INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT158Quad 2-input multiplexer; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

Philips Semiconductors

Quad 2-input multiplexer; inverting

74HC/HCT158

FEATURES

· Inverting data path

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT158 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT158 are quad 2-input multiplexers which select 4 bits of data from two sources and are controlled by a common data select input (S). The four outputs present the selected data in the inverted form. The enable input (\overline{E}) is active LOW.

When \overline{E} is HIGH, all the outputs $(1\overline{Y}$ to $4\overline{Y})$ are forced HIGH regardless of all other input conditions.

Moving the data from two groups of registers to four common output buses is a common use of the "158". The state of S determines the particular register from which the data comes. It can also be used as a function generator.

The device is useful for implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common.

The "158" is the logic implementation of a 4-pole, 2-position switch, where the position of the switch is determined by the logic levels applied to S.

The logic equations for the output are:

$$1\overline{Y} = \overline{E}.(1I_1.S + 1I_0.\overline{S})$$

$$2\overline{Y} = \overline{E}.(2I_1.S + 2I_0.\overline{S})$$

$$3\overline{Y} = \overline{E}.(3I_1.S + 3I_0.\overline{S})$$

$$4\overline{Y} = \overline{E}.(4I_1.S + 4I_0.\overline{S})$$

The "158" is identical to the "157" but has inverting outputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

CVMDOL	DADAMETER	CONDITIONS	TY	LINUT		
SYMBOL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	nl ₀ , nl ₁ to nY		12	13	ns	
	Ē to n		14	16	ns	
	S to $n\overline{Y}$		14	16	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per multiplexer	notes 1 and 2	40	40	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

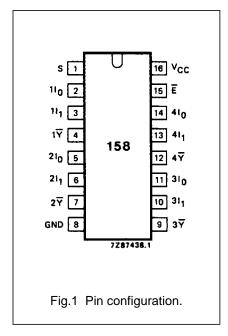
C_L = output load capacitance in pF

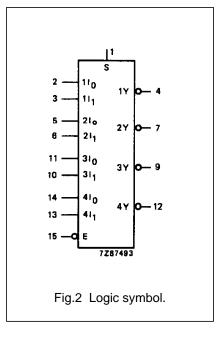
 V_{CC} = supply voltage in V

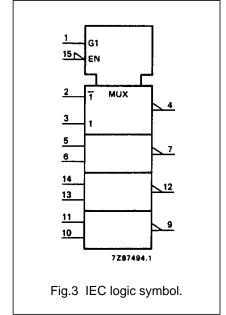
2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

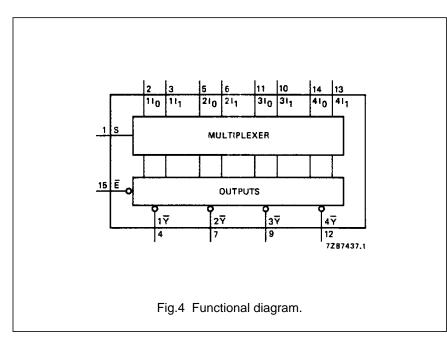

Philips Semiconductors Product specification


Quad 2-input multiplexer; inverting


74HC/HCT158

PIN DESCRIPTION

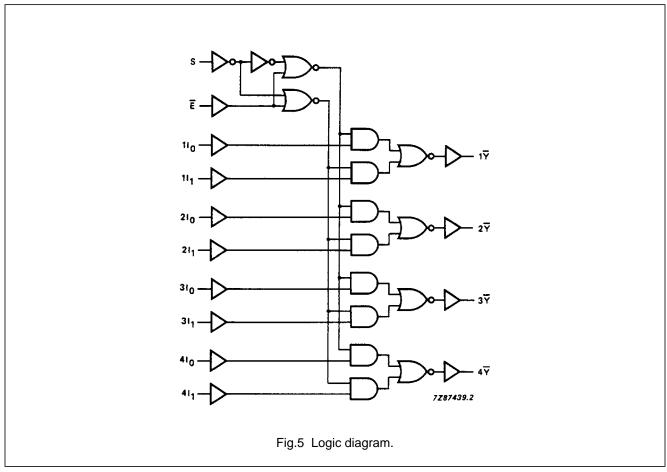
PIN NO.	SYMBOL	NAME AND FUNCTION
1	S	common data select input
2, 5, 11, 14	1I ₀ to 4I ₀	data inputs from source 0
3, 6, 10, 13	1I ₁ to 4I ₁	data inputs from source 1
4, 7, 9, 12	$1\overline{Y}$ to $4\overline{Y}$	multiplexer outputs
8	GND	ground (0 V)
15	Ē	enable input (active LOW)
16	V _{CC}	positive supply voltage



Philips Semiconductors Product specification

Quad 2-input multiplexer; inverting

74HC/HCT158



FUNCTION TABLE

	INP	OUTPUT		
Ē	S	nl ₀	nΨ	
Н	Х	Х	Х	Н
L	L	L	Х	Н
L	L	Н	Х	L
L	Н	Х	L	Н
L	Н	Х	Н	L

Notes

H = HIGH voltage level
 L = LOW voltage level
 X = don't care

Philips Semiconductors Product specification

Quad 2-input multiplexer; inverting

74HC/HCT158

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									WAVEFORMO
		+25			−40 to +85			o +125	UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(•)	
t _{PHL} / t _{PLH}	propagation delay		41	125		155		190	ns	2.0	Fig.7
	nI_0 , nI_1 to $n\overline{Y}$		15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{PHL} / t _{PLH}	propagation delay		47	145		180		220	ns	2.0	Fig.6
	E to nY		17	29		36		44		4.5	
			14	25		31		38		6.0	
t _{PHL} / t _{PLH}	propagation delay		47	145		180		220	ns	2.0	Fig.7
	S to nY		17	29		36		44		4.5	
			14	25		31		38		6.0	
t _{THL} / t _{TLH}	output transition		19	75		95		110	ns	2.0	Figs 6 and 7
	time		7	15		19		22		4.5	
			6	13		16		19		6.0	

Quad 2-input multiplexer; inverting

74HC/HCT158

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

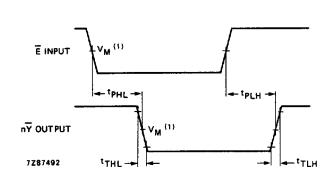
I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

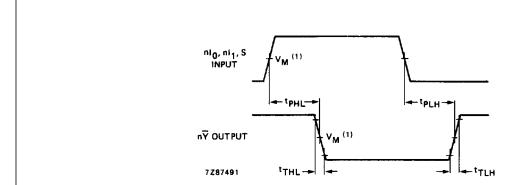
INPUT	UNIT LOAD COEFFICIENT							
nl_0	0.40							
nl ₁	0.40							
S	2.80							
Ē	0.60							

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(')	
t _{PHL} / t _{PLH}	propagation delay nI_0 , nI_1 to $n\overline{Y}$		16	30		38		45	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay E to nY		19	35		44		53	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay S to nY		19	35		44		53	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

Quad 2-input multiplexer; inverting


74HC/HCT158

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the enable input (\overline{E}) to output $(n\overline{Y})$ propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the data input (nI_0, nI_1) to output $(n\overline{Y})$ propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".