	off	on	Standby mode with only crystal oscillator and its output buffer on
1	1	1	off	off	off	Device-off mode

^[1] In all modes, the I²C-bus interface remains active. All other bit settings are invalid.

Table 17. AGC modes

Standard	AGC_MODE[1:0] EP3[4:3] ^[1]		Reference signal
FM radio	1	1	internal
Analog TV standards	0	1	VSYNC
Digital TV standards	1	1	internal

^[1] Depending on the programmed AGC_MODE, AGC1 can be synchronous with either VSYNC or an internal 16 MHz signal; for analog reception, when no synchronization signal is available for VSYNC pin, the internal reference may be used.

9.3.8 Description of Easy prog byte 4

Table 18. EP4 - Easy prog byte 4 (subaddress 06h) bit description Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7	FM_RFN	R/W		selection which input is fed to RF filter
			1	FM input (RF LNA on; FM LNA on)
			0*	RF input (RF LNA on; FM LNA off)
6	XTOUT_ON	R/W	1*	16 MHz on pins XTOUT
			0	not 16 MHz on pins XTOUT
5	-	R/W	1*	must be set to logic 1
4 to 2	4 to 2 IF_LEVEL[2:0]	R/W		IF output level selection and attenuation with regard to 2 V (p-p) $$
			000*	2 V (p-p); 0 dB
			001	1.25 V (p-p); 4 dB
			010	1 V (p-p); 6 dB
			011	0.8 V (p-p); 8 dB
			100	not used
			101	not used
			110	0.6 V (p-p); 10.4 dB
			111	0.5 V (p-p); 12 dB
1 to 0	CAL_MODE[1:0]	R/W		calibration mode selection
			00*	no calibration (Normal mode)
			01	Power detection mode
			10	image rejection calibration (IRCAL) mode
			11	RF tracking filter calibration (RFCAL) mode

All calibrations require a precise set of sequential operations, therefore it is mandatory to follow the flowcharts described in Section 9.4.

The TDA18271HD has two calibration modes: one for the image rejection calibration and one for the RF tracking filter calibration.

The image rejection calibration optimizes tunable parameters inside the mixer using a set of internal measurements to ensure a 65 dB typical value of image rejection. The internal signal used during this phase is generated by the PLL calibration (CAL PLL).

18 of 70

The RF tracking filters central frequency can be adjusted with the tuning word RFC_CPROG. The RF tracking filter calibration (RFCAL) uses an internal tone at the input of the tracking filters (generated by CAL PLL) and finds the RFC_CPROG that corresponds to the maximum transmitted power. The RFCAL is just a small part of a more complex algorithm fully described in the flowcharts in Section 9.4.

The Power detection mode is a Normal mode in which the detector used for the calibrations is switched ON. This special mode enables power sensing at the input of the TDA18271HD and makes the power scan algorithm possible (see Section 9.4.8 "Flowchart TDA18271PowerScan").

9.3.9 Description of Easy prog byte 5

Table 19. EP5 - Easy prog byte 5 (subaddress 07h) bit description

Legend: * power-on reset value.

- 3 -								
Bit	Symbol	Access	Value	Description				
7	EXTENDED_REG	R/W		enables extended register addressing				
			1	extended register (10h to 26h)				
			0*	limited register (00h to 0Fh); only 1 byte can be programmed after address 0Fh within 1 transmission				
6 to 4	IR_GSTEP[2:0]	R/W	011*	gain step for image rejection calibration				
3	-	R/W	0*	must be set to logic 0				
2 to 0	IR_MEAS[2:0]	R/W	000*	image rejection measurement frequency range (see Table 53)				

9.3.10 Description of Cal post-divider byte

Table 20. CPD - Cal post-divider byte (subaddress 08h) bit description Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7 to 0	CAL_POST_DIV[7:0]	R/W	00h*	calibration synthesizer post-divider (see Table 48)

9.3.11 Description of Cal divider bytes 1, 2 and 3

CD1, CD2 and CD3 - Cal divider bytes 1, 2 and 3 (address 09h, 0Ah and 0Bh) bit description

Legend: * power-on reset value.

Address	Register	Bit	Symbol	Access	Value	Description
09h	CD1	7	-	R/W	0*	must be set to 0
		6 to 0	CAL_DIV[22:16]	R/W	00h*	calibration synthesizer main
0Ah	CD2	7 to 0	CAL_DIV[15:8]	R/W	00h*	divider bits
0Bh	CD3	7 to 0	CAL_DIV[7:0]	R/W	00h*	-

9.3.12 Description of Main post-divider byte

Table 22. MPD - Main post-divider byte (subaddress 0Ch) bit description Legend: * power-on reset value.

Bit	Symbol	Access	Value	Description
7	IF_NOTCH	R/W	0*	adds a DC notch in IF for better adjacent channels rejection; depends on standards; see Table 43
6 to 0	MAIN_POST_DIV[6:0]	R/W	000	LO synthesizer post-divider; see Table 47

9.3.13 Description of Main divider bytes 1, 2 and 3

Table 23. MD1, MD2 and MD3 - Main divider bytes 1, 2 and 3 (address 0Dh, 0Eh and 0Fh) bit description

Legend: * power-on reset value.

Address	Register	Bit	Symbol	Access	Value	Description
0Dh	MD1	7	-	R/W	0*	must be set to 0
		6 to 0	MAIN_DIV[22:16]	R/W	00h*	LO synthesizer main divider bits
0Eh	MD2	7 to 0	MAIN_DIV[15:8]	R/W	00h*	
0Fh	MD3	7 to 0	MAIN_DIV[7:0]	R/W	00h*	

9.3.14 Description of Extended bytes 1 to 23

Table 24. EB1 to EB23 - Extended bytes 1 to 23 (address 10h to 26h) bit description

Legend: * power-on reset value.

Address	Register	Bit	Symbol	Access	Value	Description
10h	EB1	7 to 3	EB1[7:3]	R	1 1111*	extended byte 1
		2	CALVCO_FORLON	R		determines VCO used during Normal mode operations
					1*	LO VCO is used
					0	CAL VCO is used
		1	AGC1_ALWAYS_ MASTERN	R		enables AGC1 normal operation whatever the tuner type (master or slave)
					1*	normal operation for the master; 6 dB fixed for the slave
					0	normal operation for both the master and the slave
		0	AGC1_FIRSTN	R		determines which AGC will be updated when detectors 1 and 2 are active
					1*	AGC1 and AGC2 both updated
					0	AGC1 has priority on AGC2
11h	EB2	7 to 0	EB2[7:0]	R/W	0000 0001*	extended byte 2
12h	EB3	7 to 0	EB3[7:0]	R/W	1000 0100*	extended byte 3

TDA18271HD_4 © NXP B.V. 2009. All rights reserved.

Table 24. EB1 to EB23 - Extended bytes 1 to 23 (address 10h to 26h) bit description ...continued Legend: * power-on reset value.

Address	Register	Bit	Symbol	Access	Value	Description
13h	EB4	7 to 6	EB4[7:6]	R/W	01*	extended byte 4
		5	LO_FORCESRCE	R/W	1	forces the main PLL charge pump to source current to the main PLL loop filter
					0*	no force
		4 to 0	EB4[4:0]	R/W	0 0001*	extended byte 4
14h	EB5	7 to 0	EB5[7:0]	R/W	0000 0001*	extended byte 5
15h	EB6	7 to 0	EB6[7:0]	R/W	1000 0100*	extended byte 6
16h	EB7	7 and 6	EB7[7:6]	R/W	01*	extended byte 7
		5	CAL_FORCESRCE	R/W	1	forces the CAL PLL charge pump to source current to the CAL PLL loop filter
					0*	no force
		4 to 0	EB7[4:0]	R/W	0 1000*	extended byte 7
17h	EB8	7	CID_ALARM	R		signal sensed by the power detector used during calibrations
					1	out of range
					0*	in range
		6 to 4	EB8[6:4]	R/W	111 0101*	extended byte 8
		3	EB8[3]	R		
		2 to 0	EB8[2:0]	R/W		
18h	EB9	7 to 0	EB9[7:0]	W	0000 0000*	extended byte 9
19h	EB10	7 and 6	EB10[7:6]	R	00*	extended byte 10
		5 to 0	CID_GAIN[5:0]	R	-	calibration power detector output
1Ah	EB11	7 to 0	EB11[7:0]	R/W	1000 0110*	extended byte 11
1Bh	EB12	7 and 6	EB12[7:6]	R	00*	extended byte 12
		5	PD_AGC1_DET	R/W		AGC1 detector
					1	power-down
					0*	no power-down
		4	PD_AGC2_DET	R/W		AGC2 detector
					1	power-down
					0*	no power-down
		3 to 0	EB12[3:0]	R/W	0111*	extended byte 12
1Ch	EB13	7	EB13[7]	R/W	1*	extended byte 13
		6 to 4	RFC_K[2:0]	R/W	100*	parameters used during the RF
		3 and 2	RFC_M[1:0]	R/W	00*	tracking filter calibration (see Table 46)
		1 to 0	EB13[1:0]	R/W	10*	extended byte 13
1Dh	EB14	7 to 0	RFC_CPROG[7:0]	R/W	0000 0000*	tuning word of the RF tracking filters
1Eh	EB15	7 to 4	EB15[7:4]	R/W	1000 XXXX*	extended byte 15
		3 to 0	EB15[3:0]	R		
1Fh	EB16	7 to 0	EB16[7:0]	W	000X XX00*	extended byte 16

Table 24. EB1 to EB23 - Extended bytes 1 to 23 (address 10h to 26h) bit description ...continued Legend: * power-on reset value.

Address	Register	Bit	Symbol	Access	Value	Description
20h	EB17	7 to 0	EB17[7:0]	W	000X XXXX*	extended byte 17
21h	EB18	7	AGC1_LOOP_OFF	R/W		turns the AGC1 loop
					1	off
					0*	on
		6 to 2	EB18[6:2]	R/W	00000*	extended byte 18
		1 and 0	AGC1_GAIN[1:0]	R/W		AGC1 gain
					00*	6 dB
					01	9 dB
					10	12 dB
					11	15 dB
22h	EB19	7 to 0	EB19[7:0]	W	000X XX00*	extended byte 19
23h	EB20	7 and 6	EB20[7:6]	W	10*	extended byte 20
		5	FORCE_LOCK	W		forces the internal lock indicator
					1	forced to logic 1
					0*	not forced
		4 to 0	EB20[4:0]	W	X XXXX*	extended byte 20
24h	EB21	7	AGC2_LOOP_OFF	R/W		turns the AGC2 loop
					1	off
					0*	on
		6 to 2	EB21[6:2]	R/W	00000*	extended byte 21
		1 and 0	AGC2_GAIN[1:0]	R/W		AGC2 gain
					00*	–15 dB
					01	–12 dB
					10	−9 dB
					11	-6 dB
25h	EB22	7	EB22[7]	R	0*	extended byte 22
		6 to 4	RF_TOP[2:0]	R/W	100*	Take-Over Point of the RF AGC, detection in RF
		3 to 0	IF_TOP[3:0]	R/W	1000*	Take-Over Point of the RF AGC, detection in IF
26h	EB23	7 to 3	EB23[7:3]	R/W	1 0110*	extended byte 23
		2	FORCELP_ FC2_EN	R/W	0*	FM filter selection; see <u>Table 25</u> and <u>Table 26</u>
		1	LP_FC	R/W	0*	
		0	EB23[0]	R/W	0*	extended byte 23

Table 25. Low-pass cut-off frequency when using RF_IN input

RF input	FORCELP_FC2_EN	LP_FC	STD[1:0]	Cut-off frequency (MHz)
RF_IN	1	1	XX	1.5
	0	Χ	00	6
	0	Χ	01	7
	0	Χ	10	8
	0	Χ	11	9

Table 26. Low-pass cut-off frequency when using FM_IN input

RF input	FORCELP_FC2_EN	LP_FC	STD[1:0]	Cut-off frequency (MHz)
FM_IN	1	0	00	6
	1	0	01	7
	1	0	10	8
	1	0	11	9
	1	1	XX	1.5

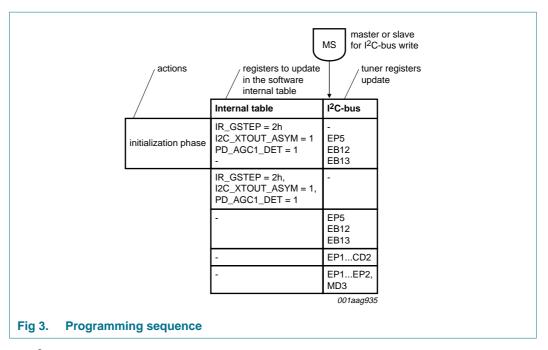
9.4 I²C-bus programming flowcharts

The following flowcharts describe how to:

- Initialize the TDA18271HD
- Launch the calibrations
- Go to Normal mode

The image rejection calibration and RF tracking filter calibration must be launched exactly as described in the flowchart, otherwise bad calibration or even blocking of the TDA18211HD can result making it impossible to communicate via the I²C-bus.

Proper internal initialization requires switching to Normal mode using a single I²C-bus sequence from subaddresses 03h to 0Fh.


9.4.1 Flowchart explanation

This section provides instructions for reading the flowcharts.

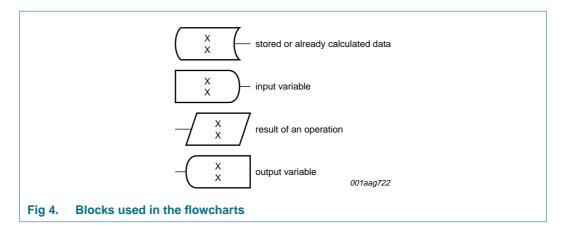
Product data sheet

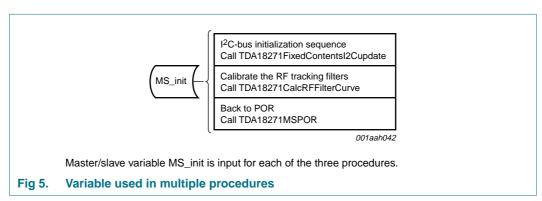
Downloaded from Arrow.com.

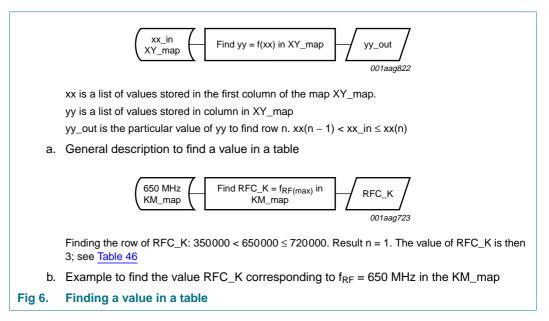
22 of 70

1. I²C-bus write:

- IR_GSTEP is updated, no immediate I²C-bus write
- I2C XTOUT ASYM is updated followed by an I2C-bus write of byte EP5
- PD_AGC1_DET is updated followed by an I²C-bus write of byte EB12
- I²C-bus write of byte EB13 with current value of the software internal register of byte EB13


I²C-bus read:

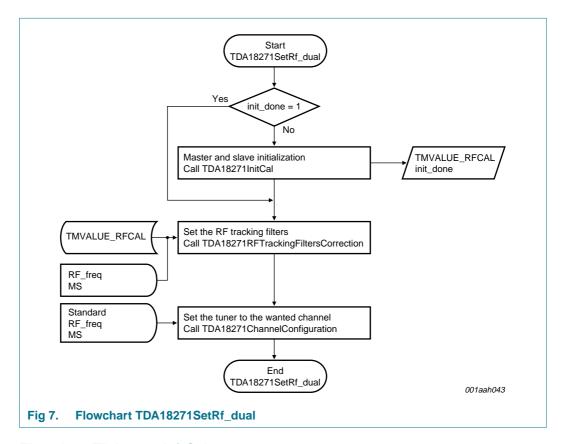

- Subaddressing is not supported in read mode
- The mandatory I²C-bus read access procedures to the TDA18271HD are described in <u>Section 9.4.16 "Flowchart TDA18271Read"</u> and <u>Section 9.4.17</u> "Flowchart TDA18271ReadExtended"
- 2. Update at the same time is indicated by separation with commas:
 - IR_GSTEP, I2C_XTOUT_ASYM and PD_AGC1_DET are updated, no I 2 C-bus registers updated
- 3. I²C-bus registers update bytes EP5, EB12 and EB13
- 4. Bytes EP1 to CD2 are written in a single I²C-bus sequence Example:
 - Start C0 03 EP1 EP2 EP3 EP4 EP5 CPD CD1 CD2 Stop
- 5. Bytes EP1, EP2 and MD3 are written in as many I²C-bus sequences as needed Example:


Start C0 03 EP1 EP2 Stop

Start C0 0F MD3 Stop

24 of 70

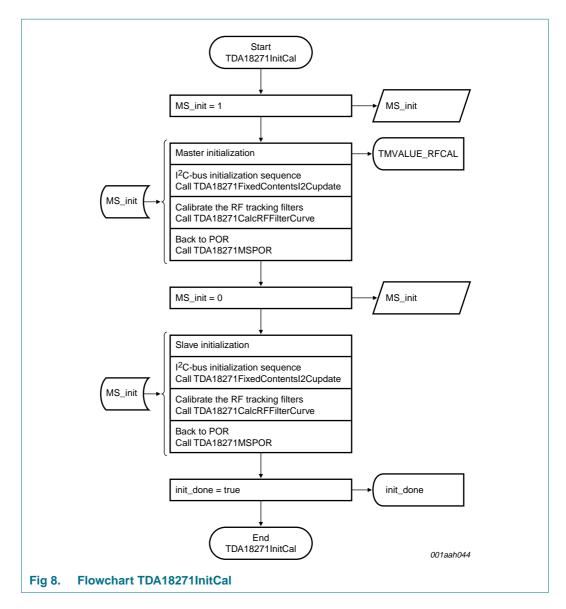
Units: In the flowcharts, hexadecimal values end with "h", decimal values with "d".


9.4.2 Flowchart TDA18271SetRf_dual

The initialization phase has to be launched before any SetRf.

Table 27. TDA18271SetRf_dual

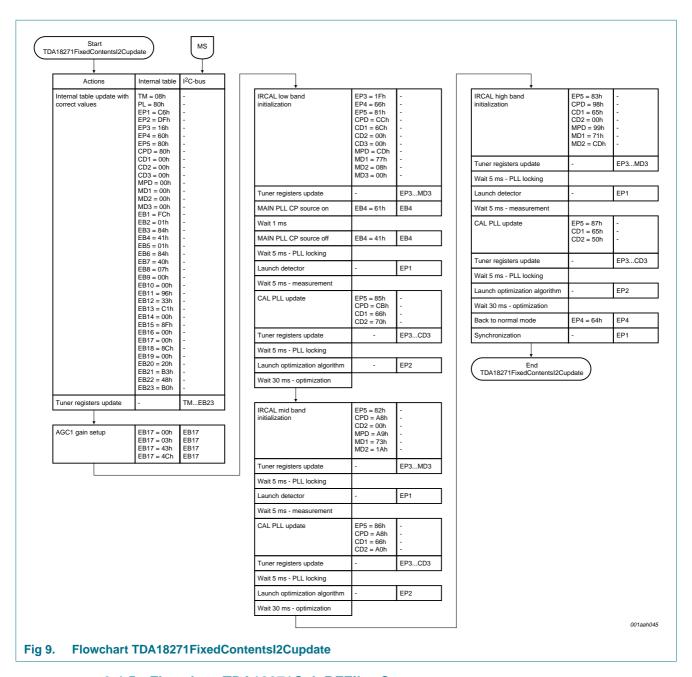
Function	Description	Reference
Description	protocol top view for a dual tuner application	
Input	RF_freq, Standard (from microcontroller), MS (from microcontroller)[1]	
Table	-	
Output	•	


[1] MS = 1: master is selected for the channel configuration; MS = 0: slave is selected for the channel configuration.

9.4.3 Flowchart TDA18271InitCal

Table 28. TDA18271InitCal

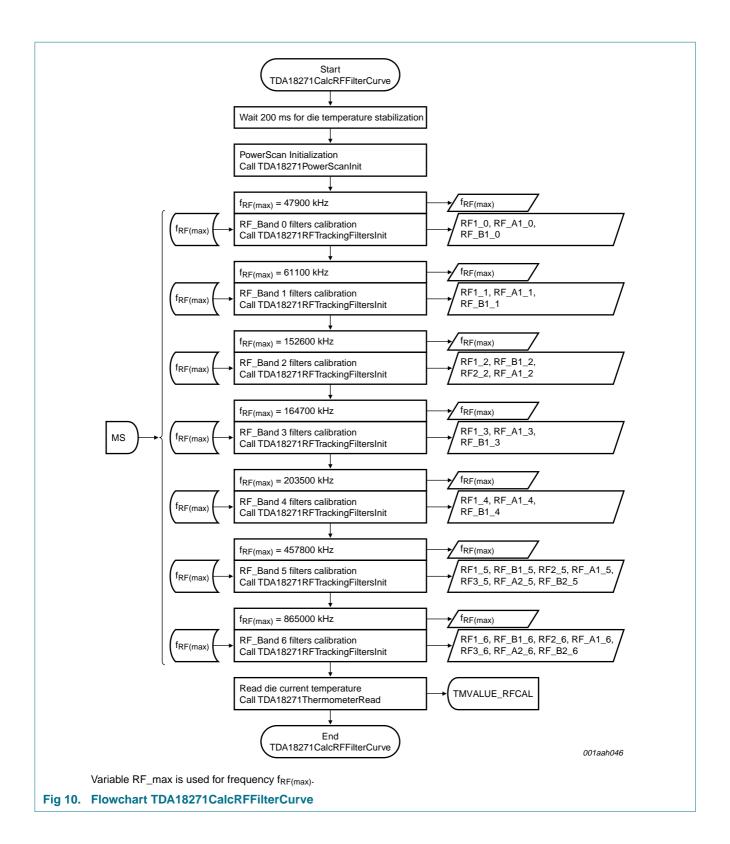
Function	Description	Reference				
Description	systematic initializations for master and slave tuners					
Input	MS_init					
Table	-					
Output	TMVALUE_RFCAL, init_done					



9.4.4 Flowchart TDA18271FixedContentsI2Cupdate

Table 29. TDA18271FixedContentsI2Cupdate

Function	Description	Reference
Description	update and write the TDA18271HD registers sequential update of AGC1 and AGC2 image calibration algorithm	
Input	MS	
Table	-	
Output	-	


The register contents are not described in detail as this procedure is not to be modified.

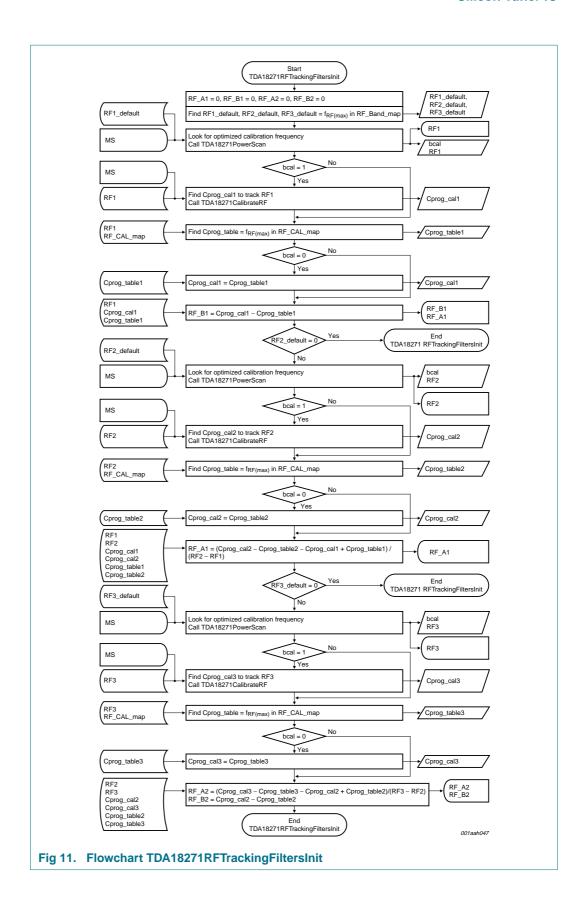
9.4.5 Flowchart TDA18271CalcRFFilterCurve

Table 30. TDA18271CalcRFFilterCurve

Function	Description	Reference
Description	calculate the RF filter curve coefficients	
Input	RF1_default, RF2_default, RF3_default, MS	
Table	RF_BAND_map	Table 45 "RF_BAND_map"
Output	TMVALUE_RFCAL	

29 of 70

9.4.6 Flowchart TDA18271RFTrackingFiltersInit


Table 31. TDA18271RFTrackingFiltersInit

	3	
Function	Description	Reference
Description	calculate the RF filter curve coefficients used for their approximation	
Input	f _{RF(max)} , MS	
Table	RF_CAL_map (Cprog_table = f (frequency))	Table 51 "RF_CAL_map"
Output	RF1, RF2, RF3, RF_A1, RF_B1, RF_A2, RF_B2	

bcal is a boolean output from TDA18271PowerScan:

bcal = 1 (true): enables the calibration of the RF tracking filters

bcal = 0 (false): no calibration is performed, default values for RFC_CPROG are used

31 of 70

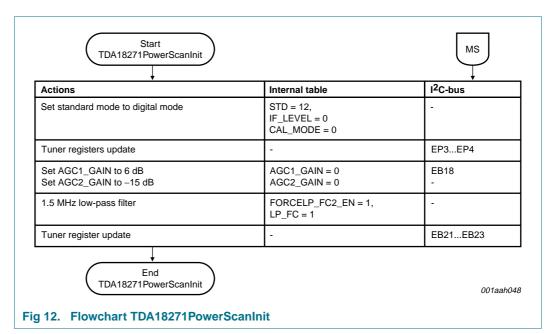

9.4.7 Flowchart TDA18271PowerScanInit

Table 32. TDA18271PowerScanInit

Function	Description	Reference
Description	fixed settings of the TDA18271PowerScan	
Input	MS	
Table	-	
Output	-	

Frequency unit during the algorithm in kHz.

Variable count homogeneous to kHz.

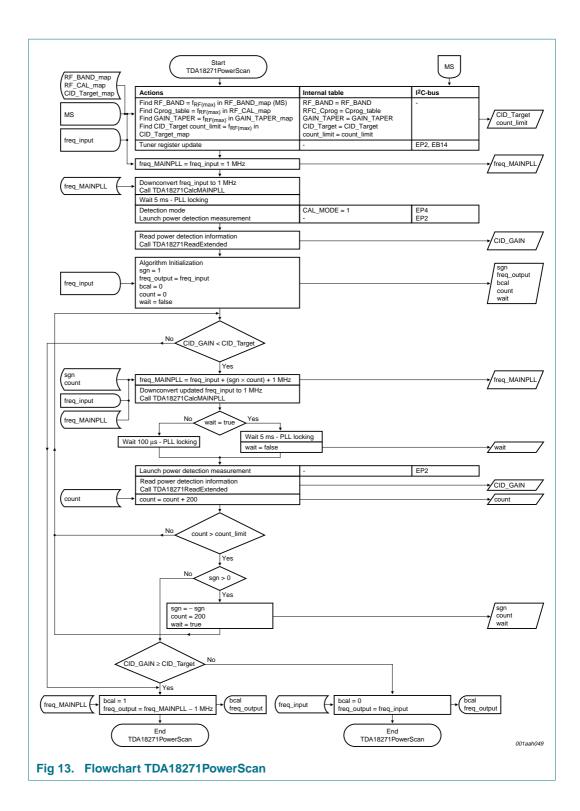
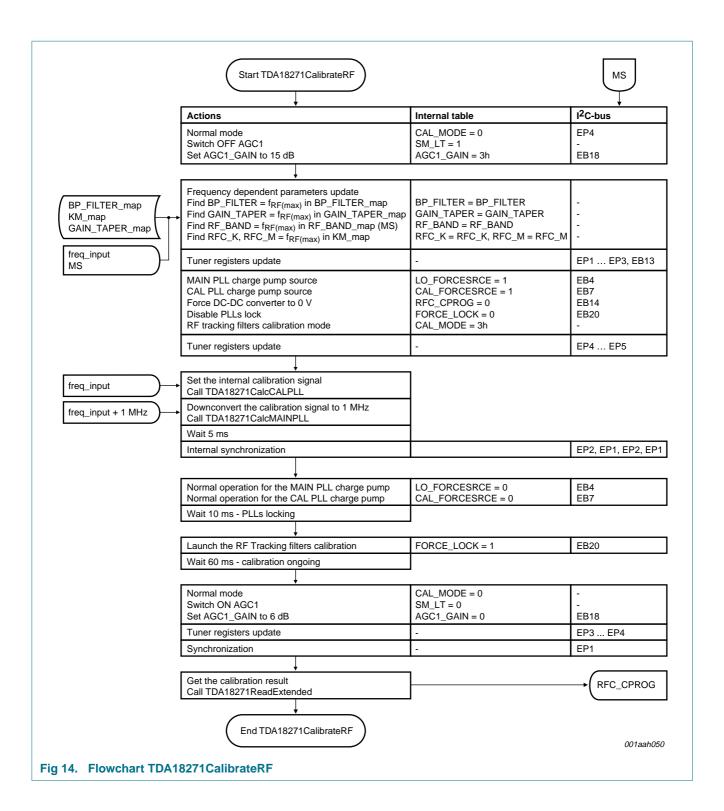

9.4.8 Flowchart TDA18271PowerScan

Table 33. TDA18271PowerScan

Function	Description	Reference
Description	find an interference-free calibration frequency	
Input	freq_input, MS	
Table	RF_BAND_map, RF_CAL_map, CID_Target_map	Table 45 "RF_BAND_map"
		Table 51 "RF_CAL_map"
		Table 54 "CID_Target_map"
Output	bcal, freq_output	

TDA18271HD 4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

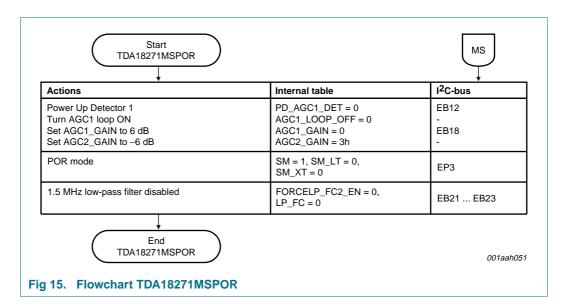
32 of 70



9.4.9 Flowchart TDA18271CalibrateRF

Table 34. TDA18271RFCalibrateRF

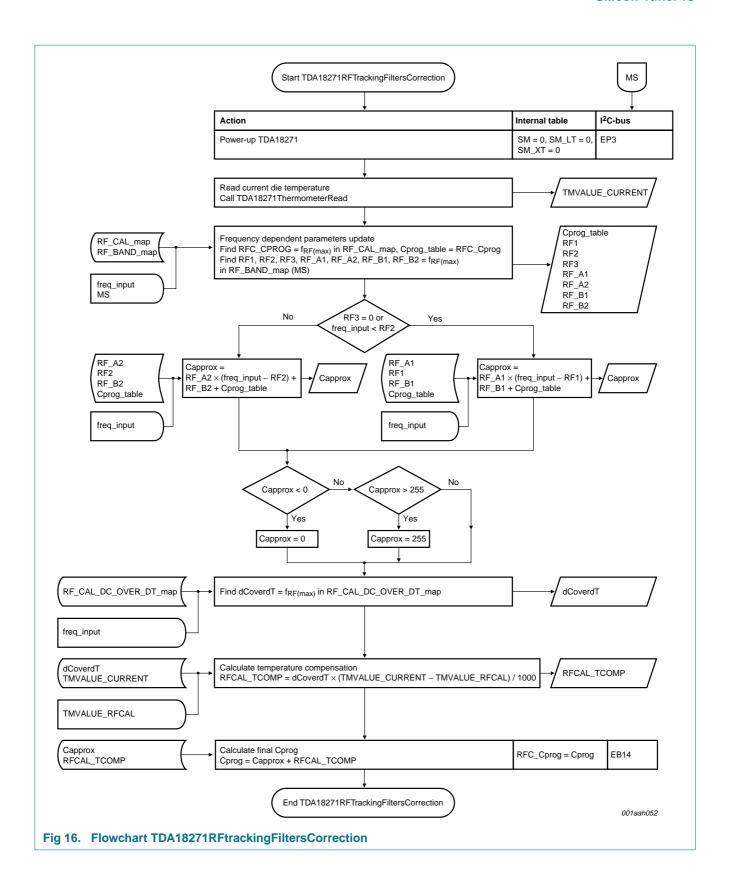
Function	Description	Reference
Description	finds the Cprog for which freq_input is the central frequency of the RF tracking filters	
Input	freq_input, MS	
Table	BP_FILTER_map, KM_map and GAIN_TAPER_map	Table 44 "BP_FILTER_map"
		Table 46 "KM_map"
		Table 49 "GAIN_TAPER_map"
Output	RFC_CPROG	


34 of 70

9.4.10 Flowchart TDA18271MSPOR

Table 35. TDA18271MSPOR

Function	Description	Reference
Description	master or slave tuner goes to Power-On Reset (POR) mode	
Input	MS	
Table	-	
Output	-	

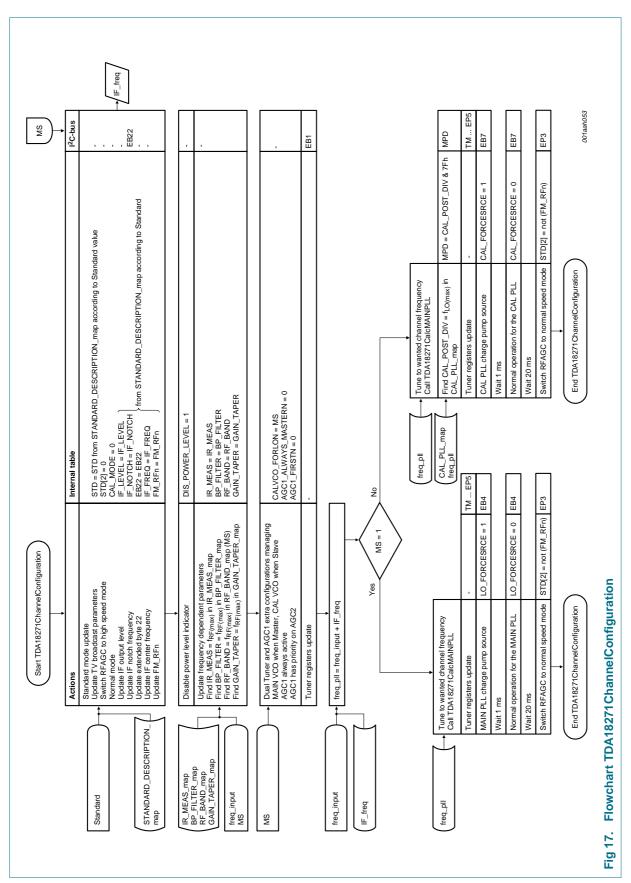


9.4.11 Flowchart TDA18271RFTrackingFiltersCorrection

Table 36. TDA18271RFTrackingFiltersCorrection

Function	Description	Reference
Description	find the Cprog corresponding to the programmed central frequency freq_input	
Input	freq_input, TMVALUE_RFCAL, MS	
Table	RF_BAND_map, RF_CAL_DC_OVER_DT_map, RF_CAL_map	Table 45 "RF_BAND_map"
		Table 50 "RF_CAL_DC_OVER_DT_map"
		Table 51 "RF_CAL_map"
Output	-	

TDA18271HD_4 © NXP B.V. 2009. All rights reserved.

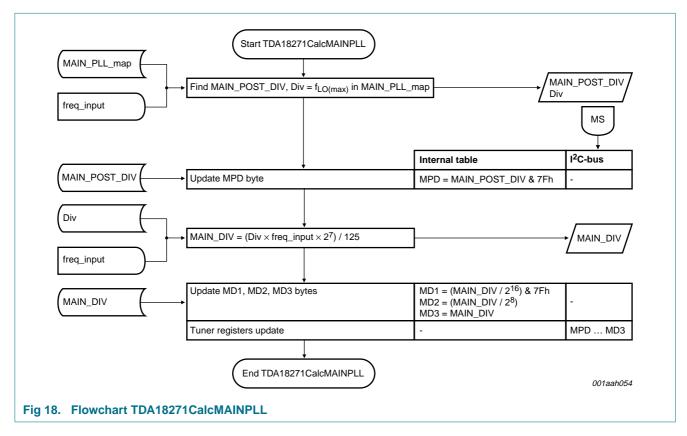


37 of 70

9.4.12 Flowchart TDA18271ChannelConfiguration

Table 37. TDA18271ChannelConfiguration

	- Drittozi i Gilamioro Gimigaration		
Function	Description	Reference	
Description	tunes the tuner according to the channel and broadcast configuration		
Input	freq_input, MS, Standard		
Table	BP_FILTER_map, RF_BAND_map, CAL_PLL_map, GAIN_TAPER_map, IR_MEAS_map	Table 43 "STANDARD_DESCRIPTION_map"	
		Table 44 "BP_FILTER_map"	
		Table 45 "RF_BAND_map"	
		Table 48 "CAL_PLL_map"	
		Table 49 "GAIN_TAPER_map"	
		Table 53 "IR_MEAS_map"	
Output	-		

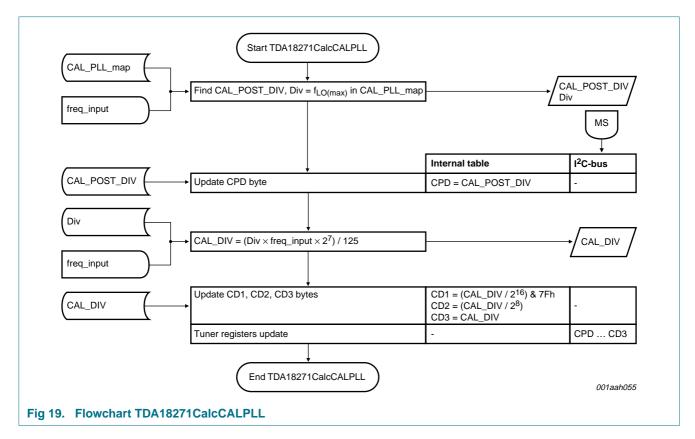


9.4.13 Flowchart TDA18271CalcMAINPLL

MPD, MD1, MD2 and MD3 are 8-bit registers. Arithmetical and logical operations performed on these registers are handled as binary operations. Dividing is right shifting and multiplying is left shifting.

Table 38. TDA18271CalcMAINPLL

Function	Description	Reference
Description	finds the correct values for the bytes MPD, MD1, MD2, MD3 and update the tuner registers	
Input	freq_input, MS	
Table	MAIN_PLL_map	Table 47 "MAIN_PLL_map"
Output	-	

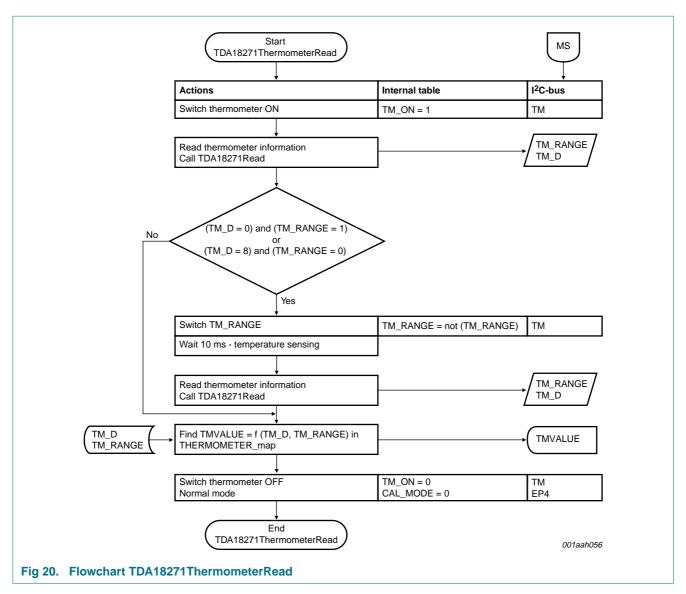

9.4.14 Flowchart TDA18271CalcCALPLL

CPD, CD1, CD2 and CD3 are 8-bit registers. Arithmetical and logical operations performed on these registers are handled as binary operations. Dividing is right shifting and multiplying is left shifting.

40 of 70

Table 39. TDA18271CalcCALPLL

Function	Description	Reference
Description	finds the correct values for the bytes CPD, CD1, CD2, CD3 and update the tuner registers	
Input	freq_input, MS	
Table	CAL_PLL_map	Table 48 "CAL_PLL_map"
Output	-	



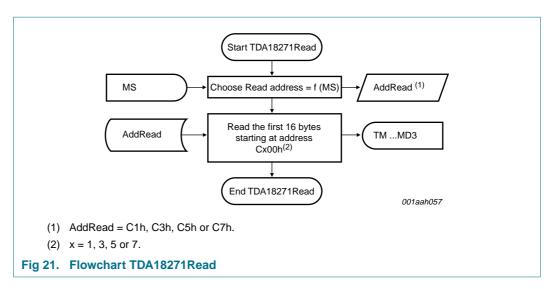
9.4.15 Flowchart TDA18271ThermometerRead

Table 40. TDA18271ThermometerRead

Function	Description	Reference
Description	turns the on-chip temperature sensor ON, reads the current temperature on the die and then turns the temperature sensor OFF	
Input	MS	
Table	THERMOMETER_map	Table 52 "THERMOMETER_map"
Output	TMVALUE (temperature in °C)	

TDA18271HD 4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

9.4.16 Flowchart TDA18271Read

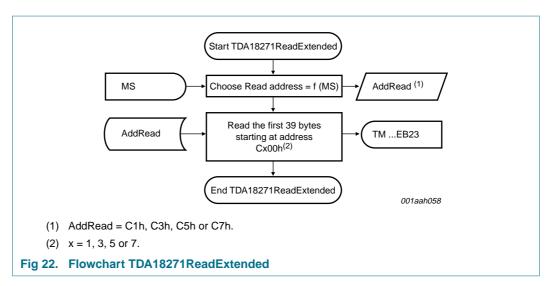

Table 41. TDA18271Read

Function	Description	Reference
Description	reads the first 16 bytes of the TDA18271HD	
Input	MS	
Table	-	
Output	an image of the tuner registers from TM to MD3	

The internal software registers are never updated at any time during the read procedure but are updated when the TDA18271Read is called.

The I²C-bus read in the TDA18271HD does not support subaddressing or variable length sequences. The chip can only be read by performing read sequences TDA18271Read (16 bytes) or TDA18271ReadExtended (39 bytes).

42 of 70



9.4.17 Flowchart TDA18271ReadExtended

Table 42. TDA18271ReadExtended

Function	Description	Reference
Description	read the first 39 bytes of the TDA18271HD	
Input	MS	
Table	-	
Output	an image of the tuner registers from TM to EB23	

The internal software registers are not updated throughout a read procedure. The update is performed at the level of the call TDA18271ReadExtended.

9.5 Maps

Table 43. STANDARD_DESCRIPTION_map

Standard	Selection		Recommended values[1]			
	STD[2:0]	FM_RFN	IF_LEVEL[2:0]	IF_NOTCH	EB22[7:0][2]	f _{IF} (MHz)
Radio	'	·		'		
FM radio	000	1	000	0	2Ch	1.25
Analog TV						
Analog TV std B	101	0	000	0	2Ch	6
Analog TV std D/K	110					6.9
Analog TV std G/H						7.1
Analog TV std I						7.25
Analog TV std L						6.9
Analog TV std Ľ						1.25
Analog TV std M/N	100					5.4
Digital TV[3]						
ATSC 6 MHz	100	0	001	1	37h	3.25
DVB-T 6 MHz						3.30
DVB-T 7 MHz						3.50
DVB-T 8 MHz		101				4
QAM 6 MHz						4
QAM 8 MHz	111					5

^[1] Recommended values for analog and digital reception with a TDA8295 IF demodulator and a TDA10048HN channel decoder respectively.

Table 44. BP_FILTER_map

f _{RF(max)} (kHz)	BP_FILTER[2:0]
62000	000
84000	001
100000	010
140000	011
170000	100
180000	101
865000	110

^[2] EB22[7:0] is the byte of the Take-Over Points of the RF_AGC (bits RF_TOP[2:0] and bits IF_TOP[3:0]).

The RF performances (see Section 13 "Characteristics") relate to these standard dependent arrangements. Any other combination of RF_TOP and IF_TOP fields is not recommended.

^[3] Digital standard settings may vary, depending on channel decoder used.

44 of 70

Table 45. RF_BAND_map

f _{RF(max)} RF_BAND		Used in flowchart						RF1_	RF2_	RF3_	
(kHz) [2:0]	[2:0]	RF_A1	RF_B1	RF_A2	RF_B2	RF1	RF2	RF3	default (kHz)	default (kHz)	default (kHz)
47900	000	RF_A1_0	RF_B1_0	RF_A2_0	RF_B2_0	RF1_0	0	0	46000	0	0
61100	001	RF_A1_1	RF_B1_1	RF_A2_1	RF_B2_1	RF1_1	0	0	52200	0	0
152600	010	RF_A1_2	RF_B1_2	RF_A2_2	RF_B2_2	RF1_2	RF2_2	0	70100	136800	0
164700	011	RF_A1_3	RF_B1_3	RF_A2_3	RF_B2_3	RF1_3	0	0	156700	0	0
203500	100	RF_A1_4	RF_B1_4	RF_A2_4	RF_B2_4	RF1_4	0	0	186250	0	0
457800	101	RF_A1_5	RF_B1_5	RF_A2_5	RF_B2_5	RF1_5	RF2_5	RF3_5	230000	345000	426000
865000	110	RF_A1_6	RF_B1_6	RF_A2_6	RF_B2_6	RF1_6	RF2_6	RF3_6	489500	697500	842000

Table 46. KM_map

f _{RF(max)} (kHz)	RFC_K[2:0]	RFC_M[1:0]
47900	011	10
61100	100	01
350000	011	00
720000	010	01
865000	011	11

The KM_map refers to parameters used during the RF tracking filter calibration. These parameters are frequency dependent.

Table 47. MAIN_PLL_map

f _{LO(max)} (kHz)	MAIN_POST_DIV[6:0]	Div[1]
33125	57h	F0h
35500	56h	E0h
38188	55h	D0h
41375	54h	C0h
45125	53h	B0h
49688	52h	A0h
55188	51h	90h
62125	50h	80h
66250	47h	78h
71 000	46h	70h
76375	45h	68h
82750	44h	60h
90250	43h	58h
99375	42h	50h
110375	41h	48h
124250	40h	40h
132500	37h	3Ch
142000	36h	38h
152750	35h	34h
165500	34h	30h

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

45 of 70

Table 47. MAIN_PLL_map ...continued

f _{LO(max)} (kHz)	MAIN_POST_DIV[6:0]	Div[1]
180500	33h	2Ch
198750	32h	28h
220750	31h	24h
248500	30h	20h
265000	27h	1Eh
284000	26h	1Ch
305500	25h	1Ah
331000	24h	18h
361 000	23h	16h
397500	22h	14h
441500	21h	12h
497000	20h	10h
530000	17h	0Fh
568000	16h	0Eh
611000	15h	0Dh
662000	14h	0Ch
722000	13h	0Bh
795000	12h	0Ah
883000	11h	09h
994000	10h	08h

^[1] Used in Section 9.4.13 "Flowchart TDA18271CalcMAINPLL".

Table 48. CAL_PLL_map

f _{LO(max)} (kHz)	CAL_POST_DIV[7:0]	Div[1]
33813	DDh	D0h
36625	DCh	C0h
39938	DBh	B0h
43938	DAh	A0h
48813	D9h	90h
54938	D8h	80h
62813	D3h	70h
67625	CDh	68h
73250	CCh	60h
79875	CBh	58h
87875	CAh	50h
97625	C9h	48h
109875	C8h	40h
125625	C3h	38h
135250	BDh	34h
146500	BCh	30h
159750	BBh	2Ch

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

46 of 70

Table 48. CAL_PLL_map ...continued

f _{LO(max)} (kHz)	CAL_POST_DIV[7:0]	Div[1]
175750	BAh	28h
195250	B9h	24h
219750	B8h	20h
251250	B3h	1Ch
270500	ADh	1Ah
293000	ACh	18h
319500	ABh	16h
351500	AAh	14h
390500	A9h	12h
439500	A8h	10h
502500	A3h	0Eh
541 000	9Dh	0Dh
586000	9Ch	0Ch
639000	9Bh	0Bh
703000	9Ah	0Ah
781000	99h	09h
879000	98h	08h

^[1] Used in Section 9.4.14 "Flowchart TDA18271CalcCALPLL".

Table 49. GAIN_TAPER_map

GAIN_TAPER[4:0][1]	f _{RF(max)} (kHz)	f _{RF(max)} (kHz)							
	1	2	3	4					
1Fh	45400	154300	-	-					
1Eh	45800	156100	-	-					
1Dh	46200	157800	-	-					
1Ch	46700	159500	-	-					
1Bh	47100	161200	-	-					
1Ah	47500	163000	-	-					
19h	47900	164700	-	476300					
18h	-	-	-	494800					
17h	49600	170200	-	513300					
16h	51200	175800	-	531800					
15h	52900	181300	-	550300					
14h	54500	186900	216200	568900					
13h	56200	192400	228900	587400					
12h	57800	198000	241600	605900					
11h	59500	203500	254400	624400					
10h	61 100	-	267100	642900					
0Fh	-	-	279800	661400					
0Eh	-	-	292500	679900					
0Dh	67600	-	305200	698400					

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

Table 49. GAIN_TAPER_map ...continued

GAIN_TAPER[4:0][1]	f _{RF(max)} (kHz)							
	1	2	3	4				
0Ch	74200	-	317900	716900				
0Bh	80700	-	330700	735400				
0Ah	87200	-	343400	753900				
09h	93800	-	356100	772500				
08h	100300	-	368800	791000				
07h	106900	-	381500	809500				
06h	113400	-	394200	828000				
05h	119900	-	406900	846500				
04h	126500	-	419700	865000				
03h	133000	-	432400	-				
02h	139500	-	445100	-				
01h	146100	-	457800	-				
00h	152600	-	-	-				

^[1] The gain taper function compensates for any systematic RF gain ripple, giving a flat RF gain with frequency.

Table 50. RF_CAL_DC_OVER_DT_map

$f_{RF(max)}$ (kHz)	dCoverdT[1]	f _{RF(max)} (kHz)	dCoverdT[1]	f _{RF(max)} (kHz)	dCoverdT[1]	f _{RF(max)} (kHz)	dCoverdT[1]
47900	0h	383000	22h	457800	3Ch	754000	3Ch
55000	0h	386000	23h	465000	0Fh	759000	3Dh
61100	0Ah	389000	24h	477000	12h	764000	3Eh
64000	0Ah	393000	25h	483000	14h	769000	3Fh
82000	14h	396000	26h	502000	19h	774000	40h
84000	19h	399000	27h	508000	1Bh	779000	41h
119000	1Ch	402000	28h	519000	1Ch	784000	43h
124000	20h	404000	29h	522000	1Dh	789000	46h
129000	2Ah	407000	2Ah	524000	1Eh	794000	48h
134000	32h	409000	2Bh	534000	1Fh	799000	4Bh
139000	39h	412000	2Ch	549000	20h	804000	4Fh
144000	3Eh	414000	2Dh	554000	22h	809000	54h
149000	3Fh	417000	2Eh	584000	24h	814000	59h
152600	40h	419000	2Fh	589000	26h	819000	5Dh
154000	40h	422000	30h	658000	27h	824000	61h
164700	41h	424000	31h	664000	2Ch	829000	68h
203500	32h	427000	32h	669000	2Dh	834000	6Eh
353000	19h	429000	33h	699000	2Eh	839000	75h
356000	1Ah	432000	34h	704000	30h	844000	7Eh
359000	1Bh	434000	35h	709000	31h	849000	82h
363000	1Ch	437000	36h	714000	32h	854000	84h
366000	1Dh	439000	37h	724000	33h	859000	8Fh
369000	1Eh	442000	38h	729000	36h	865000	9Ah
TDA18271HD_4		•		-		© NXP E	3.V. 2009. All rights reserv

48 of 70

Table 50. RF_CAL_DC_OVER_DT_map ...continued

f _{RF(max)} (kHz)	dCoverdT[1]						
373000	1Fh	444000	39h	739000	38h	-	-
376000	20h	447000	3Ah	744000	39h	-	-
379000	21h	449000	3Bh	749000	3Bh	-	-

^[1] Used in flowcharts.

Table 51. RF_CAL_map

f _{RF(max)} (kHz)	Cprog_ table										
41000	0Fh	127000	6Eh	208000	0Fh	370000	58h	521000	20h	740000	69h
43000	1Ch	128000	70h	212000	10h	372000	59h	525000	21h	741000	6Ah
45000	2Fh	129000	71h	216000	11h	375000	5Ah	529000	22h	742000	6Bh
46000	39h	130000	75h	217000	12h	376000	5Bh	533000	23h	743000	6Ch
47000	40h	131000	77h	218000	13h	377000	5Ch	539000	24h	745000	6Dh
47900	50h	132000	78h	220000	14h	379000	5Dh	541000	25h	747000	6Eh
49100	16h	133000	7Bh	222000	15h	382000	5Eh	547000	26h	748000	6Fh
50000	18h	134000	7Eh	225000	16h	384000	5Fh	549000	27h	750000	70h
51000	20h	135000	81h	228000	17h	385000	60h	551000	28h	752000	71h
53000	28h	136000	82h	231000	18h	386000	61h	556000	29h	754000	72h
55000	2Bh	137000	87h	234000	19h	388000	62h	561000	2Ah	757000	73h
56000	32h	138000	88h	235000	1Ah	390000	63h	563000	2Bh	758000	74h
57000	35h	139000	8Dh	236000	1Bh	393000	64h	565000	2Ch	760000	75h
58000	3Eh	140000	8Eh	237000	1Ch	394000	65h	569000	2Dh	763000	76h
59000	43h	141000	91h	240000	1Dh	396000	66h	571000	2Eh	764000	77h
60000	4Eh	142000	95h	242000	1Eh	397000	67h	577000	2Fh	766000	78h
61100	55h	143000	9Ah	244000	1Fh	398000	68h	580000	30h	767000	79h
63000	0Fh	144000	9Dh	247000	20h	400000	69h	582000	31h	768000	7Ah
64000	11h	145000	A1h	249000	21h	402000	6Ah	584000	32h	773000	7Bh
65000	12h	146000	A2h	252000	22h	403000	6Bh	588000	33h	774000	7Ch
66000	15h	147000	A4h	253000	23h	407000	6Ch	591000	34h	776000	7Dh
67000	16h	148000	A9h	254000	24h	408000	6Dh	596000	35h	777000	7Eh
68000	17h	149000	AEh	256000	25h	409000	6Eh	598000	36h	778000	7Fh
70000	19h	150000	B0h	259000	26h	410000	6Fh	603000	37h	779000	80h
71000	1Ch	151000	B1h	262000	27h	411000	70h	604000	38h	781000	81h
72000	1Dh	152000	B7h	264000	28h	412000	71h	606000	39h	783000	82h
73000	1Fh	152600	BDh	267000	29h	413000	72h	612000	3Ah	784000	83h
74000	20h	154000	20h	269000	2Ah	414000	73h	615000	3Bh	785000	84h
75000	21h	155000	22h	271000	2Bh	417000	74h	617000	3Ch	786000	85h
76000	24h	156000	24h	273000	2Ch	418000	75h	621000	3Dh	793000	86h
77000	25h	157000	25h	275000	2Dh	420000	76h	622000	3Eh	794000	87h
78000	27h	158000	27h	277000	2Eh	422000	77h	625000	3Fh	795000	88h
80000	28h	159000	29h	279000	2Fh	423000	78h	632000	40h	797000	89h

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

Table 51. RF_CAL_map ...continued

f _{RF(max)} (kHz)	Cprog_ table										
81000	29h	160000	2Ch	282000	30h	424000	79h	633000	41h	799000	8Ah
82000	2Dh	161000	2Dh	284000	31h	427000	7Ah	634000	42h	801000	8Bh
83000	2Eh	163000	2Eh	286000	32h	428000	7Bh	642000	43h	802000	8Ch
84000	2Fh	164000	2Fh	287000	33h	429000	7Dh	643000	44h	803000	8Dh
85000	31h	164700	30h	290000	34h	432000	7Fh	647000	45h	804000	8Eh
86000	33h	166000	11h	293000	35h	434000	80h	650000	46h	810000	90h
87000	34h	167000	12h	295000	36h	435000	81h	652000	47h	811000	91h
88000	35h	168000	13h	297000	37h	436000	83h	657000	48h	812000	92h
89000	37h	169000	14h	300000	38h	437000	84h	661000	49h	814000	93h
90000	38h	170000	15h	303000	39h	438000	85h	662000	4Ah	816000	94h
91000	39h	172000	16h	305000	3Ah	439000	86h	665000	4Bh	817000	96h
93000	3Ch	173000	17h	306000	3Bh	440000	87h	667000	4Ch	818000	97h
94000	3Eh	174000	18h	307000	3Ch	441000	88h	670000	4Dh	820000	98h
95000	3Fh	175000	1Ah	310000	3Dh	442000	89h	673000	4Eh	821000	99h
96000	40h	176000	1Bh	312000	3Eh	445000	8Ah	676000	4Fh	822000	9Ah
97000	42h	178000	1Dh	315000	3Fh	446000	8Bh	677000	50h	828000	9Bh
99000	45h	179000	1Eh	318000	40h	447000	8Ch	681000	51h	829000	9Dh
100000	46h	180000	1Fh	320000	41h	448000	8Eh	683000	52h	830000	9Fh
102000	48h	181000	20h	323000	42h	449000	8Fh	686000	53h	831000	A0h
103000	4Ah	182000	21h	324000	43h	450000	90h	688000	54h	833000	A1h
105000	4Dh	183000	22h	325000	44h	452000	91h	689000	55h	835000	A2h
106000	4Eh	184000	24h	327000	45h	453000	93h	691000	56h	836000	A3h
107000	50h	185000	25h	331000	46h	454000	94h	695000	57h	837000	A4h
108000	51h	186000	26h	334000	47h	456000	96h	698000	58h	838000	A6h
110000	54h	187000	27h	337000	48h	457800	98h	703000	59h	840000	A8h
111000	56h	188000	29h	339000	49h	461000	11h	704000	5Ah	842000	A9h
112000	57h	189000	2Ah	340000	4Ah	468000	12h	705000	5Bh	845000	AAh
113000	58h	190000	2Ch	341000	4Bh	472000	13h	707000	5Ch	846000	ABh
114000	59h	191000	2Dh	343000	4Ch	473000	14h	710000	5Dh	847000	ADh
115000	5Ch	192000	2Eh	345000	4Dh	474000	15h	712000	5Eh	848000	AEh
116000	5Dh	193000	2Fh	349000	4Eh	481000	16h	717000	5Fh	852000	AFh
117000	5Fh	194000	30h	352000	4Fh	486000	17h	718000	60h	853000	B0h
119000	60h	195000	33h	353000	50h	491000	18h	721000	61h	858000	B1h
120000	64h	196000	35h	355000	51h	498000	19h	722000	62h	860000	B2h
121000	65h	198000	36h	357000	52h	499000	1Ah	723000	63h	861000	B3h
122000	66h	200000	38h	359000	53h	501000	1Bh	725000	64h	862000	B4h
123000	68h	201000	3Ch	361000	54h	506000	1Ch	727000	65h	863000	B6h
124000	69h	202000	3Dh	362000	55h	511000	1Dh	730000	66h	864000	B8h
125000	6Ch	203500	3Eh	364000	56h	516000	1Eh	732000	67h	865000	B9h
126000	6Dh	206000	0Eh	368000	57h	520000	1Fh	735000	68h	-	-

Table 52. THERMOMETER_map

Bit TM_ON must be set to logic 1.

TM_D[3:0]	TMVALUE (die temperature)			
	TM_RANGE = 0	TM_RANGE = 1		
0000	60 °C	92 °C		
0001	62 °C	94 °C		
0010	66 °C	98 °C		
0011	64 °C	96 °C		
0100	74 °C	106 °C		
0101	72 °C	104 °C		
0110	68 °C	100 °C		
0111	70 °C	102 °C		
1000	90 °C	122 °C		
1001	88 °C	120 °C		
1010	84 °C	116 °C		
1011	86 °C	118 °C		
1100	76 °C	108 °C		
1101	78 °C	110 °C		
1110	82 °C	114 °C		
1111	80 °C	112 °C		

Table 53. IR_MEAS_map

f _{RF(max)} (kHz)	IR_MEAS[2:0]
200	101
600	110
865	111

TDA18271HD_4 © NXP B.V. 2009. All rights reserved.

Table 54. CID_Target_map

f _{RF(max)}	CID_Target	count_limit
46000	4	1800
52200	A	1500
70100	1	4000
136800	18	
156700	18	
186250	A	
230000	A	
345000	18	
426000	E	
489500	1E	
697500	32	
842000	3A	_

10. Internal circuitry

Table 55. Internal circuits

Symbol	Pin	Description ^[1]	Average DC voltage
FM_IN	8	8 ————————————————————————————————————	0.8 V
RF_IN	10	10	0.8 V
CAPRFAGC	12	12 — 001aaf838	2.8 V
LT	13	13 001aaf839	0.85 V
STO	15	001aaf840	0.85 V
CAPREGVCO	17	17————————————————————————————————————	2.8 V (Normal mode); 0 V (Standby mode)

Downloaded from Arrow.com.

Table 55. Internal circuits ...continued

	circuit	scontinued	
Symbol	Pin	Description ^[1]	Average DC voltage
MASTERSYNC	19	19 001aaf842	$0.5 \times V_{CC}$
CAPFILTVCO	20	20 ————————————————————————————————————	1.6 V (Normal mode); 0 V (Standby mode)
VT_COARSE	21	21——— ————————————————————————————————	$0.5 \times V_{CC}$
VT_FINE	22	22——— ———————————————————————————————	$0.5 \times V_{CC}$
CP_LO	24	24 001aaf846	0.5 × V _{CC}
XTALP	26	26 ————————————————————————————————————	1.45 V
XTALN	27	27 ————————————————————————————————————	1.45 V

TDA18271HD_4

Rev. 04 — 19 May 2009

Table 55. Internal circuits ...continued

Symbol	Pin	Description[1]	Average DC voltage
FREEZE	28	28	3.3 V
XTOUT_MS	29	29	high-Z
XTOUTP	30	30	2.4 V
XTOUTN	31	31	2.4 V
AS	32	32	high-Z
CP_CAL	34	34	3.3 V (Normal mode); $0.5 \times V_{CC}$ (Calibration mode)
VT_CAL	35	35————————————————————————————————————	3.3 V (Normal mode); $0.5 \times V_{CC}$ (Calibration mode)

TDA18271HD_4

Downloaded from Arrow.com.

© NXP B.V. 2009. All rights reserved.

55 of 70

Table 55. Internal circuits ...continued

Symbol	Pin	Description[1]	Average DC voltage
SCL	38	38 ————————————————————————————————————	high-Z
SDA	39	39 001aaf857	high-Z
CAPREG18	40	40 001aaf858	1.8 V (Normal mode); 2.0 V (Sleep mode)
CAPREG28	42	42 001aaf859	2.8 V (Normal mode); 2.4 V (Sleep mode)
IFOUTN	45	45 001aaf860	1.35 V
IFOUTP	46	46 001aaf861	1.35 V

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

56 of 70

Table 55. Internal circuits ... continued

Symbol	Pin	Description[1]	Average DC voltage
V_IFAGC	47	47 — 001aaf862	high-Z
VSYNC	51	51 ————————————————————————————————————	high-Z
CAPREGFILTRF	52	52 001aaf864	2.8 V (Normal mode); 0 V (Sleep mode)

^[1] ESD protection components are not shown.

11. Limiting values

Table 56. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.3	+3.6	V
V_{I}	input voltage	pins SDA and SCL	-0.3	+5.5	V
		all other pins			
		V_{CC} < 3.3 V	-0.3	$V_{CC} + 0.3$	V
		$V_{CC} > 3.3 \text{ V}$	-0.3	+3.6	V
T_{stg}	storage temperature		-40	+150	°C
T_j	junction temperature		-	110	°C
V _{esd}	electrostatic discharge voltage	HBM: EIA/JESD22-A114	±2000	-	V
		MM: EIA/JESD22-A115	±200	-	V

^[1] The TDA18271HD withstands the latch-up specifications of JEDEC JESD78A, with the specific recommendation using coupling capacitors on pins RF_IN, LT, STO, XTOUTP and XTOUTN.

12. Thermal characteristics

Table 57. Thermal characteristics[1]

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-c)}$	thermal resistance from junction to case	according to JEDEC specification	19.6	K/W

^[1] The junction temperature can be obtained with the formula $T_j = T_{amb} + R_{th(j-a)} \times V_{CC} \times I_{CC}$, where $R_{th(j-a)}$ is the thermal resistance of the application. $R_{th(j-a)}$ must be such that the resulting T_j does not exceed the maximum value defined in Table 56.

TDA18271HD 4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

13. Characteristics

All data in this section refers to Master mode operation

Table 58. Loop-through characteristics (RF input to loop-through output)

 T_{amb} = 25 °C; V_{CC} = 3.3 V; for test circuit see Figure 27; unless otherwise specified.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{RF(It)}$		center of channel	45	-	864	MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VSWR	•		-	-	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{v(lt)} \\$		75 Ω load	-	1.5	-	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔG_{lt}		. ,	-	3	-	dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NF _{lt}			-	6.5	-	dB
beat $\alpha_{isol(bp)} \text{bypass isolation} \text{from loop-through output to} - 24 $	CSO	second-order		[1] -	-60	-	dBc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	СТВ			<u>[1]</u> -	-63	-	dBc
L(tair ito)	$\alpha_{\text{isol(bp)}}$	bypass isolation		-	24	-	dB
loop-through output	V _{L(tun-lto)}	between tuner and	in RF TV band	-	5	-	dBμV

^[1] Channel loading assumptions: 129 channels (NTSC 129 frequency plan) at 75 dB μ V.

Table 59. Slave tuner output characteristics (pin STO)

 T_{amb} = 25 °C; V_{CC} = 3.3 V; for test circuit see Figure 27; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF(STO)}	RF frequency on pin STO	slave tuner output	45	-	864	MHz
Z _{o(STO)}	output impedance on pin STO		30	35	40	Ω
$G_{v(STO)}$	voltage gain on pin STO	75 Ω source resistance on RF input; Z _i = 35 Ω (75 Ω , VSWR = 2)				
		$POWER_LEVEL[6:5] = 00$	-	6	-	dB
		POWER_LEVEL[6:5] = 01	-	9	-	dB
		POWER_LEVEL[6:5] = 10	-	12	-	dB
		POWER_LEVEL[6:5] = 11	-	15	-	dB

Table 60. General characteristics for TV reception (RF input to IF output)

 T_{amb} = 25 °C; V_{CC} = 3.3 V; IF output level option 2 V (p-p); IF output load = 1 k Ω on each terminal; for test circuit see <u>Figure 27</u>; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
V _{CC}	supply voltage		3.13	3.30	3.47	V
I _{CC}	supply current	Normal mode	180	235	290	mA
		Standby mode with LT, STO and crystal oscillator on (default at POR)	40	51	65	mA
		Standby mode with only crystal oscillator and its output on	10	15	20	mA
		Device off mode	1	2	5	mA
Р	power dissipation		-	780	-	mW
T _{amb}	ambient temperature		0	-	70	°C
Input						
f _{RF}	RF frequency	center of channel	45	-	864	MHz
VSWR	voltage standing wave ratio	RF input; 75 Ω nominal impedance	-	2	-	-
NF _{tun}	tuner noise figure	maximum gain	-	5.5	-	dB
G _{v(tun)max}	maximum tuner voltage gain	2 V (p-p) IF output selection	-	83	-	dB
$\Delta G_{AGC(tun)}$	tuner AGC gain range		-	71	-	dB
V _{i(max)}	maximum input voltage	1 dB gain compression, one analog TV signal at RF input (–5 dBm)	-	103	-	dBμV
$V_{L(tun-RF)}$	leakage voltage between tuner and RF	at RF input; in RF band	-	0	-	dBμV
Output						
$V_{o(IF)dif(p-p)}$	peak-to-peak	IF_LEVEL[2:0] = 000	-	2	-	V
	differential IF	IF_LEVEL[2:0] = 001	-	1.25	-	V
	output voltage	IF_LEVEL[2:0] = 010	-	1	-	V
		IF_LEVEL[2:0] = 110	-	0.6	-	V
		IF_LEVEL[2:0] = 111	-	0.5	-	V
$Z_{o(IF)}$	IF output impedance	differential mode; magnitude value	-	100	-	Ω
$\Delta G_{AGC(IF)}$	IF AGC GAIN range	2 V (p-p) IF output voltage selection	-	30	-	dB
G _{tlt}	tilt gain	RF frequency range; 6/7/8 MHz channel	-	2	4	dB

Table 60. General characteristics for TV reception (RF input to IF output) ...continued $T_{amb} = 25 \,^{\circ}\text{C}$; $V_{CC} = 3.3 \, V$; IF output level option 2 V (p-p); IF output load = 1 k Ω on each terminal; for test circuit see <u>Figure 27</u>; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IF(stpb)Ip}	low-pass	60 dB attenuation				
	stop-band IF frequency	6 MHz IF filter	-	14	-	MHz
	rrequericy	7 MHz IF filter	-	16	-	MHz
		8 MHz IF filter	-	18	-	MHz
$lpha_{image}$	image rejection		-	65	-	dB
t _{d(grp)}	group delay time	analog TV; difference between f1 and f2 in IF				
		Std B; f1 = 1.57 MHz; f2 = 6 MHz	-	130	-	ns
		Std G; f1 = 2.67 MHz; f2 = 7.1 MHz	-	36	-	ns
		Std M/N; f1 = 1.82 MHz; f2 = 5.4 MHz	-	92	-	ns
t _{ripple}	ripple time	digital TV; difference between f1 and f2 in digital channel				
		ATSC 6 MHz; f1 = 0.75 MHz; f2 = 5.75 MHz	-	395	-	ns
		DVB-T 6 MHz; $f1 = 0.8 \text{ MHz}$ and $f2 = 5.8 \text{ MHz}$	-	365	-	ns
		DVB-T 7 MHz; $f1 = 0.5$ MHz and $f2 = 6.5$ MHz	-	478	-	ns
		DVB-T 8 MHz; $f1 = 0.5 \text{ MHz}$ and $f2 = 7.5 \text{ MHz}$	-	515	-	ns
		QAM 6 MHz; $f1 = 1.5$ MHz and $f2 = 6.5$ MHz	-	155	-	ns
		QAM 8 MHz; $f1 = 1.5$ MHz and $f2 = 8.5$ MHz	-	180	-	ns
φ _n	phase noise	1 kHz and 10 kHz; see Figure 23	-	-89	-	dBc/Hz
Various						
t _{startup(tun)}	tuner start-up time	at power-up	-	1.5	-	S
t _{set}	setting time	channel change	-	20	-	ms
S _{dig}	digital sensitivity	DVB-T (64 QAM $\frac{2}{3}$); BER = 2.10 ⁻⁴	[1] -	-82	-	dBm
Sa	analog sensitivity	50 dB video SNR weighted 22 dBμV (color loss)	[2] -	58	-	dBμV

^[1] Measured with TDA10048HN channel decoder.

^[2] Measured with TDA8295 IF modulator.

60 of 70

Table 61. General characteristics for FM radio reception (FM input to IF output)

 V_{CC} = 3.3 V; T_{amb} = 25 °C; IF output load of 1 k Ω on each terminal; for test circuit see <u>Figure 27</u>; unless otherwise specified.

	<u> </u>					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
I _{CC}	supply current	FM mode with loop-through, slave tuner output and crystal oscillator on (default at POR)	-	265	315	mA
Input						
f_{RF}	RF frequency		65	-	108	MHz
VSWR	voltage standing wave ratio	75 Ω nominal impedance	-	2	-	
Output						
fo	output frequency	IF	-	1	-	MHz
$V_{o(p-p)}$	peak-to-peak output	IF_LEVEL[2:0] = 000	-	2.0	-	V
	voltage	IF_LEVEL[2:0] = 001	-	1.25	-	V
		IF_LEVEL[2:0] = 010	-	1.0	-	V
		IF_LEVEL[2:0] = 111	-	0.5	-	V
$\alpha_{\text{isol(bp)}}$	bypass isolation	in FM band between pins RF_IN and pin FM_IN	-	32	-	dB

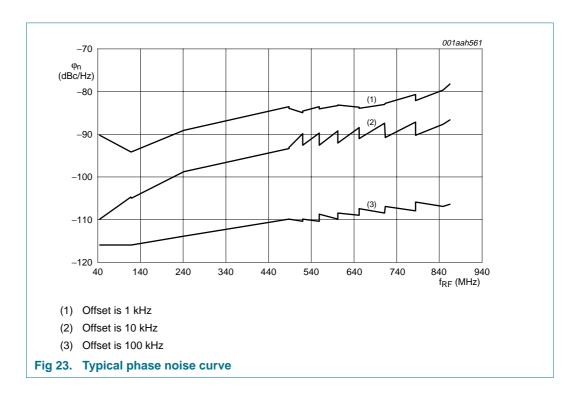
Table 62. Characteristics of terminals

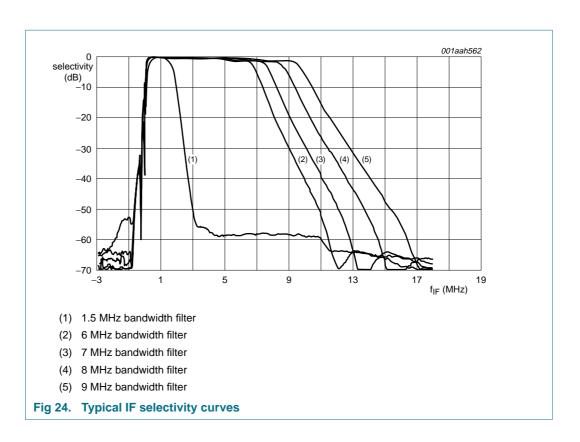
T_{amb} = 25 °C; V_{CC} = 3.3 V; 2.2 nF on input pin V_IFAGC; for test circuit see Figure 27; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IF AGC inp	out: pin V_IFAGC					
V_{AGC}	AGC voltage		0	-	V_{CC}	V
Z_{i}	input impedance		-	high-Z	-	Ω
dG _{AGC} /dV	rate of change of AGC gain with voltage		-	30	55	dB/V
Crystal os	cillator					
f _{xtal}	crystal frequency		15.99	16	16.01	MHz
Z _i	input impedance	magnitude value; master mode	-	500	-	Ω
Crystal os	cillator output buffe	r; pins XTOUTP and XTOU	ΓN			
R _o	output resistance	16 MHz output frequency	-	460	-	Ω
$V_{o(p-p)}$	peak-to-peak output voltage	10 kΩ//10 pF AC load	-	0.4	-	V
SR _r	slew rate of rising signal	10 kΩ//10 pF AC load	-	40	-	V/μs
SR _f	slew rate of falling signal	10 kΩ//10 pF AC load	-	40	-	V/μs

TDA18271HD_4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

Table 62. Characteristics of terminals ...continued

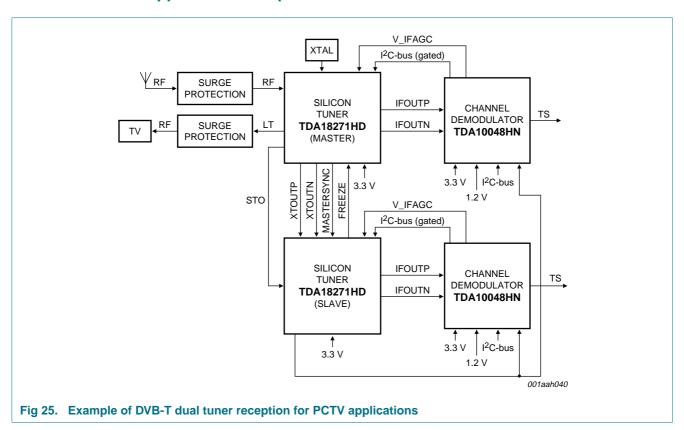

Table 62. Characteristics of terminals ...continued

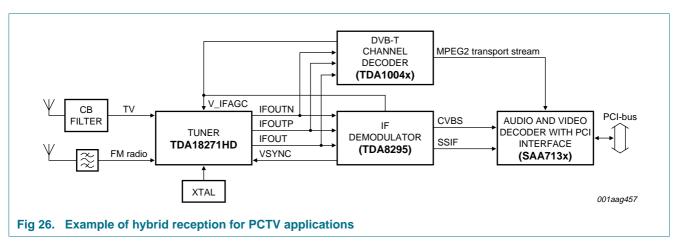

Table 62. Characteristics of terminals ...continued

 T_{amb} = 25 °C; V_{CC} = 3.3 V; 2.2 nF on input pin V_IFAGC; for test circuit see <u>Figure 27</u>; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I ² C-bus ^[1]	i aramotor	Containionio	•••••	. , ,	шах	•
Pin SCL						
V_{IL}	LOW-level input	fixed input levels	-	-	1.5	V V kHz V V V V V
	voltage	V _{DD} related input levels	-	-	$0.3V_{DD}$	
V_{IH}	HIGH-level input	fixed input levels	3	-	-	V
	voltage	V _{DD} related input levels	$0.7V_{DD}$	_{DD} V		
f _{SCL}	SCL clock frequency		-	-	400	kHz
pin SDA						
V_{OH}	HIGH-level output voltage	I _{SDA} = 3 mA (sink current)	-	-	0.4	V
	LOW-level input voltage	fixed input levels	-	-	1.5	V V V kHz
		V _{DD} related input levels	-	-	$0.3V_{DD}$	V
V _{IH}	HIGH-level input	fixed input levels	3	-	-	V
	voltage	V _{DD} related input levels	$0.7V_{DD}$	-	-	V

[1] Devices that use non-standard supply voltages, which do not conform to the intended I²C-bus system levels, must relate their input levels to the supply voltage to which the pull-up resistors are connected.

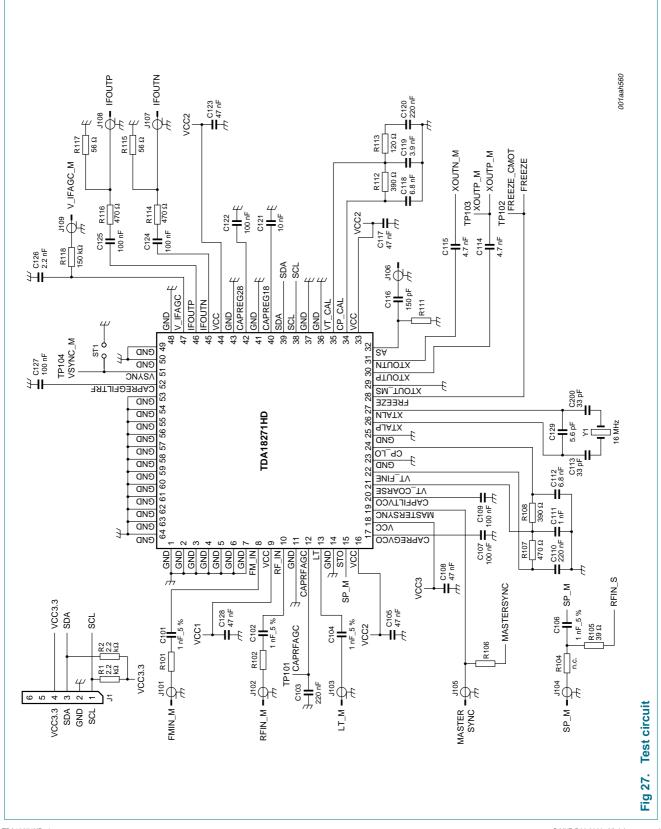




63 of 70

14. Application information

14.1 Application examples


14.2 Application notes

Application notes are available for the following:

- Analog and digital front end: see application note AN605
- Analog front end: see application note AN602
- Dual tuner application for PCTV: see application note AN604

64 of 70

15. Test information

65 of 70

16. Package outline

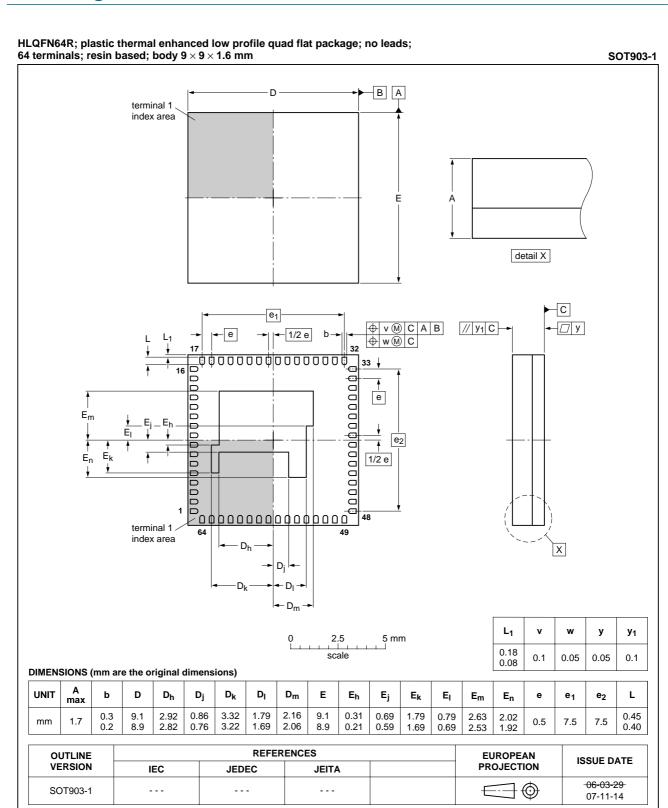


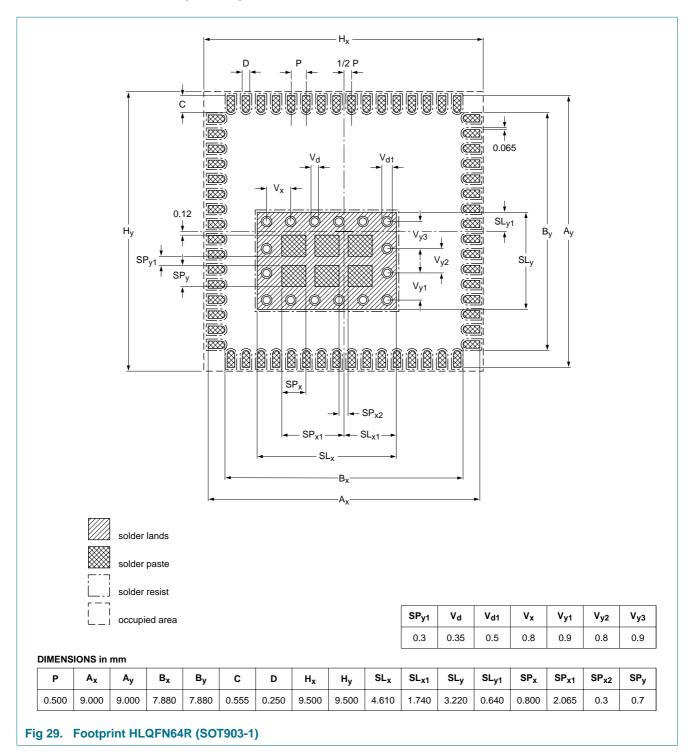
Fig 28. Package outline SOT903-1 (HLQFN64R)

TDA18271HD 4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

66 of 70

17. Printed-circuit board

17.1 Reflow profile


See application note AN10366.

17.2 De-soldering recommendation

See application note AN10366.

67 of 70

17.3 Footprint layout

TDA18271HD 4 © NXP B.V. 2009. All rights reserved. Rev. 04 — 19 May 2009

18. Abbreviations

Table 63. Abbreviations

Table 05. Abbit	sviations
Acronym	Description
AGC	Automatic Gain Control
BER	Bit Error Rate
СВ	Citizens Band
CP	Charge Pump
DVB-T	Digital Video Broadcasting - Terrestrial
DVD-R	Digital Versatile Disk-Recordable
ESD	ElectroStatic Discharge
HBM	Human Body Model
IF	Intermediate Frequency
LNA	Low Noise Amplifier
LO	Local Oscillator
LT	Loop-Through
MM	Machine Model
PCTV	Personal Computer TeleVision
PLL	Phase-Locked Loop
QAM	Quadrature Amplitude Modulation
RoHS	Restriction of Hazardous Substances
SAW	Surface Acoustic Wave
SNR	Signal-to-Noise Ratio
TS	Transport Stream
VCO	Voltage Controlled Oscillator

19. Revision history

Table 64. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TDA18271HD_4	20090519	Product data sheet	-	TDA18271HD_3
Modifications:		lowchart TDA18271RFtracking COMP = dCoverdT x (TMVALU		
TDA18271HD_3	20080911	Product data sheet	-	TDA18271HD_2
TDA18271HD_2	20080306	Product data sheet	-	TDA18271HD_1
TDA18271HD_1	20070806	Product data sheet	-	-

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status[3]	Definition	
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.	
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.	
Product [short] data sheet	Production	This document contains the product specification.	

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

Silicon Tuner — is a trademark of NXP B.V.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

22. Contents

3 Applications	1	General description	1 9	9.4.8	Flowchart TDA18271PowerScan	
Applications	2	Features	•			
3.1 Target applications	3	Applications	1	-		35
A				9.4.11		
	3.2		2			
Socior Section Secti	4		,		<u> </u>	
Block diagram			_ `			
77 Pinning information 4 9.4.16 Flowchart TDA18271Read. 41 7.1 Pinning. 4 9.4.17 Flowchart TDA18271Read. 41 7.1 Pinning. 4 9.4.17 Flowchart TDA18271Read. 42 7.2 Pin description 6 10 Internal circuitry 52 8.1 TV and FM reception 6 11 Limiting values 56 8.2 Master and slave operation. 6 12 Thermal chracteristics 56 8.3 Tuner outputs. 7 13 Characteristics 56 8.3 Loop-through output. 7 14 Application information 63 8.3.1 Loop-through output. 7 14.1 Application information 63 8.5 Crystal output mode 7 14.1 Application notes 63 8.5 Crystal output mode 7 14.2 Application notes 63 8.5 Crystal output mode 18 16 22		_				
Pinning						
Functional description			7	-		
Reflow Functional description 6			4	-		
1		•	7			
Master and slave operation	8		U	-		
8.3 Tuner outputs	8.1		U			
8.3.1 Loop-through output 7 14 Application information 63 8.3.2 Slave tuner output 7 14.1 Application examples 63 8.4 Crystal input mode 7 14.2 Application examples 63 8.5 Crystal output mode 7 14.2 Application notes 63 9 Control interface 8 16 Package outline 65 9.1 I²C-bus format, Write/Read mode 8 16 Package outline 65 9.2 I²C-bus at Power-On Reset 11 17.1 Package outline 65 9.3 Description of symbols used in I²C-bus format table 12 17.2 De-soldering recommendation 66 9.3.1 I²C-bus address selection 13 17.3 Footprint layout 67 9.3.2 Description of temperature sensor byte 14 18 Abbreviations 68 9.3.3 Description of Easy prog byte 1 15 20.1 20.1 20.1 20.1 20.1 20.1 <td>-</td> <td></td> <td></td> <td>12</td> <td></td> <td></td>	-			12		
8.3.2 Slave tuner output. 7 14.1 Application maturial 8.4 Crystal input mode 7 14.2 Application examples 63 8.5 Crystal output mode 7 14.2 Application examples 63 8.6 Control interface 8 9.1				13	Characteristics	57
Slave tuner output				14	Application information	63
14.2 Application notes 63				14.1		
Crystal output mode	-			14.2		
1				15		
1			8			
9.3 Description of symbols used in 2C-bus format table		·	8			
format table			11			
9.3.1 2C-bus address selection. 13 17.3 Footprint layout. 67 9.3.2 Description of chip ID byte 14 18 Abbreviations 68 9.3.3 Description of temperature sensor byte 14 19 Revision history 68 9.3.4 Description of power level byte (read mode) 15 20 9.3.5 Description of Easy prog byte 1 15 20.1 9.3.6 Description of Easy prog byte 2 16 20.2 9.3.7 Description of Easy prog byte 3 16 20.3 9.3.8 Description of Easy prog byte 4 17 20.3 9.3.9 Description of Easy prog byte 5 18 9.3.10 Description of Cal post-divider byte 18 21 9.3.11 Description of Cal divider bytes 1, 2 and 3 18 9.3.12 Description of Main post-divider byte 19 9.3.13 Description of Main divider bytes 1, 2 and 3 19 9.3.14 Description of Easy programming flowcharts 22 9.4.1 Flowchart TDA18271SetRf_dual 25 9.4.3 Flowchart TDA18271InitCal 25 9.4.4 Flowchart TDA18271CalcRFfilterCurve 27 9.4.6 Flowchart TDA18271RFTrackingFilterSlnit 29 9.3.10 Description of Main divider bytes 1, 2 9.4.5 Flowchart TDA18271RFTrackingFiltersInit 29 9.5 Tootprint layout 68 Abbreviations Abbreviations 68 Abbreviations 48 Bevision history 68 Abbreviations 69 Legal information 69 Data sheet status Definitions 09 Data sheet status 09 Definitions 09 Description of Cal divider byte 17 20.4 Trademarks 69 Contact information 69 Contents 70 Trademarks 69 Contact information 69 Contact information	9.3					
9.3.2 Description of chip ID byte	0 0 4		-			
9.3.3 Description of temperature sensor byte			10	_		
9.3.4 Description of power level byte (read mode) . 15 9.3.5 Description of Easy prog byte 1				_		
9.3.5 Description of Easy prog byte 1				19		
9.3.6 Description of Easy prog byte 2				20	-	
9.3.7 Description of Easy prog byte 3				20.1	Data sheet status	69
9.3.8 Description of Easy prog byte 4				20.2	Definitions	69
9.3.9 Description of Easy prog byte 5				20.3	Disclaimers	69
9.3.10 Description of Cal post-divider byte				20.4	Trademarks	69
9.3.11 Description of Cal divider bytes 1, 2 and 3				21	Contact information	69
9.3.12 Description of Main post-divider byte				22	Contents	70
9.3.13 Description of Main divider bytes 1, 2 and 3 19 9.3.14 Description of Extended bytes 1 to 23 19 9.4 I ² C-bus programming flowcharts 22 9.4.1 Flowchart explanation 22 9.4.2 Flowchart TDA18271SetRf_dual 25 9.4.3 Flowchart TDA18271InitCal 25 9.4.4 Flowchart TDA18271FixedContentsI2Cupdate 26 9.4.5 Flowchart TDA18271CalcRFFilterCurve 27 9.4.6 Flowchart TDA18271RFTrackingFiltersInit 29						
9.3.14 Description of Extended bytes 1 to 23			-			
9.4 I ² C-bus programming flowcharts						
9.4.1 Flowchart explanation						
9.4.2 Flowchart TDA18271SetRf_dual						
9.4.3 Flowchart TDA18271InitCal						
9.4.4 Flowchart TDA18271FixedContentsI2Cupdate 26 9.4.5 Flowchart TDA18271CalcRFFilterCurve 27 9.4.6 Flowchart TDA18271RFTrackingFiltersInit 29						
9.4.5 Flowchart TDA18271CalcRFFilterCurve 27 9.4.6 Flowchart TDA18271RFTrackingFiltersInit 29						
9.4.6 Flowchart TDA18271RFTrackingFiltersInit 29		•				
	9.4.7					

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 19 May 2009

Document identifier: TDA18271HD_4