### INTEGRATED CIRCUITS

# DATA SHEET

# 74F161A, 74F163A 4-bit binary counter

Product specification Supersedes data of 1996 Jan 29 IC15 Data Handbook





### 4-bit binary counters

### 74F161A, 74F163A

#### **FEATURES**

- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive edge-triggered clock
- Asynchronous Master Reset (74F161A)
- Synchronous Reset (74F163A)
- High speed synchronous expansion
- Typical count rate of 130MHz
- Industrial range (−40°C to +85°C) available

#### **DESCRIPTION**

4-bit binary counters feature an internal carry look-ahead and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock. The clock input is buffered.

The outputs of the counters may be preset to High or Low level. A Low level at the Parallel Enable ( $\overline{PE}$ ) input disables the counting action and causes the data at the D0–D3 inputs to be loaded into the counter on the positive-going edge of the clock (provided that the setup and hold requirements for  $\overline{PE}$  are met). Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.

A Low level at the Master Reset (MR) input sets all the four outputs of the flip-flops (Q0 - Q3) in 74F161A to Low levels, regardless of the levels at CP, PE, CET and CEP inputs (thus providing an asynchronous clear function). For the 74F163A, the clear function is synchronous. A Low level at the Synchronous Reset (SR) input sets all four outputs of the flip-flops (Q0 - Q3) to Low levels after the next positive-going transition on the clock (CP) input (provided that the setup and hold time requirements for SR are met). This action occurs regardless of the levels at PE, CET, and CEP inputs. The synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate (see Figure 1). The carry look-ahead simplifies serial cascading of the counters. Both Count Enable (CEP and CET) inputs must be High to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a High output pulse of a duration approximately equal to the High level output of Q0. This pulse can be used to enable the next cascaded stage (see Figure 2). The TC output is subjected to decoding spikes due to internal race conditions. Therefore, it is not recommended for use as clock or asynchronous reset for flip-flops, registers, or counters.

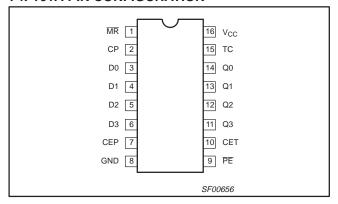
| TYPE               | TYPICAL<br>f <sub>MAX</sub> | TYPICAL SUPPLY CURRENT (TOTAL) |
|--------------------|-----------------------------|--------------------------------|
| 74F161A<br>74F163A | 130MHz                      | 46mA                           |

### ORDERING INFORMATION

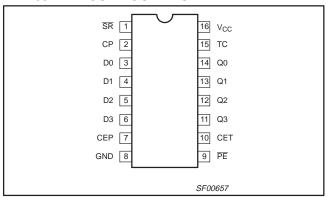
|                    | ORDER                                                                          | CODE                                                                           | DRAWING  |
|--------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|
| DESCRIPTION        | COMMERCIAL RANGE<br>V <sub>CC</sub> = 5V ±10%, T <sub>amb</sub> = 0°C to +70°C | INDUSTRIAL RANGE $V_{CC}$ = 5V $\pm$ 10%, $T_{amb}$ = $-40^{\circ}$ C to +85°C | NUMBER   |
| 16-pin plastic DIP | N74F161AN, N74F163AN                                                           | I74F161AN, I74F163AN                                                           | SOT38-4  |
| 16-pin plastic SO  | N74F161AD, N74F163AD                                                           | 174F161AD, 174F163AD                                                           | SOT109-1 |

#### INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

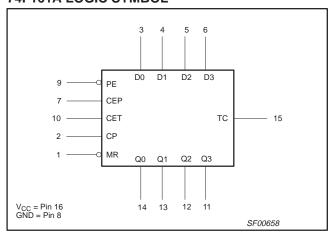
| PINS    | DESCRIPTION                                              | 74F (U.L.) HIGH/LOW | LOAD VALUE HIGH/LOW |
|---------|----------------------------------------------------------|---------------------|---------------------|
| D0 – D3 | Data inputs                                              | 1.0/1.0             | 20μA/0.6mA          |
| CEP     | Count Enable Parallel input                              | 1.0/1.0             | 20μA/0.6mA          |
| CET     | Count Enable Trickle input                               | 1.0/2.0             | 20μA/1.2mA          |
| СР      | Clock input (active rising edge)                         | 1.0/1.0             | 20μA/0.6mA          |
| PE      | Parallel Enable input (active Low)                       | 1.0/2.0             | 20μA/1.2mA          |
| MR      | Asynchronous Master Reset input (active Low) for 74F161A | 1.0/1.0             | 20μA/0.6mA          |
| SR      | Synchronous Reset input (active Low) for 74F163A         | 1.0/1.0             | 20μA/0.6mA          |
| TC      | Terminal count output                                    | 50/33               | 1.0mA/20mA          |
| Q0 - Q3 | Flip-flop outputs                                        | 50/33               | 1.0mA/20mA          |


NOTE:

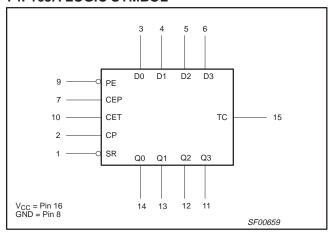
One (1.0) FAST unit load is defined as: 20µA in the High state and 0.6mA in the Low state.


# 4-bit binary counters

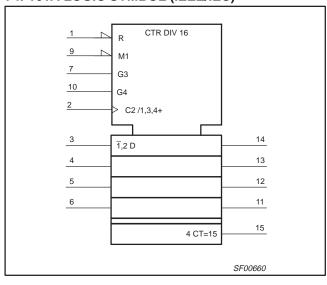
# 74F161A, 74F163A


### 74F161A PIN CONFIGURATION

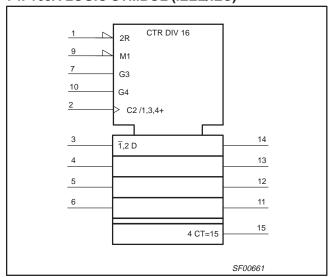



### 74F163A PIN CONFIGURATION




### 74F161A LOGIC SYMBOL

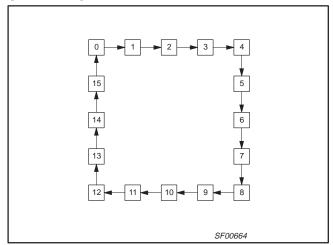



### 74F163A LOGIC SYMBOL



### 74F161A LOGIC SYMBOL (IEEE/IEC)




### 74F163A LOGIC SYMBOL (IEEE/IEC)



# 4-bit binary counters

# 74F161A, 74F163A

### **STATE DIAGRAM**



### **APPLICATIONS**



Figure 1. Maximum count modifying scheme
Terminal count = 6

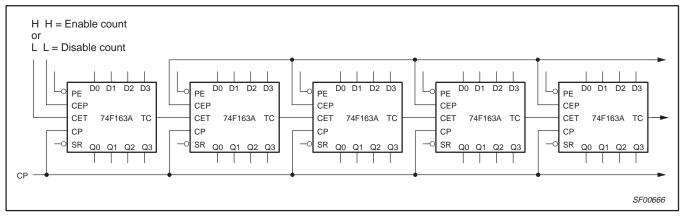



Figure 2. Synchronous multistage counting scheme

### 74F161A MODE SELECT - FUNCTION TABLE

|    |            | INP | UTS |    |    | OUTI           | PUTS | OPERATING MODE    |
|----|------------|-----|-----|----|----|----------------|------|-------------------|
| MR | СР         | CEP | CET | PE | Dn | Qn             | TC   | OPERATING MODE    |
| L  | Х          | Х   | Х   | Х  | Х  | L              | L    | Reset (clear)     |
| Н  | <b>↑</b>   | Х   | Х   | I  | I  | L              | L    | Parallel load     |
| Н  | $\uparrow$ | Х   | Х   | I  | h  | Н              | (1)  | Parallel load     |
| Н  | <b>↑</b>   | h   | h   | h  | Х  | count          | (1)  | Count             |
| Н  | Х          | I   | Х   | h  | Х  | q <sub>n</sub> | (1)  | Hold (do nothing) |
| Н  | Х          | Х   | I   | h  | Х  | q <sub>n</sub> | L    | Hold (do nothing) |

# 4-bit binary counters

# 74F161A, 74F163A

### 74F163A MODE SELECT - FUNCTION TABLE

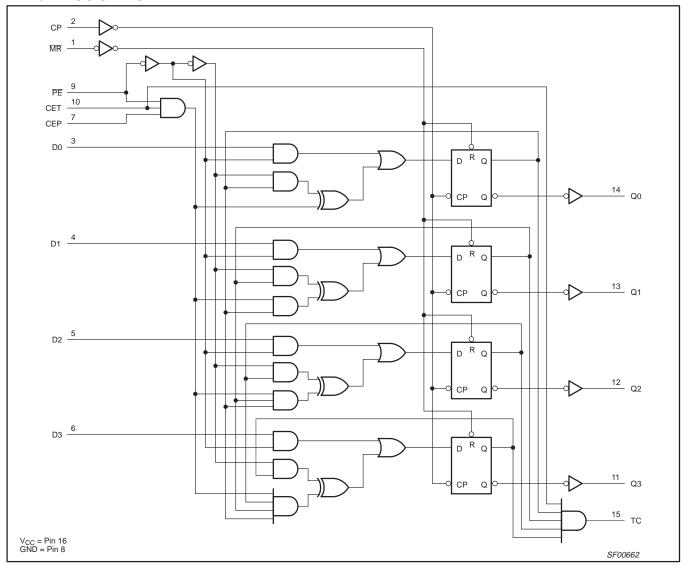
|    |    | INP | UTS |    |    | OUTI           | PUTS | OPERATING MODE     |
|----|----|-----|-----|----|----|----------------|------|--------------------|
| SR | CP | CEP | CET | PE | Dn | Qn             | TC   | OF ERATING MODE    |
| I  | 1  | Х   | Х   | Х  | Х  | L              | L    | Reset (clear)      |
| h  | 1  | Х   | Х   | I  | I  | L              | L    | Parallel load      |
| h  | 1  | Х   | Х   | I  | h  | Н              | (2)  | i arallerioau      |
| h  | 1  | h   | h   | h  | Х  | count          | (2)  | Count              |
| h  | Х  | I   | Х   | h  | Х  | q <sub>n</sub> | (2)  | Hold (do nothing)  |
| h  | Х  | Х   | Ţ   | h  | Х  | q <sub>n</sub> | L    | Tiola (ao fiormig) |

Н High voltage level

h High voltage level one setup prior to the Low-to-High clock transition

Low voltage level

Low voltage level one setup prior to the Low-to-High clock transition

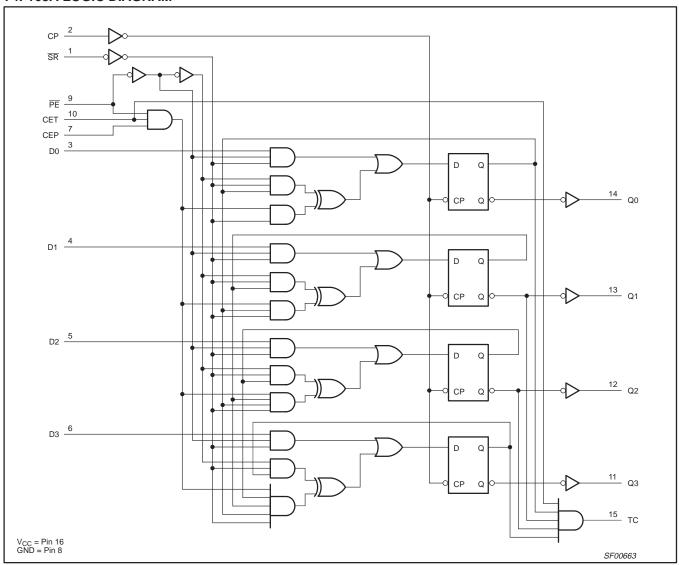

Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition

Don't care

Low-to-High clock transition

The TC output is High when CET is High and the counter is at Terminal Count (HHHH for 74F161A) The TC output is High when CET is High and the counter is at Terminal Count (HHHH for 74F163A) (1)

### 74F161A LOGIC DIAGRAM




5

# 4-bit binary counters

# 74F161A, 74F163A

### 74F163A LOGIC DIAGRAM



### **ABSOLUTE MAXIMUM RATINGS**

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

| SYMBOL           | PARAMETER                                      |                         | RATING       | UNIT |
|------------------|------------------------------------------------|-------------------------|--------------|------|
| V <sub>CC</sub>  | Supply voltage                                 |                         | -0.5 to +7.0 | V    |
| V <sub>IN</sub>  | Input voltage                                  | −0.5 to +7.0            | V            |      |
| I <sub>IN</sub>  | Input current                                  | -30 to +5               | mA           |      |
| V <sub>OUT</sub> | Voltage applied to output in High output state | –0.5 to V <sub>CC</sub> | V            |      |
| I <sub>OUT</sub> | Current applied to output in Low output state  |                         | 40           | mA   |
| _                |                                                | Commercial range        | 0 to +70     | °C   |
| T <sub>amb</sub> | Operating free-air temperature range           | -40 to +85              | °C           |      |
| T <sub>stg</sub> | Storage temperature range                      | -65 to +150             | °C           |      |

6

# 4-bit binary counters

74F161A, 74F163A

#### RECOMMENDED OPERATING CONDITIONS

| CVMDOL           | DADAMETED                            |                  |     | LIMITS |     | LINUT |
|------------------|--------------------------------------|------------------|-----|--------|-----|-------|
| SYMBOL           | PARAMETER                            |                  | MIN | NOM    | MAX | UNIT  |
| V <sub>CC</sub>  | Supply voltage                       |                  | 4.5 | 5.0    | 5.5 | V     |
| V <sub>IH</sub>  | High-level input voltage             |                  | 2.0 |        |     | V     |
| V <sub>IL</sub>  | Low-level input voltage              |                  |     |        | 0.8 | V     |
| I <sub>IK</sub>  | Input clamp current                  |                  |     |        | -18 | mA    |
| I <sub>OH</sub>  | High-level output current            |                  |     |        | -1  | mA    |
| I <sub>OL</sub>  | Low-level output current             |                  |     |        | 20  | mA    |
| _                | Operating free dir temperature renge | Commercial range | 0   |        | +70 | °C    |
| <sup>I</sup> amb | Operating free-air temperature range | -40              |     | +85    | °C  |       |

#### DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

| SYMBOL          | PARAMETER                                 |                  | TEST CON                                                               | NDITIONS <sup>1</sup> |                     |      | LIMITS |      | UNIT |
|-----------------|-------------------------------------------|------------------|------------------------------------------------------------------------|-----------------------|---------------------|------|--------|------|------|
| STWIBOL         | PARAIVIETER                               |                  | TEST CON                                                               | TEST SONDITIONS       |                     |      |        | MAX  | UNIT |
| V               | Low lovel output voltage                  |                  | V <sub>CC</sub> = MIN, V <sub>IL</sub> = MAX,<br>V <sub>IH</sub> = MIN | I <sub>OH</sub> = MAX | ±10%V <sub>CC</sub> | 2.5  |        |      | V    |
| V <sub>OH</sub> |                                           |                  | V <sub>IH</sub> = MIN                                                  | IOH = IVIAX           | ±5%V <sub>CC</sub>  | 2.7  | 3.4    |      | V    |
| V               |                                           |                  | $V_{CC} = MIN, V_{IL} = MAX,$                                          | I <sub>OL</sub> = MAX | ±10%V <sub>CC</sub> |      | 0.30   | 0.50 | V    |
| V <sub>OL</sub> |                                           |                  | V <sub>IH</sub> = MIN                                                  | ±5%V <sub>CC</sub>    |                     | 0.30 | 0.50   | V    |      |
| V <sub>IK</sub> | Input clamp voltage                       |                  | $V_{CC} = MIN, I_I = I_{IK}$                                           |                       |                     |      | -0.73  | -1.2 | V    |
| II              | Input current at maximum in               | put voltage      | $V_{CC} = MAX, V_I = 7.0V$                                             |                       |                     |      |        | 100  | μΑ   |
| I <sub>IH</sub> | High-level input current                  |                  | $V_{CC} = MAX, V_I = 2.7V$                                             |                       |                     |      |        | 20   | μΑ   |
| 1               | Low-level input current                   | CET, PE          | \/ - MAY \/ - 0.5\/                                                    |                       |                     |      |        | -1.2 | mA   |
| I <sub>IL</sub> | Low-level input current                   | others           | $V_{CC} = MAX, V_I = 0.5V$                                             |                       |                     |      |        | -0.6 | mA   |
| Ios             | Short-circuit output current <sup>3</sup> |                  | V <sub>CC</sub> = MAX                                                  |                       |                     | -60  |        | -150 | mA   |
| l               | Supply current (total)                    |                  | V MAY                                                                  |                       |                     |      | 42     | 55   | mA   |
| Icc             | Supply current (total)                    | I <sub>CCL</sub> | V <sub>CC</sub> = MAX                                                  |                       |                     |      | 49     | 65   | mA   |

### NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

All typical values are at V<sub>CC</sub> = 5V, T<sub>amb</sub> = 25°C.
 Not more than one output should be shorted at a time. For testing I<sub>OS</sub>, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I<sub>OS</sub> tests should be performed last.

# 4-bit binary counters

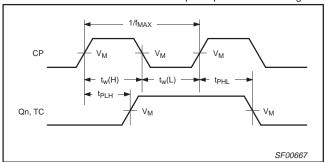
# 74F161A, 74F163A

### **AC ELECTRICAL CHARACTERISTICS**

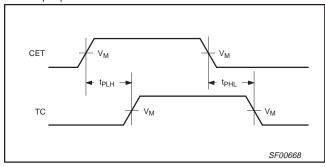
|                                      |                                                      |                   |                |                                                      |            |                                                                                         | LI         | MITS                                                                                         |            |              |     |
|--------------------------------------|------------------------------------------------------|-------------------|----------------|------------------------------------------------------|------------|-----------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------|------------|--------------|-----|
| SYMBOL                               | PARAMETE                                             | TEST<br>CONDITION | V <sub>C</sub> | <sub>nb</sub> = +25<br>c = +5.<br>L = 50p<br>L = 500 | 0V<br>F    | T <sub>amb</sub> = 0°C<br>V <sub>CC</sub> = +5.<br>C <sub>L</sub> =<br>R <sub>L</sub> = | 50pF       | T <sub>amb</sub> = -40°<br>V <sub>CC</sub> = +5.<br>C <sub>L</sub> = 8<br>R <sub>L</sub> = 8 | UNIT       |              |     |
|                                      |                                                      |                   | MIN            | TYP                                                  | MAX        | MIN                                                                                     | MAX        | MIN                                                                                          | MAX        |              |     |
| f <sub>max</sub>                     | Maximum clock frequency                              |                   | Waveform 1     | 100                                                  | 130        |                                                                                         | 90         |                                                                                              | 75         |              | MHz |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay CP to Qn ( $\overline{PE}$ = High) |                   | Waveform 1     | 2.0<br>4.0                                           | 4.0<br>6.5 | 6.5<br>10.0                                                                             | 2.0<br>4.0 | 7.0<br>11.0                                                                                  | 2.0<br>4.0 | 7.0<br>11.0  | ns  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>CP to Qn (PE = Low              | v)                | Waveform 1     | 2.0<br>3.5                                           | 4.5<br>5.5 | 6.5<br>8.5                                                                              | 2.0<br>3.5 | 7.5<br>9.5                                                                                   | 2.0<br>3.5 | 7.5<br>9.5   | ns  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>CP to TC                        |                   | Waveform 1     | 5.0<br>4.5                                           | 7.5<br>7.5 | 10.5<br>10.5                                                                            | 5.0<br>4.0 | 11.5<br>11.5                                                                                 | 5.0<br>4.0 | 11.5<br>11.5 | ns  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>CET to TC                       |                   | Waveform 2     | 1.5<br>2.5                                           | 3.5<br>5.0 | 6.5<br>7.5                                                                              | 1.5<br>2.5 | 7.0<br>8.0                                                                                   | 1.5<br>2.5 | 7.0<br>8.0   | ns  |
| t <sub>PHL</sub>                     | Propagation delay MR to Qn                           | 'F161A            | Waveform 3     | 6.0                                                  | 8.5        | 12.0                                                                                    | 5.5        | 13.0                                                                                         | 5.5        | 13.0         | ns  |
| t <sub>PHL</sub>                     | Propagation delay MR to TC                           | 'F161A            | Waveform 3     | 5.0                                                  | 8.5        | 10.0                                                                                    | 5.0        | 11.0                                                                                         | 5.0        | 11.0         | ns  |

### **AC SETUP REQUIREMENTS**

|                                          |                                          |        |                    |                                    |     | LIMITS                                                                                                          |                                                                                                                             |      |
|------------------------------------------|------------------------------------------|--------|--------------------|------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| SYMBOL                                   | PARAMETE                                 | :R     | TEST<br>CONDITION  | V <sub>CC</sub> = C <sub>L</sub> = |     | $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C \\ V_{CC} = +5.0V \pm 10\% \\ C_{L} = 50pF \\ R_{L} = 500\Omega$ | $T_{amb} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = +5.0V \pm 10\%$ $C_{L} = 50\text{pF}$ $R_{L} = 500\Omega$ | UNIT |
|                                          |                                          |        |                    | MIN                                | TYP | MIN                                                                                                             | MIN                                                                                                                         |      |
| t <sub>S</sub> (H)<br>t <sub>S</sub> (L) | Setup time, High or Low<br>Dn to CP      |        | Waveform 6         | 5.0<br>5.0                         |     | 5.0<br>5.0                                                                                                      | 5.0<br>5.0                                                                                                                  | ns   |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or L<br>Dn to CP         | .ow    | Waveform 6         | 0                                  |     | 0<br>0                                                                                                          | 0                                                                                                                           | ns   |
| t <sub>S</sub> (H)<br>t <sub>S</sub> (L) | Setup time, High or Low PE or SR to CP   |        | Waveform<br>5 or 6 | 9.0<br>6.5                         |     | 9.5<br>7.0                                                                                                      | 9.5<br>7.0                                                                                                                  | ns   |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or Low PE or SR to CP    |        | Waveform<br>5 or 6 | 0                                  |     | 0<br>0                                                                                                          | 0                                                                                                                           | ns   |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup time, High or CET or CEP to CP     | Low    | Waveform 4         | 10.5<br>6.0                        |     | 10.5<br>7.0                                                                                                     | 10.5<br>7.0                                                                                                                 | ns   |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or L<br>CET or CEP to CP | .ow    | Waveform 4         | 0                                  |     | 0<br>0                                                                                                          | 0                                                                                                                           | ns   |
| t <sub>w</sub> (H)<br>t <sub>w</sub> (L) | CP pulse width (Loa<br>High or Low       | ad)    | Waveform 1         | 4.0<br>5.0                         |     | 4.0<br>5.5                                                                                                      | 4.0<br>7.0                                                                                                                  | ns   |
| t <sub>w</sub> (H)<br>t <sub>w</sub> (L) | CP pulse width (Count)<br>High or Low    |        | Waveform 1         | 4.0<br>6.0                         |     | 4.0<br>7.0                                                                                                      | 4.0<br>7.0                                                                                                                  | ns   |
| t <sub>w</sub> (L)                       | MR pulse width<br>Low                    | 'F161A | Waveform 3         | 4.5                                |     | 4.5                                                                                                             | 4.5                                                                                                                         | ns   |
| t <sub>REC</sub>                         | Recovery time /F161A                     |        | Waveform 3         | 6.0                                |     | 6.5                                                                                                             | 6.5                                                                                                                         | ns   |


# 4-bit binary counters

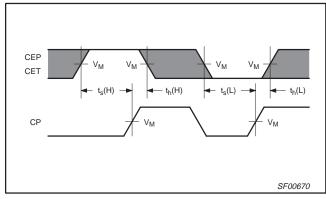
# 74F161A, 74F163A


#### **AC WAVEFORMS**

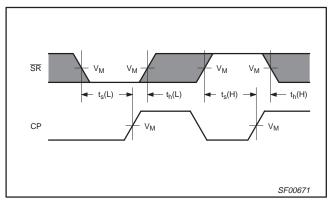
For all waveforms,  $V_M = 1.5V$ .

The shaded areas indicate when the input is permitted to change for predictable output performance.

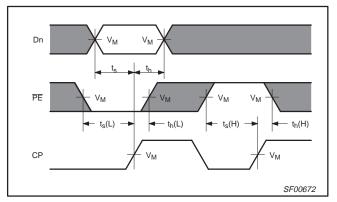



Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency




Waveform 2. Propagation Delay, CET Input to TC Output



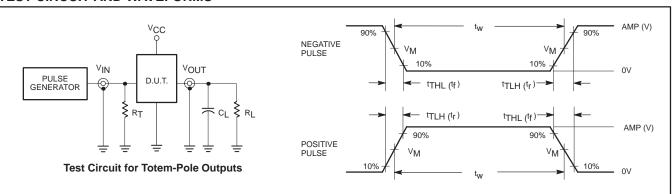

Waveform 3. Master Reset Pulse Width, Master Reset to Output Delay, and Master Reset to Recovery Time



Waveform 4. CEP and CET Reset Setup and Hold Times



Waveform 5. Synchronous Reset Setup and Hold Times




Waveform 6. Parallel Data and Parallel Enable Setup and Hold Times

# 4-bit binary counters

# 74F161A, 74F163A

### **TEST CIRCUIT AND WAVEFORMS**



10

#### **DEFINITIONS:**

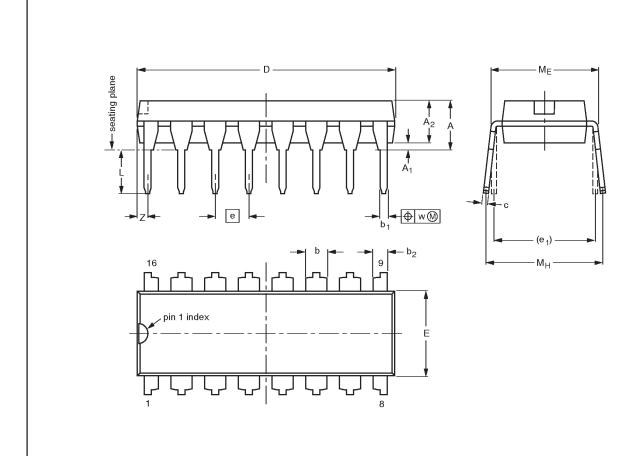
R<sub>L</sub> = Load resistor; see AC ELECTRICAL CHARACTERISTICS for value.

 $C_L = Load$  capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.

Termination resistance should be equal to  $Z_{\mbox{\scriptsize OUT}}$  of pulse generators.

### **Input Pulse Definition**

| family | INP       | INPUT PULSE REQUIREMENTS |           |                |                  |                  |  |  |  |  |  |
|--------|-----------|--------------------------|-----------|----------------|------------------|------------------|--|--|--|--|--|
|        | amplitude | $V_{\text{M}}$           | rep. rate | t <sub>w</sub> | t <sub>TLH</sub> | t <sub>THL</sub> |  |  |  |  |  |
| 74F    | 3.0V      | 3.0V 1.5V                |           | 500ns          | 2.5ns            | 2.5ns            |  |  |  |  |  |


SF00006

# 4-bit binary counters

# 74F161A, 74F163A

### DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4



#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

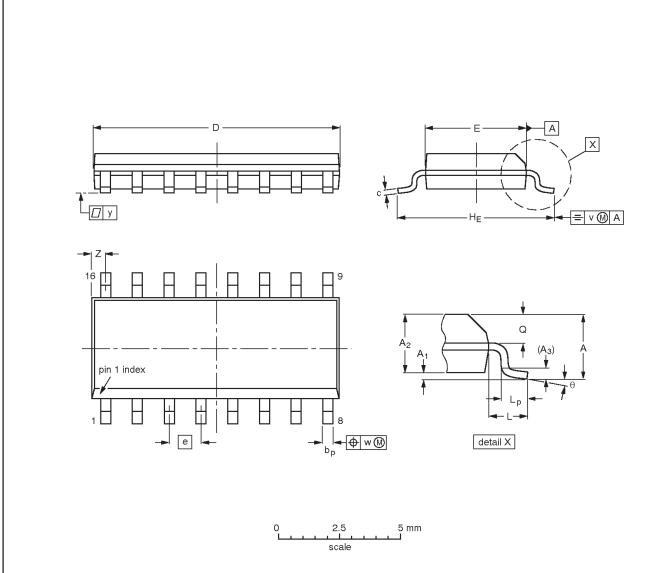
| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | b <sub>2</sub> | С              | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | L            | ME           | M <sub>H</sub> | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|----------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.30   | 0.53<br>0.38   | 1.25<br>0.85   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3    | 0.254 | 0.76                     |
| inches | 0.17      | 0.020                  | 0.13                   | 0.068<br>0.051 | 0.021<br>0.015 | 0.049<br>0.033 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24     | 0.10 | 0.30           | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33   | 0.01  | 0.030                    |

scale

10 mm

### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


| OUTLINE |     | REFER | EUROPEAN | ISSUE DATE |            |                                 |
|---------|-----|-------|----------|------------|------------|---------------------------------|
| VERSION | IEC | JEDEC | EIAJ     |            | PROJECTION | ISSUE DATE                      |
| SOT38-4 |     |       |          |            |            | <del>92-11-17</del><br>95-01-14 |

# 4-bit binary counters

# 74F161A, 74F163A

### SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1



### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | c                | D <sup>(1)</sup> | E <sup>(1)</sup> | е     | HE             | L     | Lp             | Q          | v    | w    | у     | Z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|-------|----------------|-------|----------------|------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.45<br>1.25   | 0.25           | 0.49<br>0.36 | 0.25<br>0.19     | 10.0<br>9.8      | 4.0<br>3.8       | 1.27  | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.7<br>0.6 | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.057<br>0.049 | 0.01           |              | 0.0100<br>0.0075 | 0.39<br>0.38     | 0.16<br>0.15     | 0.050 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 |            | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

#### Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE  |         | REFER    | EUROPEAN | ISSUE DATE |            |                                   |
|----------|---------|----------|----------|------------|------------|-----------------------------------|
| VERSION  | IEC     | JEDEC    | EIAJ     |            | PROJECTION | 1330E DATE                        |
| SOT109-1 | 076E07S | MS-012AC |          |            |            | <del>-95-01-23-</del><br>97-05-22 |

12

# 4-bit binary counters

74F161A, 74F163A

**NOTES** 

### 4-bit binary counter

74F161A, 74F163A

#### Data sheet status

| Data sheet status         | Product status | Definition [1]                                                                                                                                                                                                                                             |
|---------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective specification   | Development    | This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.                                                                                                          |
| Preliminary specification | Qualification  | This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. |
| Product specification     | Production     | This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.                                                       |

<sup>[1]</sup> Please consult the most recently issued datasheet before initiating or completing a design.

#### **Definitions**

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

**Limiting values definition** — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### **Disclaimers**

**Life support** — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 2000 All rights reserved. Printed in U.S.A.

Date of release: 06-00

Document order number: 9397-750 07285

Let's make things better.

Philips Semiconductors



