INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4353 Triple 2-channel analog multiplexer/demultiplexer with latch

Product specification
File under Integrated Circuits, IC06

December 1990

Philips Semiconductors

74HC/HCT4353

FEATURES

- Wide analog input voltage range: ± 5 V
- Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

• Logic level translation: to enable 5 V logic to communicate with \pm 5 V analog signals

- Typical "break before make" built in
- · Address latches provided
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4353 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4353 are triple 2-channel analog multiplexers/demultiplexers with two common enable inputs (\overline{E}_1 and E_2) and a latch enable input (\overline{LE}). Each

multiplexer has two independent inputs/outputs (nY_0 and nY_1), a common input/output (nZ) and select inputs (S_1 to S_3).

Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an independent input/output (nY_0 and nY_1) and the other side connected to a common input/output (nZ).

With \overline{E}_1 LOW and E_2 HIGH, one of the two switches is selected (low impedance ON-state) by S_1 to S_3 . The data at the select inputs may be latched by using the active LOW latch enable input (\overline{LE}). When \overline{LE} is HIGH, the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all analog switches are turned off.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_1$ to S $_3$, \overline{LE} , \overline{E}_1 and E $_2$). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ and nY $_1$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	Olviii	
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os}	$C_L = 50 \text{ pF}; R_L = 1 \text{ k}\Omega;$	29	21	ns	
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 , E_2 or S_n to V_{os}	$V_{CC} = 5 V$	20	22	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	23	23	pF	
Cs	max. switch capacitance					
	independent (Y)		5	5	pF	
	common (Z)		8	8	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\}$$
 where:

f_i = input frequency in MHz

C_L = output load capacitance in pF

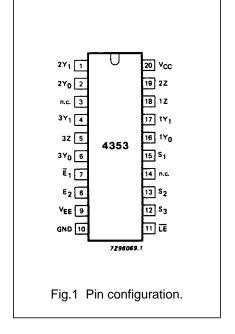
f_o = output frequency in MHz

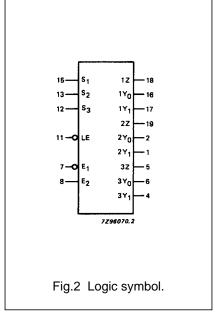
C_S = max. switch capacitance in pF

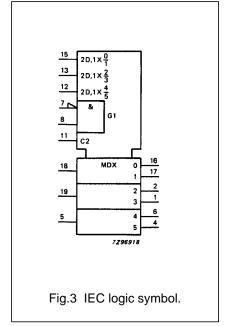
$$\sum \{(C_L \times C_S) \times V_{CC}^2 \times f_0\} = \text{sum of outputs}$$

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT4353

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ , 2Y ₁	independent inputs/outputs
5	3Z	common input/output
6, 4	3Y ₀ , 3Y ₁	independent inputs/outputs
3, 14	n.c.	not connected
7	Ē₁	enable input (active LOW)
8	E ₂	enable input (active HIGH)
9	V _{EE}	negative supply voltage
10	GND	ground (0 V)
11	ĪĒ	latch enable input (active LOW)
15, 13, 12	S ₁ to S ₃	select inputs
16, 17	1Y ₀ , 1Y ₁	independent inputs/outputs
18	1Z	common input/output
19	2Z	common input/output
20	V _{CC}	positive supply voltage

74HC/HCT4353

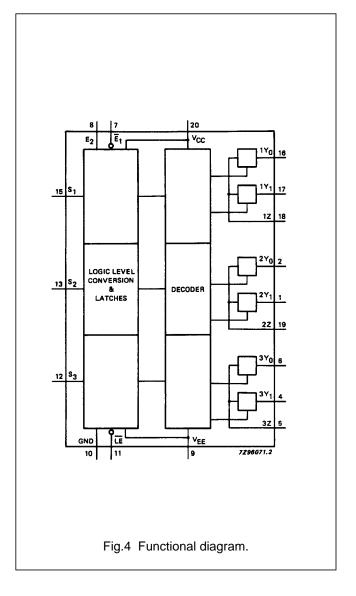
FUNCTION TABLE

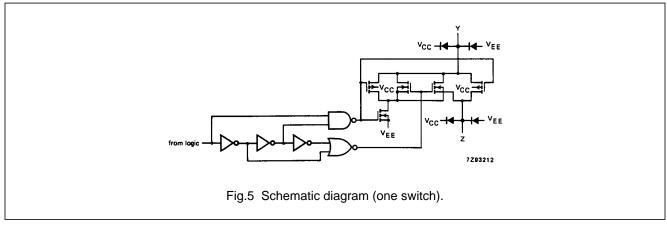
	INPL	CHANNEL		
E ₁	E ₂	LE	Sn	ON
Н	Н	Х	Х	none
X	L	X	X	none
L	Н	Н	L	nY0 – nZ
L	Н	Н	Н	nY ₁ – nZ
L	Н	L	Х	(1)
X	X	↓ ↓	Х	(2)

Notes

- 1. Last selected channel "ON".
- 2. Selected channels latched.

H = HIGH voltage level


L = LOW voltage level


X = don't care

 \downarrow = HIGH-to-LOW $\overline{\text{LE}}$ transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Triple 2-channel analog multiplexer/demultiplexer with latch

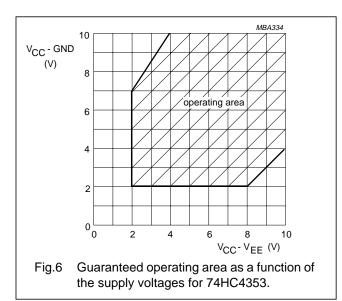
74HC/HCT4353

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ;	DC V _{CC} or GND current		50	mA	
±I _{GND}					
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C
					74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings


1. To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC	;		74HC	Γ	UNIT	CONDITIONS
STWIBOL	PARAIVIETER	min.	typ.	max.	min.	typ.	max.	UNII	CONDITIONS
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	٧	see Figs 6 and 7
V _{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	٧	see Figs 6 and 7
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V	
Vs	DC switch voltage range	V _{EE}		V_{CC}	V _{EE}		V_{CC}	٧	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTER- ISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

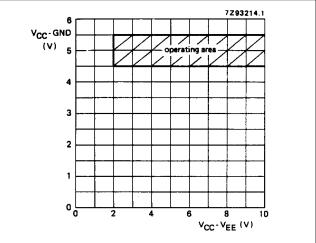


Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4353.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

				7	Γ _{amb} (°	C)			TEST CONDITIONS					
CVMDOL	PARAMETER		74HC/HCT											
SYMBOL		+25		−40 t	-40 to +85 -40			UNIT	V _{CC}	V _{EE} (V)	I _S (μ A)	Vis	Vı	
		min.	typ.	max.	min.	max.	min.	max.		(',	(',	(per ty		
R _{ON}	ON resistance		_	_		_		_	Ω	2.0	0	100	V _{CC}	V _{IN}
	(peak)		100	180		225		270	Ω	4.5	0	1000	to	or
			90	160		200		240	Ω	6.0	0	1000	VEE	V_{IL}
			70	130		165		195	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance		150	_		_		_	Ω	2.0	0	100	V _{EE}	V _{IH}
	(rail)		80	140		175		210	Ω	4.5	0	1000		or
			70	120		150		180	Ω	6.0	0	1000		V_{IL}
			60	105		130		160	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance		150	_		_		_	Ω	2.0	0	100	V _{CC}	V _{IH}
			90	160		200		240	Ω	4.5	0	1000		or
			80	140		175		210	Ω	6.0	0	1000		V_{IL}
			65	120		150		180	Ω	4.5	-4.5	1000		
ΔR_{ON}	maximum		_						Ω	2.0	0		Vcc	V _{IH}
	ΔON resistance		9						Ω	4.5	0		to	or
	between any two		8						Ω	6.0	0		VEE	V_{IL}
	channels		6						Ω	4.5	-4.5			

Notes to DC characteristics

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear.
 There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} ((°C)				TEST CONDITIONS				
OVMDOL	DADAMETED				74H	С								
SYMBOL	PARAMETER	+25		−40 to +85		-40 to +125		UNIT	V _{CC}	V _{EE} (V)	Vı	OTHER		
		min.	typ.	max.	min.	max.	min.	max.		(*)	(*)			
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0				
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0				
±I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND		
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)	
±Ι _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)	
±I _S	analog switch ON-state current			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)	
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}	

7

74HC/HCT4353

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TE	ST CO	NDITIONS
CVMDOL	DADAMETED				74HC	;						
SYMBOL	PARAMETER		+25		−40 t	o +85	-40 to	+125	UNIT	V _{CC} (V)	V _{EE}	OTHER
		min.	typ.	max.	min.	max.	min.	max.		((-,	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 ; E_2 to V_{os}		61 22 18 18	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		55 20 16 17	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		61 22 18 17	225 45 38 40		280 56 48 50		340 68 58 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 ; E_2 to V_{os}		66 24 19 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os} ; \overline{LE} to V_{os}		55 20 16 19	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{su}	set-up time S _n to $\overline{\text{LE}}$	60 12 10 18	17 6 5 8		75 15 13 23		90 18 15 27		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _h	hold time S _n to $\overline{\text{LE}}$	5 5 5 5	-6 -2 -2 -3		5 5 5 5		5 5 5 5		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _W	LE minimum pulse width HIGH	80 16 14 16	11 4 3 6		100 20 17 20		120 24 20 24		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)

74HC/HCT4353

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

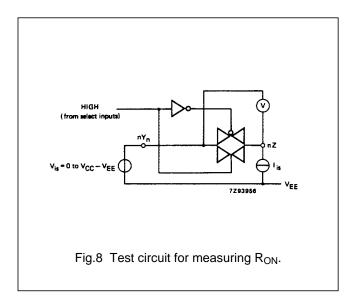
					T _{amb} (°C)				•	TEST	COND	ITIONS
SYMBOL	PARAMETER				74HC	т			UNIT				
STWIBUL	PARAMETER		+25		-40 to +85		-40 to +125		UNII	V _{CC}	V _{EE}	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(,	(' /		
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±I _I	input leakage current			0.1		1.0		1.0	μΑ	5.5	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10
±I _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.11
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} =$ $V_{CC} \text{ or } V_{EE}$
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

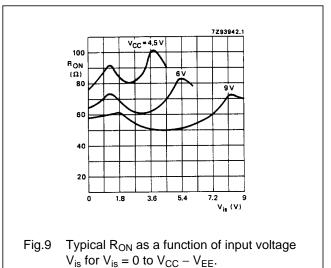
Note to HCT types

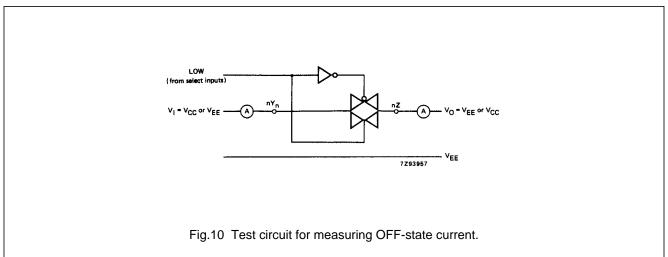
1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

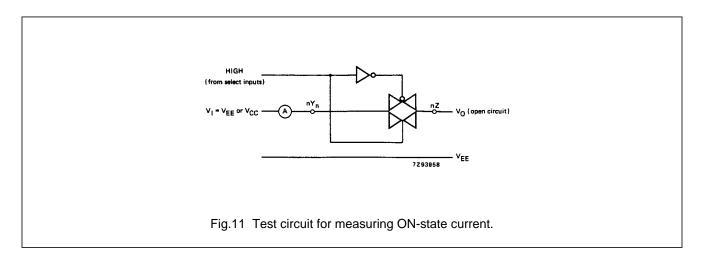
	UNIT LOAD COEFFICIENT
\overline{E}_1,E_2	0.50
S _n LE	0.50
Œ	1.5

74HC/HCT4353


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


		T _{amb} (°C)							Т	EST C	ONDITIONS	
0)/440.01	DADAMETED				74HC	T] <u>-</u>			
SYMBOL	PARAMETER		+25		-40 t	o +85	-40 to	D +125		V _{CC}	V _{EE}	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(•)	(•)	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E ₁ to V _{os}		26 22	55 45		69 56		83 68	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		22 18	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		21 17	45 40		56 50		68 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		25 19	50 45		63 56		75 68	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V_{os}		23 19	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time E ₂ to V _{os}		27 23	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time LE to V _{os}		19 19	40 40		50 50		60 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		22 22	45 45		56 56		68 68	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{su}	set-up time S _n to LE	12 15	7 9		15 19		18 22		ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _h	hold time S _n to LE	5 5	0 -2		5 5		5 5		ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _W	LE minimum pulse width HIGH	16 16	3 5		20 20		24 24		ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)


Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

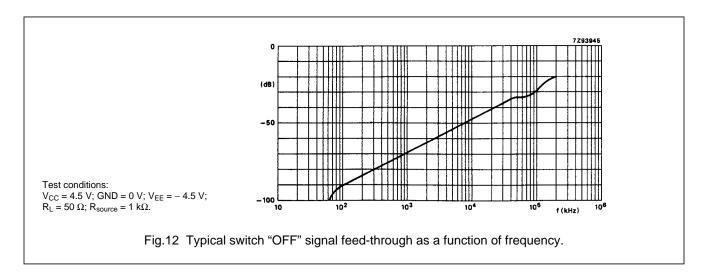
Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

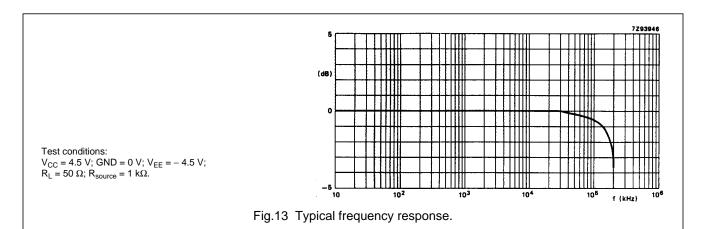
Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C


SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$ f = 1 MHz (see Figs 12 and 15)
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$; f = 1 MHz (see Fig.16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$\begin{aligned} R_L &= 600 \ \Omega; \ C_L = 50 \ \text{pF}; \\ f &= 1 \ \text{MHz} \ (\overline{E}_1, \ E_2 \ \text{or} \ S_n, \\ \text{square-wave between} \\ V_{CC} \ \text{and} \ \text{GND}, \ t_r = t_f = 6 \ \text{ns}) \\ \text{(see Fig.17)} \end{aligned}$
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
Cs	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				

Notes to the AC characteristics

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).


General note

 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

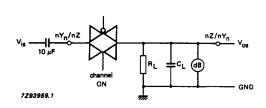


Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response.

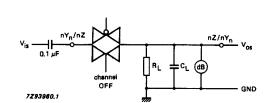


Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

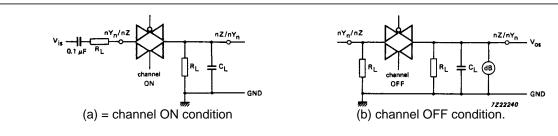
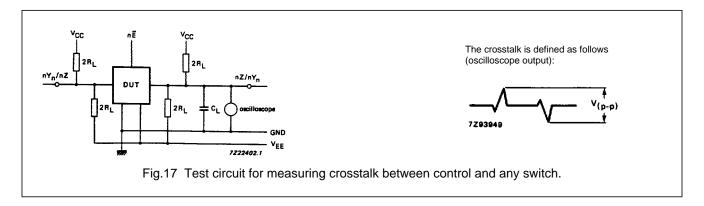
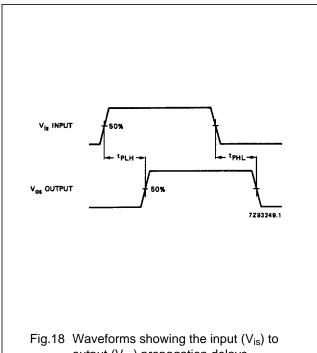




Fig.16 Test circuits for measuring crosstalk between any two switches/multiplexers.

74HC/HCT4353

AC WAVEFORMS

output (Vos) propagation delays.

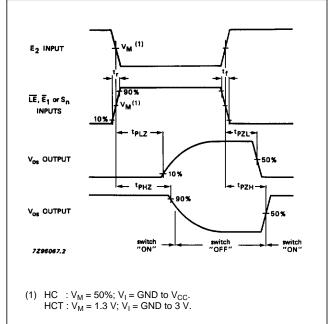
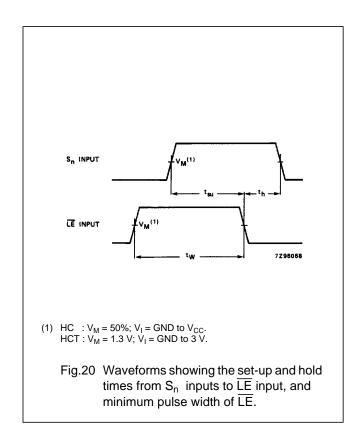
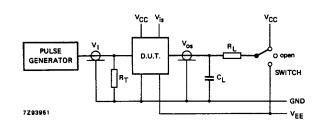




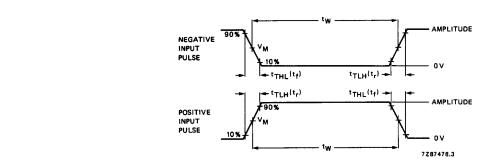
Fig.19 Waveforms showing the turn-ON and turn-OFF times.

74HC/HCT4353

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V _{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t_{PLZ}	V _{CC}	V_{EE}
others	open	pulse


	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.21 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V _{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.22 Input pulse definitions.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".