

PR533

Contactless Interface Controller

Rev. 3.3 — 20 October 2012 206433 Product short data sheet COMPANY PUBLIC

1. General description

The PR5331C3HN is a highly integrated transceiver module for contactless reader/writer communication at 13.56 MHz.

A dedicated ROM code is implemented to handle different RF protocols by an integrated microcontroller. The system host controller communicates with the PR5331C3HN by using the USB or the HSU link.

The protocol between the host controller and the PR5331C3HN, on top of this physical link is the CCID protocol.

1.1 RF protocols

PR5331C3HN supports the PCD mode for FeliCa (212 kbps and 424 kbps), ISO/IEC14443 Type A and B (from 106 kbps to 848 kbps), MIFARE (106 kbps), B' cards (106 kbps), picoPass tag (106 kbps) and Innovision Jewel cards (106 kbps)

The Initiator passive mode (from 106 kbps to 424 kbps) can be supported through the PC/SC transparent mode.

1.2 Interfaces

The PR5331C3HN supports a USB 2.0 full speed interface (bus powered or host powered mode).

Alternatively to the USB interface, a High Speed UART (from 9600b up to 1.2 Mb) can be used to connect the PR533 to a host.

The R5331C3HN has also a master I^2 C-bus interface that allows to connect one of the following peripherals:

- An external EEPROM: in this case the PR5331C3HN is configured as master and is able to communicate with external EEPROM (address A0h) which can store configuration data like PID, UID and RF parameters
- A TDA8029 contact smart card reader

1.3 Standards compliancy

PR5331C3HN offers commands in order for applications to be compliant with "EMV Contactless Communication Protocol Specification V2.0.1".

PR5331C3HN supports RF protocols ISO/IEC 14443A and B such as compliancy with Smart eID standard can be achieved at application level.

Support of USB 2.0 full speed, interoperable with USB 3.0 hubs

The PR533C3HN in PCD mode is compliant with EMV contactless specification V2.0.1.

1.4 Supported operating systems

- Microsoft Windows 2000
- Microsoft Windows XP (32 and 64 bits)
- Microsoft Windows 2003 Server (32 and 64 bits)
- Microsoft Windows 2008 Server (32 and 64 bits)
- Microsoft Windows Vista (32 and 64 bits)
- Microsoft Windows 7 (32 and 64 bits)

The PR533 is supported by the following OS through the PCSC-Lite driver:

- GNU/Linux using libusb 1.0.x and later
- Mac OS Leopard (1.5.6 and newer)
- Mac OS Snow Leopard (1.6.X)
- Solaris
- FreeBSD

2. Features and benefits

- USB 2.0 full speed host interface and CCID protocol support
- Integrated microcontroller implements high-level RF protocols
- Buffered output drivers to connect an antenna with minimum number of external components
- Integrated RF level detector
- Integrated data mode detector
- Supports ISO/IEC 14443A Reader/Writer mode up to 848 kbit/s
- Supports ISO/IEC 14443B Reader/Writer mode up to 848 kbit/s
- Supports contactless communication according to the FeliCa protocol at 212 kbit/s and 424 kbit/s
- Supports MIFARE encryption
- Typical operating distance in Read/Write mode for communication to ISO/IEC 14443A/MIFARE, ISO/IEC 14443B or FeliCa cards up to 50 mm depending on antenna size and tuning
- I²C-bus master interface allows to connect an external I²C EEPROM for configuration data storage or to control a TDA8029 contact smart card reader
- Low-power modes
 - Hard power-down mode
 - Soft power-down mode
- Only one external oscillator required (27.12 MHz Crystal oscillator)
- Power modes
 - USB bus power mode
 - ◆ 2.5 V to 3.6 V power supply operating range in non-USB bus power mode

PR533_SDS

© NXP B.V. 2012. All rights reserved.

Dedicated I/O ports for external device control

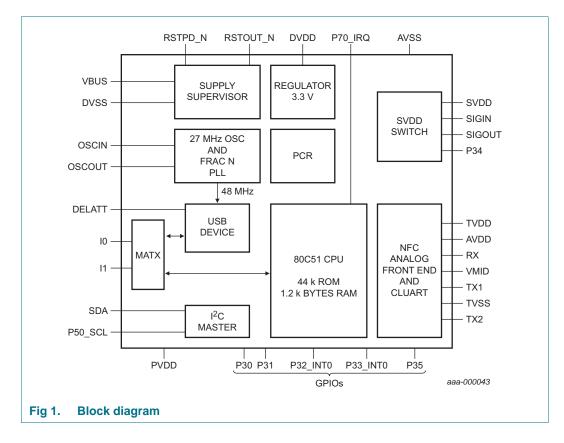
3. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{BUS}	bus supply voltage			4.02	5	5.25	V	
		(non-USB mode); V _{BUS} = V _{DDD;} V _{SSD} = 0 V		2.5	3.3	3.6	V	
V _{DDA}	analog supply voltage	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} =$	[1]	2.5	3.3	3.6	V	
V _{DDD}	digital supply voltage	$V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} =$ $V_{SS(PVSS)} = V_{SS(TVSS)} = 0 V$	[1]	2.5	3.3	3.6	V	
V _{DD(TVDD)}	TVDD supply voltage	$\nabla SS(PVSS) = \nabla SS(TVSS) = 0 \nabla$	[1]	2.5	3.3	3.6	V	
V _{DD(PVDD)}	PVDD supply voltage			1.6	-	3.6	V	
V _{DD(SVDD)}	SVDD supply voltage	$V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0$ V; reserved for future use		V _{DDD} - 0.1	-	V _{DDD}	V	
I _{BUS}	bus supply current	maximum load current (USB mode); measured on V _{BUS}				150	mA	
		maximum inrush current lim- itation; at power-up (curlimoff = 0)				100	mA	
pd	power-down current	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V$; not powered from USB						
		hard power-down; RF level detector off				10	μA	
		soft power-down; RF level detector on				30	μΑ	
I _{CCSL}	suspended low-power device supply current	RF level detector on, (with- out resistor on DP/DM)		-	-	250	μΑ	
DDD	digital supply current	RF level detector on, $V_{DD(SVDD)}$ switch off	<u>[1]</u>	-	15	-	mA	
DD(SVDD)	SVDD supply current	$V_{DDS} = 3 V$		-	-	30	mA	
DDA	analog supply current	RF level detector on		-	6	-	mA	
DD(TVDD)	TVDD supply current	during RF transmission; V _{DD(TVDD)} = 3 V		-	60	100	mA	
P _{tot}	total power dissipation	T_{amb} = -30 to +85 °C		-	-	0.55	W	
T _{amb}	ambient temperature			-30	-	+85	°C	

[1] V_{DDD} , V_{DDA} and $V_{DD(TVDD)}$ must always be at the same supply voltage.

Ordering information 4.

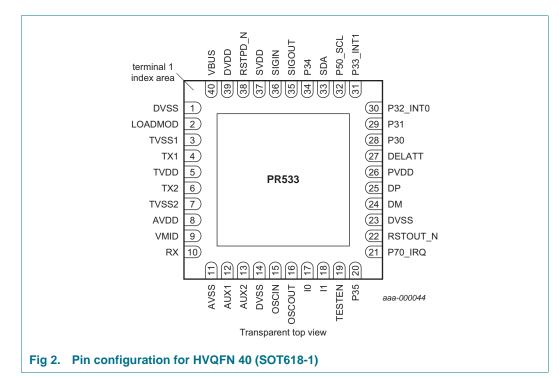
Table 2. Ordering information							
Type number	Package						
	Name	Description	Version				
PR5331C3HN/C350[1][2][3]	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads;	SOT618-1				
PR5331C3HN/C360[1][2][3]		40 terminals; body $6 \times 6 \times 0.85$ mm					


[1] 50 or 60 refers to the ROM code version described in the User Manual. For differences of romcode versions refer to the release note of the product.

[2] Refer to Section 14.4 "Licenses".

MSL 2 (Moisture Sensitivity Level). [3]

Block diagram 5.


The following block diagram describes hardware blocks controlled by PR5331C3HN firmware or which can be accessible for data transaction by a host baseband.

PR533_SDS	
Product short data shee COMPANY PUBLIC	t

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. PR53	3 pin d	escript	ion		
Symbol	Pin	Туре	Pad ref voltage	Description	
DVSS	1	G		digital ground	
LOADMOD	2	0	DVDD	load modulation output provides digital signal for FeliCa and MIFARE car operating mode	ď
TVSS1	3	G		transmitter ground: supplies the output stage of TX1	
TX1	4	0	TVDD	transmitter 1: transmits modulated 13.56 MHz energy carrier	
TVDD	5	Р		transmitter power supply: supplies the output stage of TX1 and TX2	
TX2	6	0	TVDD	transmitter 2: delivers the modulated 13.56 MHz energy carrier	
TVSS2	7	G		transmitter ground: supplies the output stage of TX2	
AVDD	8	Р		analog power supply	
VMID	9	Р	AVDD	internal reference voltage: This pin delivers the internal reference voltage	э.
RX	10	I	AVDD	receiver input: Input pin for the reception signal, which is the load modula 13.56 MHz energy carrier from the antenna circuit	ated
AVSS	11	G		analog ground	
AUX1	12	0	DVDD	auxiliary output 1: This pin delivers analog and digital test signals	
AUX2	13	0	DVDD	auxiliary output 2: This pin delivers analog and digital test signals	
DVSS	14	G		digital ground	
PR533_SDS			A	II information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights I	reserved
Product short data	sheet			Rev. 3.3. — 20 October 2012	

Product short data sheet COMPANY PUBLIC

NXP Semiconductors

PR533

Contactless Interface Controller

ng amplifier of the oscillator. This pin ted clock (f _{clk} = 27.12 MHz).
erting amplifier of the oscillator.
ost interface; in test mode I0 is used
the access to the test mode.
errupt event to the host (Port 7 bit 0)
es that the circuit is in reset state.
HSU mode; in test mode this signal
HSU mode; in test mode this signa
sistor connection on D+.
igured to act either as RX line of the purpose I/O.
and output test signal.
igured to act either as TX line of the purpose I/O.
and output test signal.
used as an interrupt source and output test signal.
I to generate an HZ state on the out communication and to enter into internal state of PR533.
and output test signal.
mode
node
al for the SAM
put: delivers a serial data stream for the SAM.
gnal output.
ut: accepts a digital, serial data signal from the SAM.
gnal input.
S

Table 3 PR533 pin description continued

PR533_SDS All information provided in this document is subject to legal disclaimers. Product short data sheet COMPANY PUBLIC Rev. 3.3. — 20 October 2012 206433

© NXP B.V. 2012. All rights reserved.

Table 3.	PR000 P	Sin a	escript		Jea
Symbol		Pin	Туре	Pad ref voltage	Description
RSTPD_N		38	I	PVDD	reset and power-down: When LOW, internal current sources are switched off, the oscillator is inhibited, and the input pads are disconnected from the out- side world.
					With a negative edge on this pin the internal reset phase starts.
DVDD		39	Ρ		digital power supply
VBUS		40	Р		USB power supply.

Table 3 PR533 pin description continued

[1] Pin types: I= Input, O = Output, I/O = Input/Output, P = Power and G = Ground.

Limiting values 7.

Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{DDA}	analog supply voltage		-0.5	+4	V
V _{DDD}	digital supply voltage		-0.5	+4	V
V _{DD(TVDD)}	TVDD supply voltage		-0.5	+4	V
V _{DD(PVDD)}	PVDD supply voltage		-0.5	+4	V
V _{DD(SVDD)}	SVDD supply voltage		-0.5	+4	V
V _{BUS}	bus supply voltage		-0.5	+5.5	V
P _{tot}	total power dissipation		-	500	mW
I _{DD(SVDD)}	SVDD supply current	maximum current in V _{DDS} switch	-	30	mA
V _i	input voltage	TX1, TX2, RX pins	-0.5	+4	V
V _{ESD}	electrostatic discharge voltage	HBM	[1]	±2.0	kV
		MM	[2] _	200	V
		CDM	[3] _	±1	kV
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		-40	+125	°C
V _{i(dyn)(RX)}	dynamic input voltage on pin RX	input signal at 13.56 MHz	-0.7	$V_{DD(AVDD)}$ + 1.0	V
V _{i(dyn)(TX1)}	dynamic input voltage on pin TX1	input signal at 13.56 MHz	-1.2	$V_{DD(TVDD)}$ + 1.3	V
V _{i(dyn)(TX2)}	dynamic input voltage on pin TX2	input signal at 13.56 MHz	-1.2	$V_{DD(TVDD)}$ + 1.3	V
I _{TX1}	current on pin TX1	output signal at 13.56 MHz	-300	+300	mA
I _{TX2}	current on pin TX2	output signal at 13.56 MHz	-300	+300	mA

[1] 1500 Ω, 100 pF; EIA/JESD22-A114-A

[2] 0.75 mH, 200 pF; EIA/JESD22-A115-A

Field induced model; EIA/JESC22-C101-C [3]

Recommended operating conditions 8.

Table 5. **Operating conditions**

Parameter	Conditions		Min	Тур	Max	Unit
bus supply voltage	$V_{SSA} = V_{SSD = VSS(PVSS)} = V_{SS(TVSS)} = 0 V$		4.02	5	5.25	V
	supply voltage (non-USB mode); $V_{BUS} = V_{DDD}$; $V_{SSA} = V_{SSD} = v_{SS(PVSS)} = V_{SS(TVSS)} = 0 V$		2.5	3.3	3.6	V
analog supply volt- age		[1][2]	2.5	3.3	3.6	V
digital supply volt- age		<u>[1][2]</u>	2.5	3.3	3.6	V
TVDD supply volt- age		<u>[1][2]</u>	2.5	3.3	3.6	V
PVDD supply volt- age	supply pad for host interface; $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)};$ $V_{SSA} = V_{SSD} = v_{SS(PVSS)} = V_{SS(TVSS)} = 0 V$	[2]	1.6	1.8 to 3.3	3.6	V
ambient tempera- ture			-30	+25	+85	°C
	Parameter bus supply voltage analog supply volt- age digital supply volt- age TVDD supply volt- age PVDD supply volt- age ambient tempera-	ParameterConditionsbus supply voltage $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ supply voltage (non-USB mode); $V_{BUS} = V_{DDD}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ analog supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ digital supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ TVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ PVDD supply volt- agesupply pad for host interface; $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ ambient tempera-	ParameterConditionsbus supply voltage $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ supply voltage (non-USB mode); $V_{BUS} = V_{DDD}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ analog supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ digital supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ TVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ TVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ PVDD supply volt- age $supply pad for host interface;V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)};V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 Vambient tempera-$	ParameterConditionsMinbus supply voltage $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ 4.02supply voltage (non-USB mode); $V_{BUS} = V_{DDD}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = VSS(TVSS) = 0 V$ 2.5analog supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = VSS(TVSS) = 0 V$ [1][2]digital supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ [1][2]TVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ [1][2]PVDD supply volt- age $v_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ [1][2]PVDD supply volt- age $v_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = vSS(PVSS) = V_{SS(TVSS)} = 0 V$ [2]ambient tempera30	ParameterConditionsMinTypbus supply voltage $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ 4.025supply voltage (non-USB mode); $V_{BUS} = V_{DDD}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ 2.53.3analog supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11[2]2.53.3digital supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11[2]2.53.3TVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11[2]2.53.3PVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11[2]2.53.3PVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11[2]2.53.3ambient tempera- -30 $+25$	ParameterConditionsMinTypMaxbus supply voltage $V_{SSA} = V_{SSD} = V_{SS}(PVSS) = V_{SS}(TVSS) = 0 V$ 4.0255.25supply voltage (non-USB mode); $V_{BUS} = V_{DDD}$; $V_{SSA} = V_{SSD} = VSS(PVSS) = V_{SS(TVSS)} = 0 V$ 2.53.33.6analog supply volt- age $V_{DDA} = V_{DDD} = V_{DD}(TVDD) = V_{DD}(PVDD)$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11122.53.33.6digital supply volt- age $V_{DDA} = V_{DDD} = V_{DD}(TVDD) = V_{DD}(PVDD)$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11122.53.33.6TVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD}(TVDD) = V_{DD}(PVDD)$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11122.53.33.6PVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD}(TVDD) = V_{DD}(PVDD)$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11122.53.33.6PVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD}(TVDD) = V_{DD}(PVDD)$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11122.53.33.6PVDD supply volt- age $V_{DDA} = V_{DDD} = V_{DD}(TVDD) = V_{DD}(PVDD)$; $V_{SSA} = V_{SSD} = VSS(PVSS) = VSS(TVSS) = 0 V$ 11121.61.8 to 3.33.6ambient tempera30+25+85

[1] $~V_{SSA},\,V_{DDD}$ and $V_{DD(TVDD)}$ shall always be on the same voltage level.

Supply voltages below 3 V reduces the performance (e.g. the achievable operating distance). [2]

Thermal characteristics 9.

Table 6.	Thermal characteristic	S				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air with exposed pad soldered on a 4 layer Jedec PCB-0.5	-	37	41.1	K/W

10. Characteristics

Unless otherwise specified, the limits are given for the full operating conditions. The typical value is given for 25 °C, V_{DDD} = 3.4 V and V_{DD(PVDD)} = 3 V in non-USB bus power mode, $V_{BUS} = 5$ V in USB power mode.

Timings are only given from characterization results.

10.1 Power management characteristics

10.1.1 Current consumption characteristics

Typical value using a complementary driver configuration and an antenna matched to 40 Ω between TX1 and TX2 at 13.56 MHz.

COMPANY PUBLIC

NXP Semiconductors

Contactless Interface Controller

PR533

Table 7. Current consumption characteristics								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
I _{pd}	power-down current	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V$; not powered from USB						
		hard power-down current; not powered from USB; RF level detector off	<u>[1]</u> -	1.3	10	μA		
		soft power-down current; not powered from USB; RF level detector on	<u>[1]</u> -	9	30	μΑ		
I _{CCSL}	suspended low-power device supply current	$V_{BUS} = 5 V; V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V; V_{DDS} = 0 V; RF level detector on (without resistor on pin DP (D+))$	[1] -	120	250	μΑ		
I _{DDD}	digital supply current	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)}$ = 3 V; RF level detector on	-	12	-	mA		
I _{DDA}	analog supply current	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V;$						
		RF level detector on	-	3	6	mA		
		RF level detector off	-	1.5	5	mA		
I _{DD(PVDD)}	PVDD supply current		[2] _	-	30	mA		
I _{DD(SVDD)}	SVDD supply current	sam_switch_en set to 1	[3] _	-	30	mA		
I _{DD(TVDD)}	TVDD supply current	continuous wave; V _{DD(TVDD)} = 3 V	[4][5]	60	100	mA		

Table 7. Current consumption characteristics

[1] I_{pd} is the total currents over all supplies.

[2] I_{DD(PVDD)} depends on the overall load at the digital pins.

[3] $I_{DD(SVDD)}$ depends on the overall load on $V_{DD(SVDD)}$ pad.

[4] $I_{DD(TVDD)}$ depends on $V_{DD(TVDD)}$ and the external circuitry connected to TX1 and TX2.

[5] During operation with a typical circuitry the overall current is below 100 mA.

10.1.2 Voltage regulator characteristics

Table 8. Voltage regulator characteristics^[1]

Parameter	Conditions	Min	Тур	Max	Unit
bus supply voltage	USB mode; $V_{SS} = 0 V$	4.02	5	5.25	V
digital supply voltage	after inrush current limitation (USB mode); from I _{VDDD} = 0 mA to I _{VDDD} = 150 mA	2.95	3.3	3.6	V
bus supply current	USB mode; measure on V_{BUS}	-	-	150	mA
inrush current limit	at power-up (curlimofff = 0)	-	-	100	mA
regulator reset threshold voltage	regulator reset	1.90	2.15	2.40	V
regulator reset threshold voltage hysteresis		35	60	85	mV
V _{DDD} decoupling capacitor		8	10	_	μF
	bus supply voltage digital supply voltage bus supply current inrush current limit regulator reset threshold voltage regulator reset threshold voltage hysteresis	bus supply voltageUSB mode; V _{SS} = 0 Vdigital supply voltageafter inrush current limitation (USB mode); from I _{VDDD} = 0 mA to I _{VDDD} = 150 mAbus supply currentUSB mode; measure on V _{BUS} inrush current limitat power-up (curlimofff = 0)regulator reset threshold voltage hysteresisregulator reset threshold voltage	bus supply voltageUSB mode; V_SS = 0 V4.02digital supply voltageafter inrush current limitation (USB mode); from I_VDDD = 0 mA to I_VDDD = 150 mA2.95bus supply currentUSB mode; measure on V_BUS-inrush current limitat power-up (curlimofff = 0)-regulator reset threshold voltage hysteresis1.90	bus supply voltageUSB mode; V_{SS} = 0 V4.025digital supply voltageafter inrush current limitation (USB mode); from I_VDDD = 0 mA to I_VDDD = 150 mA2.953.3bus supply currentUSB mode; measure on V_BUSinrush current limitat power-up (curlimofff = 0)regulator reset threshold voltage hysteresis1.902.15	bus supply voltageUSB mode; V_SS = 0 V4.0255.25digital supply voltageafter inrush current limitation (USB mode); from I_VDDD = 0 mA to I_VDDD = 150 mA2.953.33.6bus supply currentUSB mode; measure on V_BUS150inrush current limitat power-up (curlimofff = 0)100regulator reset threshold voltage hysteresisregulator reset threshold voltage356085

[1] The internal regulator is only enabled when the USB interface is selected by I0 and I1.

10.2 Antenna presence self test thresholds

The values in <u>Table 9</u> are guaranteed by design. Only functional is done in production for cases andet_ithl[1:0]=10b and for andet_ithh[2:0]=011b.

PR533_SDS

Product short data sheet COMPANY PUBLIC

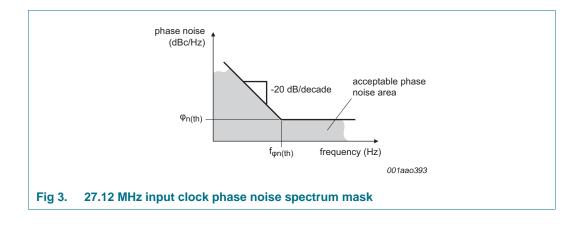
Table 9. Antenna prese									
Parameter	Conditions	Min	Тур	Max	Unit				
IVDDD lower current thresh	IVDDD lower current threshold for antenna presence detection								
andet_ithl[1:0]	00b	-	5	-	mA				
	01b	-	15	-	mA				
	10b	-	25	-	mA				
	11b	-	35	-	mA				
I _{VDDD} upper current thresh	nold for antenna presence	e detection							
andet_ithh[2:0]	000b	-	45	-	mA				
	001b	-	60	-	mA				
	010b	-	75	-	mA				
	011b	-	90	-	mA				
	100b	-	105	-	mA				
	101b	-	120	-	mA				
	110b	-	135	-	mA				
	111b	-	150	-	mA				

Table 9. Antenna presence detection

PR533_SDS

Downloaded from Arrow.com.

10.3 Typical 27.12 MHz Crystal requirements


Table 10.	Crystal requirements					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{xtal}	crystal frequency		27.107	27.12	27.133	MHz
ESR	equivalent series resistance		-	-	100	Ω
CL	load capacitance		-	10	-	pF
P _{xtal}	crystal power dissipation		100	-	-	μW

10.4 Pin characteristics for 27.12 MHz XTAL Oscillator (OSCIN, OSCOUT)

Table 11. Pin characteristics for 27.12 MHz XTAL Oscillator (OSCIN, OSCOUT)

Symbol	Deremeter	• II.I					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ILI	input leakage current	$RSTPD_N = 0 V$		-1	-	+1	mA
V _{IH}	HIGH-level input voltage			$0.7\times V_{\text{DDA}}$	-	V _{DDA}	V
V _{IL}	LOW-level input voltage			0	-	$0.3\times V_{DDA}$	V
V _{OH}	HIGH-level output voltage			-	1.1	-	V
V _{OL}	LOW-level output voltage			-	0.2	-	V
f _{clk}	clock frequency			-0.05 %	27.12	+0.05 %	MHz
δ	duty cycle			40	50	60	%
Φn(th)	phase noise threshold		[1]	-	-	-140	dBc/Hz
$f_{\phi n(th)}$	phase noise threshold fre- quency	$\phi_{n(th)} = -140 dBc/Hz;$ -20dB/decade slope	<u>[1]</u>	-	-	50	kHz
OSCIN							
Vi	input voltage	DC		-	0.65	-	V
Ci	input capacitance	$V_{DDA} = 2.8 V; V_i (DC) = 0.65 V;$ $V_i (AC) = 1 V p-p$		-	2	-	pF
OSCOUT							
Ci	input capacitance			-	2	-	pF

[1] $\varphi_{n(th)}$ and $f_{\varphi n(th)}$ define the mask for maximum acceptable phase noise of the clock signal at the OSCIN, OSCOUT inputs. See Figure 3 <u>"27.12 MHz input clock phase noise spectrum mask"</u>.

PR533_SDS		

All information provided in this document is subject to legal disclaimers.

Product short data sheet COMPANY PUBLIC

10.5 RSTPD_N input pin characteristics

Table 12. RSTPD_N input pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input volt- age		$V_{DD(PVDD)}$ –0.4	-	V _{DD(PVDD)}	V
V _{IL}	LOW-level input volt- age		0	-	0.4	V
I _{IH}	HIGH-level input cur- rent	$V_{I} = V_{DD(PVDD)}$	-1	-	1	μΑ
IIL	LOW-level input current	$V_{I} = 0 V$	-1	-	1	μA
Ci	input capacitance		-	2.5	-	pF

10.6 Input pin characteristics for I0, I1 and TESTEN

Table 13. Input pin characteristics for I0, I1 and TESTEN

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		$[1] 0.7 \times V_{DDD}$	-	V _{DDD}	V
V _{IL}	LOW-level input voltage		<u>[2]</u> 0		$0.3\times V_{DDD}$	V
I _{IH}	HIGH-level input current	I0 and I1; $V_I = V_{DDD}$	<u>[3]</u> –1	-	1	μΑ
IIL	LOW-level input current	$V_I = 0 V$	-1	-	1	μΑ
Ci	input capacitance		-	2.5	-	pF

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DDD} - 0.4 V$.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V.

[3] TESTEN should never be set to high level in the application. It is used for production test purpose only. It is recommended to connect TESTEN to ground although there is a pull-down included.

10.7 RSTOUT_N output pin characteristics

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{OH}	HIGH-level output	$V_{DD(PVDD)} = 3 \text{ V}; \text{ I}_{OH} = -4 \text{ mA}$		$0.7 \times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
	voltage	$V_{DD(PVDD)}$ = 1.8 V; I_{OH} = -2 mA	[1]	$0.7\times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
V _{OL}	LOW-level output	$V_{DD(PVDD)} = 3 \text{ V}; I_{OL} = 4 \text{ mA}$		0	-	$0.3\times V_{DD(PVDD)}$	V
	voltage	$V_{DD(PVDD)} = 1.8 \text{ V}; I_{OL} = 2 \text{ mA}$	[1]	0	-	$0.3\times V_{DD(PVDD)}$	V
I _{OH}	HIGH-level output current	$V_{DD(PVDD)} = 3 V; V_{OH} = 0.8 \times V_{DD(PVDD)}$	[2]	-4	-	-	mA
		$V_{DD(PVDD)}$ = 1.8 V; V_{OH} = 0.7 × $V_{DD(PVDD)}$		-2	-	-	mA
I _{OL} LOW-level ou current	LOW-level output current		[2]	4	-	-	mA
		$V_{DD(PVDD)}$ = 1.8 V; V_{OL} = 0.3 × $V_{DD(PVDD)}$		2	-	-	mA
CL	load capacitance				-	30	pF
t _r	rise time			-	-	13.5	ns
		$\label{eq:VDDP} \begin{array}{l} V_{DDP} = 1.8 \ V; \\ V_{OH} = 0.7 \times V_{DD(PVDD)}; \ C_{L} = 30 \ pF \end{array}$		-	-	10.8	ns
t _f	fall time			-	-	13.5	ns
		$V_{DD(PVDD)} = 1.8 \text{ V};$ $V_{OL} = 0.3 \times V_{DD(PVDD)}; C_L = 30 \text{ pF}$		-	-	10.8	ns

Table 14. RSTOUT_N output pin characteristics

[1] Data at $V_{DD(PVDD)}$ = 1.8V are only given from characterization results.

[2] I_{OH} and I_{OL} give the output drive capability from which the rise and fall times may be calculated as a function of the load capacitance.

10.8 Input/output characteristics for pin P70_IRQ

Table 15. Input/output pin characteristics for pin P70_IRQ

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IH}	HIGH-level input volt- age		<u>[1]</u>	$0.7\times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
V _{IL}	LOW-level input voltage		[2]	0	-	$0.3 \times V_{DD(PVDD)}$	V
V _{OH}	HIGH-level output volt- age	push-pull mode; V _{DD(PVDD)} = 3 V; I _{OH} = -4 mA		$0.7 \times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
		push-pull mode; $V_{DD(PVDD)} = 1.8 \text{ V}; I_{OH} = -2 \text{ mA}$	[3]	$0.7 \times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
V _{OL}	LOW-level output volt- age	push-pull mode; V _{DD(PVDD)} = 3 V; I _{OL} = 4 mA		0	-	$0.3 \times V_{DD(PVDD)}$	V
		push-pull mode; $V_{DD(PVDD)} = 1.8 \text{ V}; I_{OL} = 2 \text{ mA}$	[3]	0	-	$0.3\times V_{DD(PVDD)}$	V
I _{IH}	HIGH-level input current	input mode; $V_I = V_{DDD}$		-1	-	1	μΑ
IIL	LOW-level input current	input mode; $V_I = 0 V$		-1	-	1	μΑ
I _{OH}	HIGH-level output cur- rent		[5]	-4	-	-	mA
I _{OL}	LOW-level output cur- rent		[5]	4	-	-	mA
ILI	input leakage current	RSTPD_N = 0.4 V		-1	-	1	μΑ
Ci	input capacitance			-	2.5		pF
CL	load capacitance			-	-	30	pF
t _r	rise time	$ \begin{array}{l} V_{DD(PVDD)} = 3 \ V; \\ V_{OH} = 0.8 \times V_{DD(PVDD)}; \\ C_L = 30 \ pF \end{array} $		-	-	13.5	ns
				-	-	10.8	ns
t _f	fall time			-	-	13.5	ns
				-	-	10.8	ns

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DD(PVDD)} - 0.4 V$.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V.

[3] Data at $V_{DD(PVDD)}$ = 1.8 V are only given from characterization results.

[4] The I_{OH} and I_{OL} give the output driving capability and allow to calculate directly the rise and fall time as function of the load capacitance.

10.9 Input/output pin characteristics for P30 / UART_RX, P31 / UART_TX, P32_INT0, P33_INT1

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VIH	HIGH-level input voltage		<u>[1]</u>	$0.7 \times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
V _{IL}	LOW-level input voltage		[2]	0	-	$0.3 \times V_{DD(PVDD)}$	V
V _{OH}	HIGH-level output volt- age	push-pull mode; $V_{DD(PVDD)} = 3 V;$ $I_{OH} = -4 mA$		$V_{DD(PVDD)}$ –0.4	-	V _{DD(PVDD)}	V
		$V_{DD(PVDD)} = 1.8 V;$ $I_{OH} = -2 mA$	<u>[3]</u>	$V_{DD(PVDD)}$ –0.4	-	V _{DD(PVDD)}	V
V _{OL}	LOW-level output volt- age	push-pull mode; $V_{DD(PVDD)} = 3 V;$ $I_{OL} = 4 mA$		0	-	0.4	V
		$V_{DD(PVDD)} = 1.8 V;$ $I_{OL} = 2 mA$	<u>[3]</u>	0	-	0.4	V
I _{IH}	HIGH-level input current	input mode; V _I = V _{DD(PVDD)}		-1	-	1	μA
IL	LOW-level input current	input mode; $V_1 = 0 V$		-1	-	1	μΑ
l _{он}	HIGH-level output cur- rent		<u>[4]</u>	-4	-	-	mA
I _{OL}	LOW-level output current		<u>[4]</u>	4	-	-	mA
LI	input leakage current	$RSTPD_N = 0.4 V$		-1	-	1	μA
Ci	input capacitance			-	2.5	-	pF
CL	load capacitance			-	-	30	pF
t _r	rise time	$ \begin{array}{l} V_{DD(PVDD)} = 3 \ V; \\ V_{OH} = 0.8 \times V_{DD(PVDD)}; \\ C_L = 30 \ pF \end{array} $		-	-	13.5	ns
		$\label{eq:VDD} \begin{split} V_{DD(PVDD)} &= 1.8 \text{ V}; \\ V_{OH} &= 0.7 \times V_{DD(PVDD)}; \\ C_L &= 30 \text{ pF} \end{split}$		-	-	10.8	ns
t _f ft	fall time	$ \begin{array}{l} V_{DD(PVDD)} = 3 \ V; \\ V_{OL} = 0.2 \times V_{DD(PVDD)}; \\ C_L = 30 \ pF \end{array} $		-	-	13.5	ns
		$V_{DD(PVDD)} = 1.8 V;$ $V_{OL} = 0.3 \times V_{DD(PVDD)};$ $C_{L} = 30 \text{ pF}$		-	-	10.8	ns

Table 16. Input/output pin characteristics for P30 / UART_RX, P31 / UART_TX, P32_INT0, P33_INT1

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DD(PVDD)} - 0.4 V$.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V

[3] Data at $V_{DD(PVDD)}$ = 1.8 V are only given from characterization results.

[4] The I_{OH} and I_{OL} give the output driving capability and allow to calculate directly the rise and fall time as function of the load capacitance.

10.10 Input/output pin characteristics for P35

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{IH}	HIGH-level input voltage		[1]	$0.7\times V_{DDD}$	-	V _{DDD}	V
V _{IL}	LOW-level input voltage		[2]	0	-	$0.3\times V_{DDD}$	V
V _{OH}	HIGH-level output volt- age	V_{DDD} = 3 V; I_{OH} = -4 mA		$V_{DDD}-0.4$	-	V _{DDD}	V
V _{OL}	LOW-level output voltage	$V_{DDD} = 3 \text{ V}; \text{ I}_{OL} = 4 \text{ mA}$		0	-	0.4	V
I _{IH}	HIGH-level input current	$V_{I} = V_{DDD}$		-1	-	1	μA
IIL	LOW-level input current	$V_1 = 0 V$		-1	-	1	μA
I _{OH}	HIGH-level output current		[3]	-4	-	-	mA
l _{OL}	LOW-level output current		<u>[3]</u>	4	-	-	mA
ILI	input leakage current	$RSTPD_N = 0.4 V$		-1	-	1	μA
C _i	input capacitance			-	2.5	-	pF
CL	load capacitance			-	-	30	pF
t _r	rise time	$\label{eq:VDDD} \begin{array}{l} V_{\text{DDD}} = 3 \; V; \; V_{\text{OH}} = 0.8 \times V_{\text{DDD}}; \\ C_{\text{L}} = 30 \; \text{pF} \end{array}$		-	-	13.5	ns
		$\label{eq:VDDD} \begin{array}{l} V_{DDD} = 1.8 \ \text{V}; \ \text{V}_{OH} = 0.7 \times \text{V}_{DDD}; \\ C_L = 30 \ \text{pF} \end{array}$		-	-	10.8	ns
t _f	fall time	$\label{eq:VDDD} \begin{array}{l} V_{\text{DDD}} = 3 \; V; \; V_{\text{OL}} = 0.2 \times V_{\text{DDD}}; \\ C_{\text{L}} = 30 \; \text{pF} \end{array}$		-	-	13.5	ns
		$\label{eq:VDDD} \begin{split} V_{DDD} &= 1.8 \ \text{V}; \ \text{V}_{OL} = 0.3 \times \text{V}_{DDD}; \\ C_L &= 30 \ \text{pF} \end{split}$		-	-	10.8	ns

Table 17. Input/output pin characteristics for P35

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DDD} - 0.4$ V.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V.

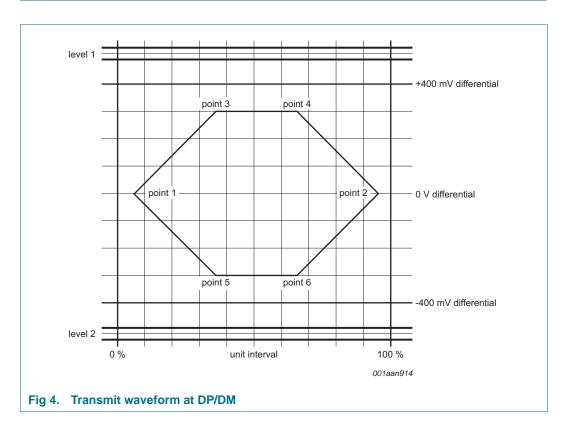
[3] The I_{OH} and I_{OL} give the output driving capability and allow to calculate directly the rise and fall time as function of the load capacitance.

10.11 Input/output pin characteristics for DP and DM

Table 18.	Input/output pin characteristics	ior DP and DM for USB inter	rface				
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VIH	HIGH-level input voltage	$V_{DD(PVDD)} = 3.3 V$		2	-	3.6	V
V _{IL}	LOW-level input voltage		<u>[1]</u>	0	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{DD(PVDD)}$ = 3.3 V; R _{PD} = 1.5 Ω to V _{SS}		2.8	-	V _{DD(PVDD)}	V
V _{OL}	LOW-level output voltage	$\label{eq:VDD} \begin{array}{l} V_{DD(PVDD)} = 3.3 \ V; \\ R_{PD} = 1.5 \ \Omega \ \text{to} \ V_{DD(PVDD)} \end{array}$		0	-	0.3	V
I _{OH}	HIGH-level output current		[2]	-4	-	-	mA
		$V_{DD(PVDD)} = 1.8 V;$ $V_{OH} = 0.7 \times V_{DD(PVDD)}$		-2	-	-	mA
I _{OL}	LOW-level output current		[2]	4	-	-	mA
				2	-	-	mA
I _{IH}	HIGH-level input current	$V_{I} = V_{DD(PVDD)}$		-	-	1	μA
IIL	LOW-level input current	$V_1 = 0 V$		-	-	1	μA
ILI	input leakage current	RSTPD_N = 0 V		-1	-	+1	μA
C _i	input capacitance			-	2.5	3.5	pF
Z _{INP}	input impedance exclusive of pull-up/pull-down (for low-/full speed)			300	-	-	kΩ
Z _{DRV}	driver output impedance for driver which is not high-speed capable			28	-	44	Ω
t _{FDRATE}	full-speed data rate for devices which are not high-speed capable			11.97	-	12.03	Mb/s
t _{DJ1}	source jitter total (including fre- quency tolerance) to next transition			-3.5	-	+3.5	ns
t _{DJ2}	source jitter total (including fre- quency tolerance) for paired transi- tions			-4	-	+4	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition			-2	-	+5	ns
t _{JR1}	receiver jitter to next transition			-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions			-9	-	+9	ns
t _{FEOPT}	source SE0 interval of EOP			160	-	175	ns
t _{FEOPR}	receiver SE0 interval of EOP			82	-	-	ns
t _{FST}	width of SE0 interval during differ- ential transition			-	-	14	ns

Table 18. Input/output pin characteristics for DP and DM for USB interface

[1] The value does not guarantee the power-down consumptions. To reach the specified power-down consumptions, the limit is 0.4 V.


[2] The I_{OH} and I_{OL} give the output driving capability and allow to calculate directly the rise and fall time as function of the load capacitance.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DI}	differential input sen- sitivity voltage	-	0.2	-	-	V	
V_{CM}	differential common mode voltage range	-	0.8	-	2.5	V	

Table 19. USB DP/DM differential receiver input levels

Table 20.	USB DP/DM driver c	haracteristics				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	C _L = 50 pF; 10 % to 90 % of (V _{OH} - V _{OL})	4	-	20	ns
t _f	fall time	C _L = 50 pF; 10 % to 90 % of (V _{OH} - V _{OL})	4	-	20	ns
t _{FRFM}	differential rise and fall time matching	(t _{FR} /t _{FF}); excluding the first transition from Idle state	90	-	111.1	%
V _{CRS}	output signal cross- over voltage	excluding the first transition from Idle state	1.3	-	2.0	V

	input i in characteristics		00				
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		[1]	$0.7\times V_{DD(PVDD)}$	-	V _{DD(PVDD)}	V
V _{IL}	LOW-level input voltage		[2]	0	-	$0.3 \times V_{DD(PVDD)}$	V
I _{IH}	HIGH-level input current	$V_i = V_{DD(PVDD)}$		-	-	1	mA
IIL	LOW-level input current	$V_i = 0 V$		-	-	1	mA
ILI	input leakage current	$RSTPD_N = 0 V$		-1		1	mA
Ci	input capacitance			-	2.5	3.5	pF
-							

Table 21. Input Pin characteristics for DP for HSU interface

[1] The value does not guarantee the power-down consumptions. To reach the specified power-down consumptions, the limit is $V_{DD(PVDD)} - 0.4 \text{ V}.$

[2] The value does not guarantee the power-down consumptions. To reach the specified power-down consumptions, the limit is 0.4 V.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{OH}	HIGH-level output	$V_{DD(PVDD)} = 3 \text{ V}; I_{OH} = -4 \text{ mA}$		$V_{DD(PVDD)}-0.4$	-	V _{DD(PVDD)}	V
	voltage	$V_{DD(PVDD)}$ = 1.8 V; I_{OH} = -2 mA		$V_{DD(PVDD)}-0.4$	-	V _{DD(PVDD)}	Unit V V V mA mA mA mA mA mA ns ns
V _{OL}	LOW-level output volt-	$V_{DD(PVDD)} = 3 \text{ V}; I_{OL} = -4 \text{ mA}$		0	-	0.4	V
	age	$V_{DD(PVDD)} = 1.8 \text{ V}; I_{OL} = -2 \text{ mA}$		0	-	0.4	V
I _{OH}	HIGH-level output current		<u>[1]</u>	-4	-	-	mA
		$V_{DD(PVDD)} = 1.8 \text{ V};$ $V_{OH} = 0.7 \times V_{DD(PVDD)}$		-2	-	-	V W MA MA MA MA PF ns
	LOW-level output cur- rent		<u>[1]</u>	4	-	-	mA
		$V_{DD(PVDD)} = 1.8 \text{ V};$ $V_{OL} = 0.3 \times V_{DD(PVDD)}$		2	-	-	mA
ILI	input leakage current	RSTPD_N = 0 V		-1	-	1	mA
CL	load capacitance			-	-	30	pF
t _r	rise time	$\label{eq:VDDP} \begin{array}{l} V_{DDP} = 3 \ V; \\ V_{OH} = 0.8 \times V_{DD(PVDD)}; \\ C_{L} = 30 \ pF \end{array}$		-	-	13.5	ns
		$ \begin{array}{l} V_{DD(PVDD)} = 1.8 \ V; \\ V_{OH} = 0.7 \times V_{DD(PVDD)}; \\ C_L = 30 \ \text{pF} \end{array} $		-	-	10.8	ns
t _f	fall time	$ \begin{array}{l} V_{DD(PVDD)} = 3 \ V; \\ V_{OL} = 0.2 \times V_{DD(PVDD)}; \\ C_L = 30 \ pF \end{array} $		-	-	13.5	ns
		$\label{eq:VDDP} \begin{split} V_{DDP} &= 1.8 \ \text{V}; \\ V_{OL} &= 0.3 \times V_{DD(PVDD)}; \\ C_L &= 30 \ \text{pF} \end{split}$		-	-	10.8	ns

Table 22. Output Pin characteristics for DM for HSU interface

[1] The I_{OH} and I_{OL} give the output driving capability and allow to calculate directly the rise and fall time as function of the load capacitance

10.12 Input pin characteristics for SCL

Table 23. Input/output drain output pin characteristics for SCL I²C interface

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{IH}	HIGH-level input voltage		[1]	$0.7\times V_{DD(PVDD)}$	-	V _{DDD}	V
VIL	LOW-level input voltage		[2]	0	-	$0.3\times V_{DDD}$	V
V _{OL}	LOW-level output voltage	$V_{DDD} = 3 V;$ $I_{OL} = -4 mA$		0	-	0.3	V
I _{IH}	HIGH-level input current	$V_{I} = V_{DDD}$		-1	-	1	μΑ
I _{IL}	LOW-level input current	$V_1 = 0 V$		-1	-	1	μΑ
I _{LI}	input leakage current	RSTPD_N = 0.4 V		-1	-	1	μΑ
Ci	input capacitance			-	2.5		pF
CL	load capacitance			-	-	30	pF
t _r	rise time of both SDA and SCL signals		[3]	20	-	300	ns
t _f	fall time of both SDA and SCL signals		[3]	20	-	300	ns

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DDD} - 0.4 V$.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V.

[3] The PR533 has a slope control according to the I²C-bus specification for the Fast mode. The slope control is always present and not dependent of the I²C-bus speed.

10.13 Input/output pin characteristics for SDA

Table 24. Input/output drain output pin characteristics for SDA I²C interface

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		[1]	$0.7\times V_{DD(PVDD)}$	-	V _{DDD}	V
V _{IL}	LOW-level input voltage		[2]	0	-	$0.3\times V_{DDD}$	V
V _{OL}	LOW-level output voltage	$V_{DDD} = 3 V;$ $I_{OL} = -4 mA$		0	-	0.3	V
I _{IH}	HIGH-level input current	$V_{I} = V_{DDD}$		-1	-	1	μA
I _{IL}	LOW-level input current	$V_{I} = 0 V$		-1	-	1	μA
I _{LI}	input leakage current	$RSTPD_N = 0.4 V$		-1	-	1	μA
Ci	input capacitance			-	2.5		pF
CL	load capacitance			-	-	30	pF
t _r	rise time of both SDA and SCL signals		[3]	20	-	300	ns
t _f	fall time of both SDA and SCL signals		[3]	20	-	300	ns

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DDD} - 0.4 V$.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V.

[3] The PR533 has a slope control according to the I²C-bus specification for the Fast mode. The slope control is always present and not dependent of the I²C-bus speed.

10.14 Output pin characteristics for DELATT

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	HIGH-level output voltage		$[1] 0.7 \times V_{DD(SVDD)}$	-	V _{DD(SVDD)}	V
V _{IL}	LOW-level input voltage		0	-	$0.3\times V_{DD(PVDD)}$	V
I _{IH}	HIGH-level input current	input mode; $V_I = V_{DD(SVDD)}$	-1	-	1	μA
IIL	LOW-level input current	input mode; V ₁ = 0 V	-1	-	1	μA
ILI	input leakage current	$RSTPD_N = 0.4 V$	-1	-	1	μA
Ci	input capacitance		-	2.5	-	pF

Table 25. Output pin characteristics for DELATT

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DD(PVDD)} - 0.4 V$.

10.15 Input pin characteristics for SIGIN

Table 26. Input/output pin characteristics for SIGIN

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		[1]	$0.7\times V_{DD(SVDD)}$	-	V _{DD(SVDD)}	V
V _{IL}	LOW-level input voltage		[2]	0	-	$0.3 \times V_{DD(SVDD)}$	V
I _{IH}	HIGH-level input current	$V_{I} = V_{DD(SVDD)}$		-1	-	+1	μA
I _{IL}	LOW-level input current	$V_I = 0 V$		-1	-	+1	μA
I _{LI}	input leakage current	$RSTPD_N = 0.4 V$		-1	-	+1	μA
C _i	input capacitance			-	2.5	-	pF

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DD(SVDD)} - 0.4 V$.

[2] To minimize power consumption when in soft power-down mode, the limit is 0.4 V.

10.16 Output pin characteristics for SIGOUT

Table 27. Output pin characteristics for SIGOUT

Symbol	Deremeter	Conditions	Min	Turn	Max	11014
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{DDD} - 0.1 < V_{DD(SVDD)} < V_{DDD}$ $I_{OH} = -4 \text{ mA}$	$V_{\text{DD}(\text{SVDD})} - 0.4$	-	V _{DD(SVDD)}	V
V _{OL}	LOW-level output voltage	$V_{DDD} - 0.1 < V_{DD(SVDD)} < V_{DDD}$ $I_{OL} = +4 \text{ mA}$	0	-	0.4	V
I _{OH}	HIGH-level output current	$\label{eq:VDDD} \begin{split} V_{DDD} &- 0.1 < V_{DD(SVDD)} < V_{DDD} \\ I_{OH} &= -4 \text{ mA} \end{split}$	-0.4	-	-	mA
I _{OL}	LOW-level output current	$V_{DDD} - 0.1 < V_{DD(SVDD)} < V_{DDD}$ $I_{OL} = +4 \text{ mA}$	4	-	-	mA
I _{LI}	input leakage current	$RSTPD_N = 0.4 V$	-1	-	+1	μA
Ci	input capacitance		-	2.5		pF
CL	load capacitance		-	-	30	pF
t _r	rise time		-	-	9	ns
t _f	fall time		-	-	9	ns

PR533_SDS	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2012. All rights reserved.
Product short data sheet COMPANY PUBLIC	Rev. 3.3. — 20 October 2012 206433	21 of 35

10.17 Input/output pin characteristics for P34

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
VIH	HIGH-level input voltage		[1]	$0.7\times V_{DD(SVDD)}$	-	V _{DD(SVDD)}	V
VIL	LOW-level input voltage		[2]	0	-	$0.3 \times V_{DD(SVDD)}$	V
V _{OH}	HIGH-level output volt- age	push-pull; $V_{DDD} - 0.1 < V_{DD(SVDD)} < V_{DDD}$ $I_{OH} = -4 \text{ mA}$		$V_{\text{DD}(\text{SVDD})} - 0.4$	-	V _{DD(SVDD)}	V
V _{OL}	LOW-level output volt- age	push-pull; V _{DDD} - 0.1 < V _{DD(SVDD)} < V _{DDD} I _{OH} = +4 mA		0	-	0.4	V
I _{IH}	HIGH-level input current	input mode; $V_I = V_{DD(SVDD)}$		-1	-	+1	μA
IIL	LOW-level input current	input mode; V _I = 0 V		-1	-	+1	μA
V _{ОН}	HIGH-level output volt- age	$\label{eq:VDDD} \begin{split} V_{DDD} &- 0.1 < V_{DD} (\text{SVDD}) < V_{DDD} \\ I_{OH} &= -4 \text{ mA} \end{split}$		-0.4	-	-	V
V _{OL}	LOW-level output volt- age	$\label{eq:V_DDD} \begin{split} V_{DDD} &- 0.1 < V_{DD(SVDD)} < V_{DDD} \\ I_{OL} &= +4 \ \text{mA} \end{split}$		4	-	-	V
ILI	input leakage current	RSTPD_N = 0.4 V		-1	-	+1	μA
C _i	input capacitance			-	2.5		pF
CL	load capacitance			-		30	pF
t _r	rise time	$\begin{split} V_{DDD} &= 0.1 < V_{DDD} \\ V_{OH} &= 0.8 \times V_{DD(SVDD)}; \\ C_{out} &= 30 \text{ pF} \end{split}$	[3]	-	13.5	-	ns
t _f	fall time	$\label{eq:VDDD} \begin{split} V_{DDD} &= 0.1 < V_{DDD} \\ V_{OL} &= 0.2 \times V_{DD(SVDD)}; \\ C_{out} &= 30 \text{ pF} \end{split}$	<u>[3]</u>	-	13.5	-	ns

Input/output pin characteristics for P34 Table 28.

[1] To minimize power consumption when in soft power-down mode, the limit is $V_{DD(SVDD)} - 0.4 V$.

To minimize power consumption when in soft power-down mode, the limit is 0.4 V. [2]


I_{OH} and I_{OL} specify the output drive capability from which the rise and fall times may be calculated as a function of the load capacitance. [3]

10.18 Output pin characteristics for LOADMOD

Table 29. Output pin characteristics for LOADMOD

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{DDD} = 3 V;$ $I_{OH} = -4 mA$	$V_{DDD} - 0.4$	-	V _{DDD}	V
V _{OL}	LOW-level output voltage	$V_{DDD} = 3 V;$ $I_{OL} = 4 mA$	0	-	0.4	V
CL	load capacitance		-	-	10	pF
t _r	rise time	$\label{eq:VDDD} \begin{array}{l} V_{DDD} = 3 \ V; \\ V_{OH} = 0.8 \times V_{DDD}; \\ C_{out} = 10 \ pF \end{array}$	-	-	4.5	ns
t _f	fall time		-	-	4.5	ns

PR533_SDS	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2012. All rights reserved.
Product short data sheet COMPANY PUBLIC	Rev. 3.3. — 20 October 2012 206433	22 of 35

10.19 Input pin characteristics for RX

Table 30. Input pin characteristics for RX

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vi	input voltage	dynamic; signal frequency at 13.56 MHz	-0.7		V _{DDA} +1	V
Ci	input capacitance		6	10	14	pF
R _s	series resistance	RX input; $V_{DDA} = 3 V$; receiver active; $V_{RX(p-p)} = 1 V$; 1.5 V DC offset	315	350	385	Ω

Minimum dynamic input voltage

Product short data sheet COMPANY PUBLIC

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RX(p-p)}	peak-to-peak receiver voltage	Miller coded; 106 kbit/s	-	150	500	mV
		Manchester coded; 212 kbit/s and 424 kbit/s	-	100	200	mV
Maximum	dynamic input voltage					
V _{RX(p-p)}	peak-to-peak receiver voltage	Miller coded; 106 kbit/s	V_{DDA}	-	-	V
		Manchester coded; 212 and 424 kbit/s	V _{DDA}	-	-	V
Minimum r	nodulation voltage					
V _{mod}	modulation voltage	RxGain = 6 and 7	<u>[1]</u> -	-	6	mV
		RxGain = 4 and 5	<u>[1]</u> _	-	18	mV
		RxGain = 0 to 3	<u>[1]</u> -	-	120	mV
Minimum r	nodulation index					
m	modulation index	Miller coded; 106 kbit/s V _{RX(p-p)} = 1.5 V; SensMiller = 3	-	33	-	%

Table 30. Input pin characteristics for RX ...continued

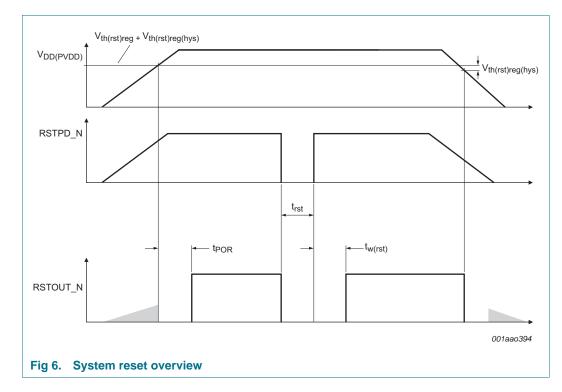
[1] The minimum modulation voltage is valid for all modulation schemes except Miller coded signals.

10.20 Output pin characteristics for AUX1/AUX2

Table 31. Output pin characteristics for AUX1/AUX2

SymbolParameterConditionsMinTypMaxUnit V_{OH} HIGH-level output voltage $V_{DDD} = 3 V$; $I_{OH} = -4 mA$ $V_{DDD} - 0.4$ - V_{DDD} V V_{OL} LOW-level output voltage $V_{DDD} = 3 V$; $I_{OL} = 4 mA$ V_{SSD} - $V_{SSD} + 0.4$ V I_{OH} HIGH-level output current $V_{DDD} = 3 V$; $V_{OH} =$ $V_{DDD} - 0.3$ -4mA I_{OH} HIGH-level output current $V_{DDD} = 3 V$; $V_{OH} =$ $V_{DDD} - 0.3$ -4mA I_{OL} LOW-level output current $V_{DDD} = 3 V$; $V_{OL} =$ $V_{DDD} - 0.3$ 4mA I_{OL} LOW-level output current $V_{DDD} = 3 V$; $V_{OL} =$ $V_{DDD} - 0.3$ 4mA I_{OL} input leakage currentRSTPD_N = 0 V-1-+1 μ A C_i input capacitance2.5-pF C_L load capacitance15pF							
Initial Part of the second part of	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$I_{OL} = 4 \text{ mA}$ $I_{OH} \qquad HIGH-level output current \qquad V_{DDD} = 3 \text{ V}; \text{ V}_{OH} = \ -4 \qquad -4 \qquad - \qquad - \qquad \text{mA}$ $I_{OL} \qquad LOW-level output current \qquad V_{DDD} = 3 \text{ V}; \text{ V}_{OL} = \qquad 4 \qquad - \qquad - \qquad \text{mA}$ $I_{L1} \qquad \text{input leakage current} \qquad RSTPD_N = 0 \text{ V} \qquad -1 \qquad - \qquad +1 \qquad \mu \text{A}$ $C_i \qquad \text{input capacitance} \qquad - \qquad 2.5 - \qquad pF$	V _{OH}	HIGH-level output voltage		$V_{DDD}-0.4$	-	V _{DDD}	V
$\label{eq:VDDD} \begin{array}{c} -0.3 \\ \\ I_{OL} \\ I_{DL} \end{array} \begin{array}{c} LOW-level \mbox{ output current} \\ input leakage \mbox{ current} \end{array} \begin{array}{c} V_{DDD} = 3 \ V; \ V_{OL} = \\ V_{DDD} \ -0.3 \end{array} \begin{array}{c} 4 \\ -1 \\ -1 \end{array} \begin{array}{c} - \\ +1 \\ \mu A \\ C_i \end{array} \begin{array}{c} \mu A \\ F \end{array}$	V _{OL}	LOW-level output voltage	000	V_{SSD}	-	V _{SSD} +0.4	V
$V_{DDD} - 0.3$ $I_{L1} \qquad \text{input leakage current} \qquad RSTPD_N = 0 \text{ V} -1 \qquad - +1 \qquad \mu \text{A}$ $C_i \qquad \text{input capacitance} \qquad - \qquad 2.5 - \qquad pF$	I _{OH}	HIGH-level output current		-4	-	-	mA
C _i input capacitance - 2.5 - pF	I _{OL}	LOW-level output current		4	-	-	mA
	ILI	input leakage current	$RSTPD_N = 0 V$	-1	-	+1	μΑ
C _L load capacitance 15 pF	C _i	input capacitance		-	2.5	-	pF
	CL	load capacitance		-	-	15	pF

10.21 Output pin characteristics for TX1/TX2


Table 32. Output pin characteristics for TX1/TX2

	e alpha più ena acterio					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{DD(TVDD)} = 3 V;$ I _O = 32 mA; CWGsN = Fh	-	-	150	mV
		$V_{DD(TVDD)} = 3 V;$ I _O = 80 mA; CWGsN = Fh	-	-	400	mV
V _{OL}	LOW-level output voltage	$V_{DD(TVDD)}$ = 2.5 V; I _O = 32 mA; CWGsN = Fh	-	-	240	mV
		$V_{DD(TVDD)}$ = 2.5 V; I _O = 80 mA; CWGsN = Fh	-	-	640	mV
		$V_{DD(TVDD)} = 2.5 V;$	-	-		640

Table 33. Output resistance for TX1/TX2

Symbol	Parameter	Conditions1	CWGsP	Min	Тур	Max	Unit
R _{OH}	HIGH-level out-	$V_{DD(TVDD)} = 3 V; V_0 =$	01h	133	180	251	Ω
	put resistance	$V_{DD(TVDD)} - 100 \text{ mV}$	02h	67	90	125	Ω
			04h	34	46	62	Ω
			08h	17	23	31	Ω
			10h	8.5	12	15.5	Ω
			20h	4.7	6	7.8	Ω
			3Fh	2.3	3	4.4	Ω
R _{OL}	LOW-level output resistance		10h	34	46	62	Ω
			20h	17	23	31	Ω
			40h	8.5	12	15.5	Ω
			80h	4.7	6	7.8	Ω
			F0h	2.3	3	4.4	Ω

Downloaded from Arrow.com.

10.22 System reset timing

Table 34. Reset duration time

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{POR}	power-on reset time		<u>[1]</u> 0.1	0.4	2	ms
t _{rst}	reset time	hard power-down time; user dependent	2 20	-	-	ns
t _{w(rst)}	reset pulse width	reset time when RSTPD_N is released	<u>[1]</u> 0.1	0.4	2	ms

[1] Dependent on the 27.12 MHz crystal oscillator startup time.

[2] If the t_{rst} pulse is shorter than 20 ns, the device may be only partially reset.

SDA - t_f ⊷ ^tSU;DAT - t_{SP} tr 1 ŗ ī tLOW – t_f tHD;STA tBUF SCL ı t_r → ı tHIGH tSU:STO tHD;STA - tSU;STA t_{HD;DAT} s Sr i P s ; _ Ľ 1 001aaj635 I²C-bus parameters Fig 7.

10.23 Timing for the I²C-bus interface

Table 35. I²C-bus timing specification

Parameter	Conditions		Min	Тур	Мах	Unit
SCL clock frequency			0	-	400	kHz
hold time (repeated) START condi- tion	after this period, the first clock pulse is generated		600	-	-	ns
set-up time for a repeated START condition			600	-	-	ns
set-up time for STOP condition			600	-	-	ns
LOW period of the SCL clock	P50_SCL		1300	-	-	ns
HIGH period of the SCL clock	P50_SCL		600	-	-	ns
data hold time			0	-	900	ns
data set-up time			100	-	-	ns
rise time of both SDA and SCL signals	P50_SCL	<u>[1]</u>	20	-	300	ns
fall time of both SDA and SCL signals	P50_SCL	[1]	20	-	300	ns
bus free time between a STOP and START condition			1.3	-	-	ms
stretch time	stretching time on P50_SCL when woken-up on its own address	[2]	-	-	1	ms
hold time	internal for SDA		330	-	590	ns
	internal for SDA in SPD mode	<u>[3]</u>	-	270	-	ns
	SCL clock frequency hold time (repeated) START condi- tion set-up time for a repeated START condition set-up time for STOP condition LOW period of the SCL clock HIGH period of the SCL clock data hold time data set-up time rise time of both SDA and SCL sig- nals fall time of both SDA and SCL sig- nals bus free time between a STOP and START condition stretch time	SCL clock frequencyhold time (repeated) START conditionafter this period, the first clock pulse is generatedset-up time for a repeated START conditionFor Stock pulseset-up time for STOP conditionset-up time for STOP conditionLOW period of the SCL clockP50_SCLHIGH period of the SCL clockP50_SCLdata hold timeset-up timedata set-up timeresetime of both SDA and SCL signalsfall time of both SDA and SCL signalsP50_SCLfull time of both SDA and SCL signalsP50_SCLfull time of both SDA and SCL signalsStretching time on P50_SCL when woken-up on its own addresshold timestretching time on P50_SCL when woken-up on its own addresshold timeinternal for SDA in	SCL clock frequencyhold time (repeated) START conditionafter this period, the first clock pulse is generatedset-up time for a repeated START conditionset-up time for STOP conditionset-up time for STOP conditionFS0_SCLLOW period of the SCL clockP50_SCLHIGH period of the SCL clockP50_SCLdata hold timeFS0_SCLdata set-up timeFS0_SCLfall time of both SDA and SCL signalsP50_SCLfall time of both SDA and SCL signalsP50_SCLfull time of both SDA and SCL signalsP50_SCL when woken-up on its own addressbus free time between a STOP and START conditionP50_SCL when woken-up on its own addresshold timeinternal for SDAinternal for SDA in[3]	SCL clock frequency0hold time (repeated) START condi- tionafter this period, the first clock pulse is generated600set-up time for a repeated START condition50600set-up time for STOP condition600600LOW period of the SCL clockP50_SCL1300HIGH period of the SCL clockP50_SCL600data hold time0600data set-up time of both SDA and SCL signalsP50_SCL100rise time of both SDA and SCL signalsP50_SCL11puls free time between a STOP and START condition1.31.3stretch timestretching time on woken-up on its own address20hold timeinternal for SDA330hold timeinternal for SDA inilinternal for SDA inililstretch timeinternal for SDA inilinternal for SDA inililinternal for SDA in<	SCL clock frequency 0 - hold time (repeated) START condition after this period, the first clock pulse is generated 600 - set-up time for a repeated START condition 500 - 600 - set-up time for STOP condition 600 - - LOW period of the SCL clock P50_SCL 1300 - HIGH period of the SCL clock P50_SCL 600 - data hold time 0 - - data set-up time 100 - - rise time of both SDA and SCL signals P50_SCL 11 20 - fall time of both SDA and SCL signals P50_SCL 11 20 - bus free time between a STOP 1.3 - - stretch time Stretching time on P50_SCL when woken-up on its own address 21 - - hold time Internal for SDA in dires 330 - - fall time of both SDA and SCL signal Internal for SDA in III - - - bus free time between a STOP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SCL clock frequency 0 - 400 hold time (repeated) START condition after this period, the first clock pulse is generated 600 - - set-up time for a repeated START condition . 600 - - - set-up time for STOP condition . 600 - - - LOW period of the SCL clock P50_SCL 1300 - - HIGH period of the SCL clock P50_SCL 600 - - data hold time - 00 - 900 data set-up time . 100 - - rise time of both SDA and SCL sign nals P50_SCL 11 20 - fall time of both SDA and SCL sign nals P50_SCL when som som and START condition 1.3 - - bus free time between a STOP . 1.3 - 1.3 - - stretch time Stretching time on box and sca som and START condition Stretching time on pS0_SCL when som and START condition - - - bus free time between a STOP 1.3 .

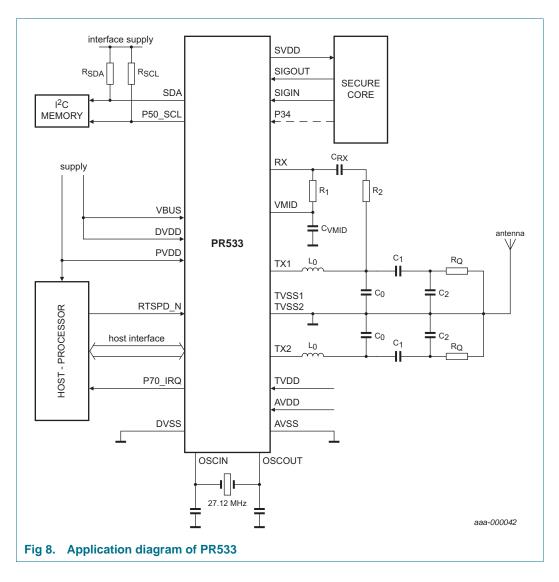
[1] The PR533 has a slope control according to the I²C-bus specification for the Fast mode. The slope control is always present and not dependent of the I²C-bus speed.

[2] 27.12 MHz quartz starts in less than 800 μs. For example, quartz like TAS-3225A, TAS-7 or KSS2F with appropriate layout.

[3] The PR533 has an internal hold time of around 270 ns for the SDA signal to bridge the undefined region of the falling edge of P50_SCL.

10.24 Temperature sensor

Table 36. Temperature sensor characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
T _{th(act)otp}	overtemperature protection acti- vation threshold temperature	CIU	<u>11</u> 100	125	140	°C	

[1] The temperature sensor embedded in the PR533 is not intended to monitor the temperature. Its purpose is to prevent destruction of the IC due to excessive heat. The external application should include circuitry to ensure that the ambient temperature does not exceed 85 °C as specified in Table 5 "Operating conditions".

PR533_SDS

PR533

11. Application information

12. Abbreviations

Table 37. Abbre	eviations
Acronym	Description
CDM	Charge device Body Model
CRC	Cyclic Redundancy Check
EEPROM	Electrically Erasable Programmable Read-Only Memory
HBM	Human Body Model
HPD	Hard Power Down
MM	Machine Model
NFC	Near Field Communication
SPD	Soft Power Down mode

Product short data sheet COMPANY PUBLIC

© NXP B.V. 2012. All rights reserved.

Downloaded from Arrow.com.

13. Revision history

ry					
Release date	Data sheet status	Change notice	Supersedes		
20121020	Product short data sheet	-	PR533_SDS v.3.2		
 Section 14.4 ' 	"Licenses": updated				
20120306	Product short data sheet	-	PR5331C3HN_SDS v.3.0		
 Section 4 "Or 	dering information": updated				
 General update to comply full data sheet 					
20110803	Product short data sheet	-	-		
	Release date 20121020 • Section 14.4 20120306 • Section 4 "Or • General upda	Release date Data sheet status 20121020 Product short data sheet • Section 14.4 "Licenses": updated 20120306 Product short data sheet • Section 4 "Ordering information": updated • General update to comply full data sheet	Release date Data sheet status Change notice 20121020 Product short data sheet - • Section 14.4 "Licenses": updated - 20120306 Product short data sheet - • Section 4 "Ordering information": updated - • General update to comply full data sheet -		

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design

[2] The term 'short data sheet' is explained in section "Definitions"

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for guick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer. unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 **Disclaimers**

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PR533 SDS

All information provided in this document is subject to legal disclaimers.

Product short data sheet **COMPANY PUBLIC**

Rev. 3.3. - 20 October 2012 206433

© NXP B.V. 2012. All rights reserved.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

14.4 Licenses

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B. The license includes the right to use the IC in systems and/or end-user equipment.

RATP/Innovatron Technology

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards.

14.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

MIFARE — is a trademark of NXP B.V.

I²C-bus — logo is a trademark of NXP B.V.

PR533_SDS

16. Tables

Table 1.	Quick reference data	3
Table 2.	Ordering information	4
Table 3.	PR533 pin description	5
Table 4.	Limiting values	
Table 5.	Operating conditions	
Table 6.	Thermal characteristics	
Table 7.	Current consumption characteristics	9
Table 8.	Voltage regulator characteristics ^[1]	9
Table 9.	Antenna presence detection	
Table 10.	Crystal requirements.	
Table 11.	Pin characteristics for 27.12 MHz XTAL	
	Oscillator (OSCIN, OSCOUT)	. 11
Table 12.	RSTPD_N input pin characteristics	
Table 13.	Input pin characteristics for I0, I1 and	
	TESTEN	.12
Table 14.	RSTOUT_N output pin characteristics	
Table 15.	Input/output pin characteristics for	
	pin P70_IRQ	.14
Table 16.	Input/output pin characteristics for P30 /	
	UART_RX, P31 / UART_TX, P32_INT0,	
	P33_INT1	.15
Table 17.	Input/output pin characteristics for P35	
Table 18.	Input/output pin characteristics for DP and	
	DM for USB interface	.17
Table 19.	USB DP/DM differential receiver input levels .	.18
Table 20.	USB DP/DM driver characteristics	.18
Table 21.	Input Pin characteristics for DP for HSU	
	interface	.19
Table 22.		
	interface	.19
Table 23.	Input/output drain output pin characteristics	
	for SCL I ² C interface	.20
Table 24.	Input/output drain output pin characteristics	
	for SDA I ² C interface	
Table 25.	Output pin characteristics for DELATT	.21
Table 26.	Input/output pin characteristics for SIGIN	.21
Table 27.	Output pin characteristics for SIGOUT	.21
Table 28.	Input/output pin characteristics for P34	.22
Table 29.	Output pin characteristics for LOADMOD	.22
Table 30.	Input pin characteristics for RX	
Table 31.	Output pin characteristics for AUX1/AUX2	.24
Table 32.	Output pin characteristics for TX1/TX2	.25
Table 33.	Output resistance for TX1/TX2	.25
Table 34.	Reset duration time	.26
Table 35.	I ² C-bus timing specification	
Table 36.	Temperature sensor characteristics	
Table 37.	Abbreviations	.29
Table 38.	Revision history	.30

17. Figures

Fig 1.	Block diagram4
Fig 2.	Pin configuration for HVQFN 40 (SOT618-1)5
Fig 3.	27.12 MHz input clock phase noise spectrum
	mask
Fig 4.	Transmit waveform at DP/DM18
Fig 5.	RX input parameters23
Fig 6.	System reset overview
Fig 7.	I ² C-bus parameters
Fig 8.	Application diagram of PR533

PR533

Contactless Interface Controller

18. Contents

1	General description 1
1.1	RF protocols
1.2	Interfaces 1
1.3	Standards compliancy 1
1.4	Supported operating systems 2
2	Features and benefits 2
3	Quick reference data 3
4	Ordering information 4
5	Block diagram 4
6	Pinning information 5
6.1	Pinning
6.2	Pin description 5
7	Limiting values 7
8	Recommended operating conditions
9	Thermal characteristics
10	Characteristics8
10.1	Power management characteristics 8
10.1.1	Current consumption characteristics
10.1.2	Voltage regulator characteristics 9
10.2	Antenna presence self test thresholds 9
10.3	Typical 27.12 MHz Crystal requirements 11
10.4	Pin characteristics for 27.12 MHz XTAL
	Oscillator (OSCIN, OSCOUT) 11
10.5	RSTPD_N input pin characteristics 12
10.6	Input pin characteristics for I0, I1 and
	TESTEN
10.7	RSTOUT_N output pin characteristics 13
10.8	Input/output characteristics for pin P70_IRQ . 14
10.9	Input/output pin characteristics for P30 / UART_RX, P31 / UART_TX, P32_INT0,
	P33_INT1 15
10.10	Input/output pin characteristics for P35 16
10.10	Input/output pin characteristics for DP and DM 17
10.12	Input pin characteristics for SCL
10.13	Input/output pin characteristics for SDA 20
10.14	Output pin characteristics for DELATT 21
10.15	Input pin characteristics for SIGIN
10.16	Output pin characteristics for SIGOUT 21
10.17	Input/output pin characteristics for P34 22
10.18	Output pin characteristics for LOADMOD 22
10.19	Input pin characteristics for RX
10.20	Output pin characteristics for AUX1/AUX2 24
10.21	Output pin characteristics for TX1/TX2 25
10.22	System reset timing
10.23	Timing for the I ² C-bus interface
10.24	Temperature sensor 28

11	Application information	29
12	Abbreviations	29
13	Revision history	30
14	Legal information	31
14.1	Data sheet status	31
14.2	Definitions	31
14.3	Disclaimers	31
14.4	Licenses	32
14.5	Trademarks	32
15	Contact information	32
16	Tables	33
17	Figures	34
18	Contents	35

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 October 2012 206433