INTEGRATED CIRCUITS

DATA SHEET

74F244/74F244BOctal buffers (3-State)

Product specification

1994 Dec 05

IC15 Data Handbook

Philips Semiconductors

74F244/74F244B

FEATURES

- Octal bus interface
- 3-State output buffer sink 64mA
- 15mA source current
- Guaranteed output skew less than 2.0ns (74F244B)
- Reduced ground bounce (74F244B)
- Reduced I_{CC} (74F244B)
- Reduced loading (74F244B I_{IL} = 40μA)
- Split lead frame offers increased noise immunity (74F244B)
- Industrial temperature range available (-40°C to +85°C) for 74F244
- 74F244 available in SSOP Type II package

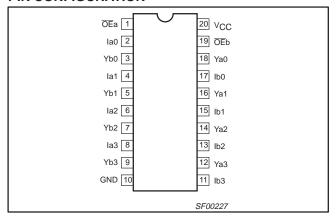
DESCRIPTION

The 74F244 is an octal buffer that is ideal for driving bus lines of buffer memory address registers. The outputs are all capable of sinking 64mA and sourcing up to 15mA, producing very good capacitive drive characteristics. The device features two output enables, $\overline{\text{OE}}$ a and $\overline{\text{OE}}$ b, each controlling four of the 3-State outputs.

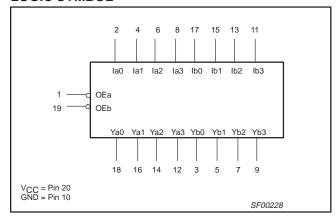
The 74F244B is functionally equivalent to the 74F244. It has been designed to reduce effects of ground noise. Other advantages are noted in the features.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F244	4.0ns	53mA
74F244B	4.0ns	33mA

ORDERING INFORMATION

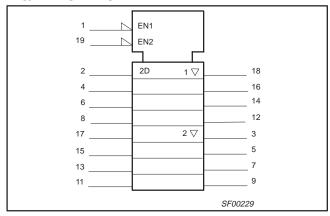

	ORDEF	ORDER CODE									
DESCRIPTION	COMMERCIAL RANGE $V_{CC} = 5V \pm 10\%$,	INDUSTRIAL RANGE $V_{CC} = 5V \pm 10\%$,	PKG DWG #								
	$T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C$	$T_{amb} = -40^{\circ}C \text{ to } +85^{\circ}C$									
20-pin plastic DIP	N74F244N, N74F244BN	I74F244N	SOT146-1								
20-pin plastic SOL	N74F244D, N74F244BD	I74F244D	SOT163-1								
20-pin plastic SSOP II	N74F244DB		SOT339-1								

INPUT AND OUTPUT LOADING AND FAN OUT TABLE


PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
lan, Ibn	Data inputs (74F244)	1.0/2.67	20μA/1.6mA
	Data inputs (74F244B)	1.0/0.067	20μΑ/40μΑ
ŌĒa, ŌĒb	Output enable inputs (active low) (74F244)	1.0/1.67	20μA/1.0mA
	Output enable inputs (active low) (74F244B)	1.0/0.067	20μΑ/40μΑ
Yan, Ybn	Data outputs	750/106.7	15mA/64mA

NOTE: One (1.0) FAST unit load is defined as: 20μA in the high state and 0.6mA in the low state.

PIN CONFIGURATION

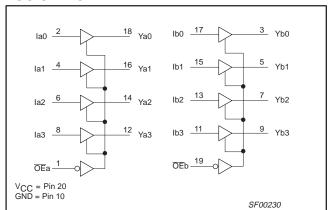

LOGIC SYMBOL

Octal buffers (3-State)

74F244/74F244B

IEC/IEEE SYMBOL

FUNCTION TABLE


	INP	UTS		OUTF	PUTS
OEa	la	OEb	lb	Ya	Yb
L	L	L	L	L	L
L	Н	L	Н	Н	Н
Н	Х	Н	Х	Z	Z

NOTES:

H = High voltage level L = Low voltage level

X = Don't care Z = High impedance "off" state

LOGIC DIAGRAM

Octal buffers (3-State)

74F244/74F244B

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage		-0.5 to +7.0	V
I _{IN}	Input current		-30 to +5	mA
V _{OUT}	Voltage applied to output in high output state	-0.5 to V _{CC}	V	
I _{OUT}	Current applied to output in low output state		128	mA
		Commercial range	0 to +70	°C
T _{amb}	Operating free air temperature range	Industrial range (74F244 only)	-40 to +85	°C
T _{stg}	Storage temperature range		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

CVMDOL	DADAMETER			LIMITS		LINUT
SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IN}	High-level input voltage		2.0			V
V _{IL}	Low-level input voltage				0.8	V
I _{IK}	Input clamp current				-18	mA
I _{OH}	High-level output current				– 15	mA
i _{ol}	Low-level output current				64	mA
		Commercial range	0		+70	°C
T _{amb}	Operating free air temperature range	Industrial range (74F244 only)	-40		+85	°C

Octal buffers (3-State)

74F244/74F244B

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

CVMDOL	DADAMET	ren.			TEST			LIMITS		UNIT
SYMBOL	PARAMET	IER		C	CONDITIONS ¹	MIN	TYP ²	MAX	UNII	
				V _{CC} = MIN,	I _{OH} = -3mA	±10%V _{CC}	2.5			V
V_{OH}	High-level output voltage			V _{IL} = MAX,		±5%V _{CC}	2.7	3.4		V
				V _{IH} = MIN	I _{OH} = -15mA	±10%V _{CC}	2.0			V
						±5%V _{CC}	2.0			V
V _{OL}	Low-level output voltage			$V_{CC} = MIN,$ $V_{IL} = MAX,$	I _{OL} = MAX	±10%V _{CC}			0.55	V
				V _{IH} = MIN,		±5%V _{CC}		0.42	0.55	V
V_{IK}	Input clamp voltage			$V_{CC} = MIN, I_I =$	I _{IK}			-0.73	-1.2	V
I _I	Input current at maximum inp	out voltage		$V_{CC} = MAX, V_I$	= 7.0V				100	μΑ
I _{IH}	High-level input current			$V_{CC} = MAX, V_I$	= 2.7V				20	μΑ
		74F244 OE	a, OE b					-1.0	mA	
I_{IL}	Low-level input current	74F244 lan,	lbn	$V_{CC} = MAX, V_I$	= 0.5V			-1.6	mA	
		74F244B all	inputs	1					-40	μΑ
I _{OZH}	Off-state output current, high-level voltage applied	_		V _{CC} = MAX, V _C) = 2.7V				50	μА
I _{OZL}	Off-state output current, low-level voltage applied			V _{CC} = MAX, V _C				-50	μΑ	
los	Short-circuit output current ³			$V_{CC} = MAX$			-100		-225	mA
			Іссн					40	60	mA
		74F244	I _{CCL}	$V_{CC} = MAX$				60	90	mA
Icc	Supply current (total)		I _{CCZ}					60	90	mA
			Icch				20	30	mA	
		74F244B	I _{CCL}	$V_{CC} = MAX$			50	70	mA	
			I _{CCZ}]			29	40	mA	

5

^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

^{2.} All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$.

Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Octal buffers (3-State)

74F244/74F244B

AC ELECTRICAL CHARACTERISTICS FOR 74F244

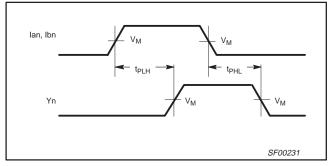
						A POR	T LIMITS			
			Tan	_{nb} = +25	°C	$T_{amb} = 0^{\circ}C$	C to +70°C	$T_{amb} = -40^{\circ}$	C to +85°C	
SYMBOL	PARAMETER	TEST CONDITION	1 100 1111			V_{CC} = +5.0V \pm 10% C_L = 50pF, R_L = 500 Ω		V _{CC} = +5.0 C _L = 5 R _L = 5	UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay lan, Ibn to Yn	Waveform 1	2.5 2.5	4.0 4.0	5.2 5.2	2.0 2.0	6.2 6.5	1.5 2.0	7.0 7.0	ns
t _{PZH}	Output enable time to high or low	Waveform 2 Waveform 4	2.0 2.0	4.3 5.0	5.7 7.0	2.0 2.0	6.7 8.0	2.0 2.0	8.0 8.5	ns
t _{PHZ}	Output disable time from high or low	Waveform 2 Waveform 4	1.5 1.5	2.5 2.5	5.5 5.5	1.0 1.0	6.0 5.5	1.0 1.0	6.0 5.5	ns

AC ELECTRICAL CHARACTERISTICS FOR 74F244B

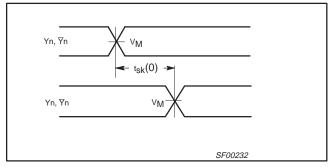
					LIN	IITS		
SYMBOL	PARAMETER	TEST	V ₀	_{mb} = +25 _{CC} = +5.0	V	$T_{amb} = 0^{\circ}C$ $V_{CC} = +5.$	0V \pm 10%	UNIT
		CONDITION	$C_L = 50$	pF, R _L :		C _L = 50pF,		
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Ian, Ibn to Yn	Waveform 1	2.5 2.5	4.5 4.5	5.7 6.0	2.0 2.5	6.2 6.5	ns
t _{PZH} t _{PZL}	Output enable time to high or low level	Waveform 2 Waveform 4	2.0 3.0	4.0 5.5	6.0 7.5	2.0 3.0	6.5 8.0	ns
t _{PHZ} t _{PLZ}	Output disable time from high or low level	Waveform 2 Waveform 4	1.5 1.5	2.5 2.5	5.5 5.5	1.0 1.0	6.0 5.5	ns
t _{sk(0)}	Output skew ^{1, 2}	Waveform 3			1.5		2.0	ns

6

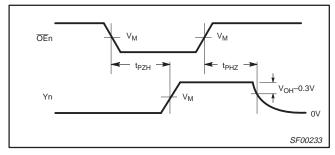
NOTES:

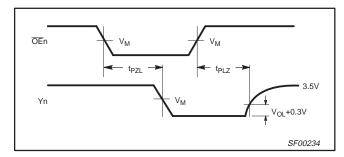

 [|]t_{PN} actual - t_{PM} actual| for any output compared to any other output where N and M are either LH or HL.
 Skew times are valid only under same test conditions (temperature, V_{CC}, loading, etc.,).

Octal buffers (3-State)

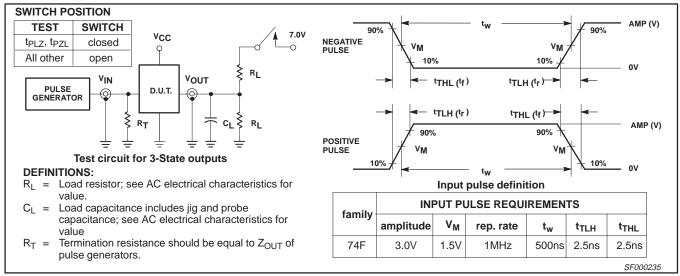

74F244/74F244B

AC WAVEFORMS


For all waveforms, $V_M = 1.5V$.

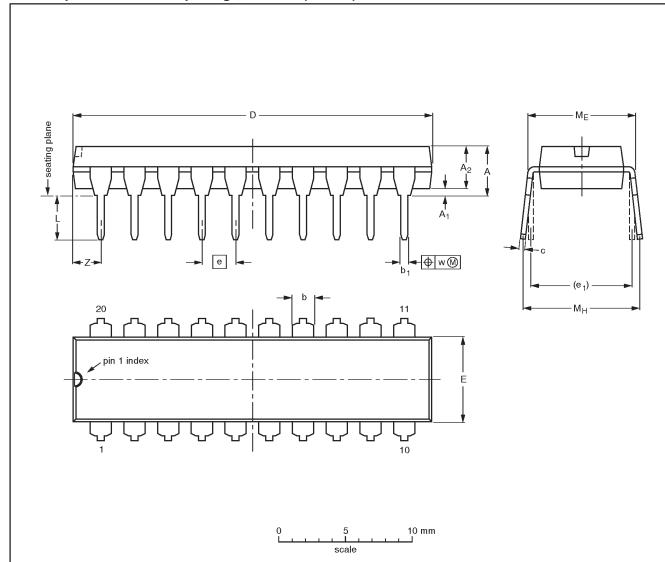

Waveform 1. Propagation Delay for data to outputs

Waveform 3. Output skew



Waveform 2. 3-State output enable time to high level and output disable time from high level

Waveform 4. 3-State output enable time to low level and output disable time from low level


TEST CIRCUIT AND WAVEFORMS

74F244/74F244B

DIP20: plastic dual in-line package; 20 leads (300 mil)

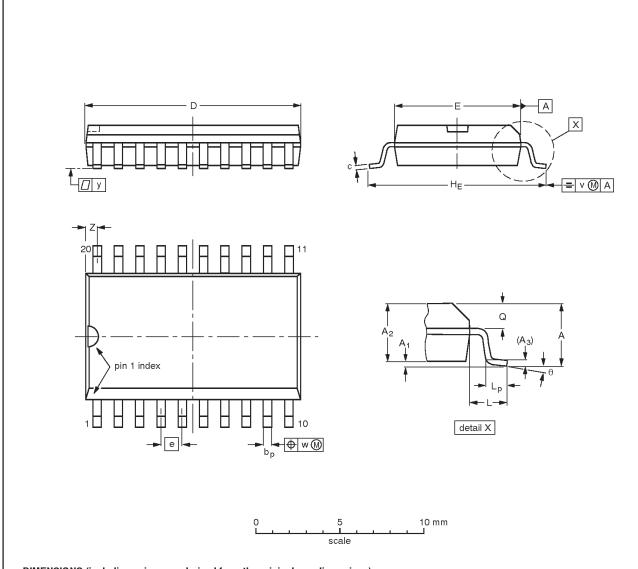
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT146-1			SC603		92-11-17 95-05-24

8

74F244/74F244B

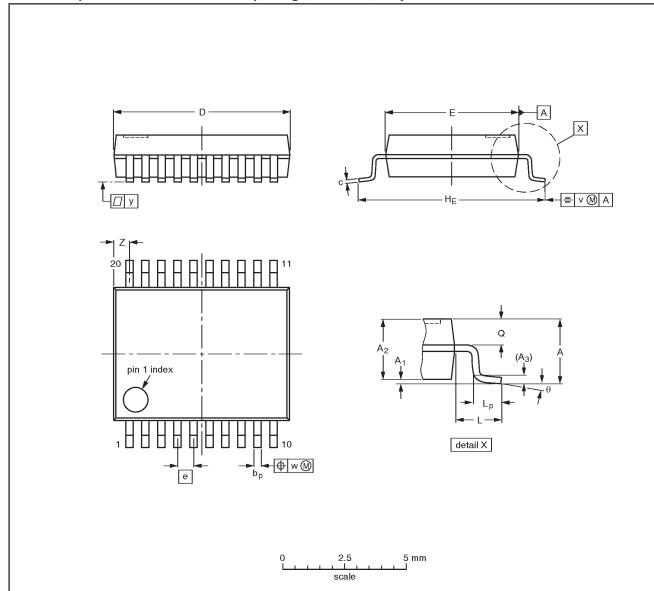
SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bp	O	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°

Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

	OUTLINE	TLINE REFERENCES		EUROPEAN	ISSUE DATE	
	VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
	SOT163-1	075E04	MS-013AC			-92-11-17 95-01-24

74F244/74F244B

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

	OUTLINE		REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE
	SOT339-1		MO-150AE				93-09-08 95-02-04

10

Octal buffers (3-State)

74F244/74F244B

NOTES

Octal buffers (3-State)

74F244/74F244B

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

9397-750-05103

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1996

All rights reserved. Printed in U.S.A.

(print code) Date of release: October 28, 1991

Document order number: 9397-750-05103