
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 September 1993

Philips Semiconductors

FEATURES

- Multiplexed real-time and stored data
- Independent register for A and B buses
- Independent enables for A and B buses
- 3-state
- Output capability: Bus driver
- Low power consumption by CMOS technology
- I_{CC} category: MSI.

APPLICATIONS

Bus interfaces.

DESCRIPTION

The 74HC/HCT652 are high-speed SI-gate CMOS devices and are pin compatible with Low power Schottky TTL (LSTTL). They are specified in compliance with Jedec standard no. 7A.

The 74HC/HCT652 consist of 8 non-inverting bus transceiver circuits with 3-state outputs, D-type flip-flops and central circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Data on the "A" or "B" or both buses, will be stored in the internal registers, at the appropriate clock pins (CPAB or CP_{BA}) regardless of the select pins $(S_{AB} \text{ and } S_{BA})$ or output enable (OE_{AB}) and OE_{BA}) control pins. Depending on the select inputs SAB and SBA data can directly go from input to output (real time mode) or data can be controlled by the clock (storage mode), this is when the output enable pins this operating mode permits. The output enable pins OE_{AB} and OE_{BA} determine the operation mode of the transceiver. When OEAB is LOW, no data transmission from A_n to B_n is

74HC/HCT652

possible and when \overline{OE}_{BA} is HIGH, there is no data transmission from B_n to A_n possible. When S_{AB} and S_{BA} are in the real time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OE_{BA}. In this configuration each output reinforces its input. Thus when all other data sources to the two sets of bus lines are at high-impedance, each set of the bus lines will remain at its last state. This type differs from the HC/HCT646 in one extra bus-management function. This is the possibility to transfer stored "A data to the "B" bus and transfer stored "B" data to the "A" bus at the same time. The examples at the application information demonstrate all bus management functions. Schmitt-trigger action in the clock inputs makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f = 6 \text{ ns}$; $V_{CC} = 4.5 \text{ V}$; $C_L = 50 \text{ pF}$.

SYMBOL	DADAMETED	CONDITIONS	ТҮ		
	PARAMETER	CONDITIONS	НС	нст	
t _{PLH} /t _{PZL}	propagation delay A_n/B_n to B_n/A_n	C _L = 15 pF;	13	13	ns
	propagation delay CP_{AB}/CP_{BA} to B_n/A_n	V _{CC} = 5 V	18	20	ns
	propagation delay S _{AB} /S _{BA} to B _n /A _n		20	23	ns
t _{PHZ} /t _{PZL}	3-state output enable time $OE_{AB}/\overline{OE}_{BA}$ to B_n/A_n		14	15	ns
t _{PHZ} /t _{PLZ}	3-state output disable time $OE_{AB}/\overline{OE}_{BA}$ to B_n/A_n		12	13	ns
f _{max}	maximum clock frequency		92	92	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per channel	notes 1 and 2	26	28	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

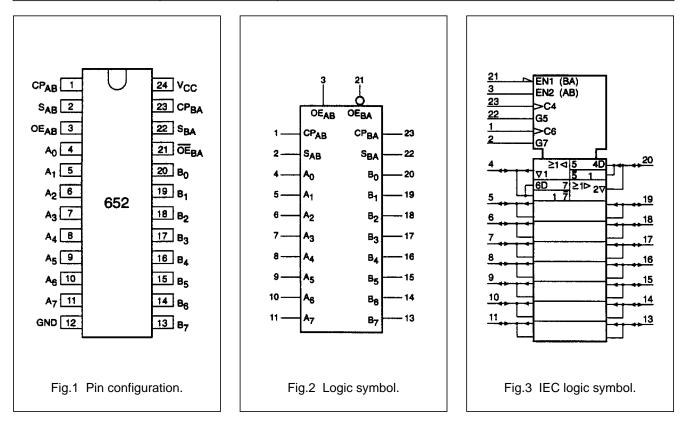
 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; C_L = output load capacitance in pF;

 f_o = output frequency in MHz; V_{CC} = supply voltage in V;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs}$

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V


September 1993

ORDERING AND PACKAGE INFORMATION

	PACKAGE								
	PINS	PIN POSITION	MATERIAL	CODE					
74HC/HCT652N	24	DIL	plastic	SOT101L					
74HC/HCT652D	24	SO	plastic	SOT137A					

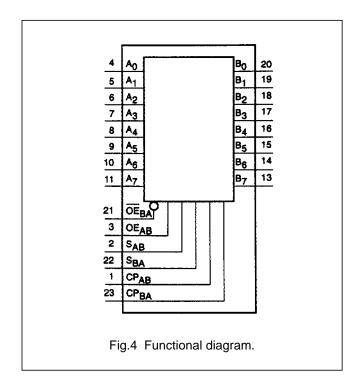
PINNING

SYMBOL	PIN	DESCRIPTION
CP _{AB}	1	A to B clock input
S _{AB}	2	select A to B source input
OE _{AB}	3	output enable A to B input
A ₀ A ₇	411	A data inputs/outputs
GND	12	ground (0 V)
B ₇ B ₀	1320	B data inputs/outputs
ŌĒ _{BA}	21	output enable B to A input
S _{BA}	22	select B to A source input
CP _{BA}	23	B to A clock input
V _{CC}	24	positive supply voltage

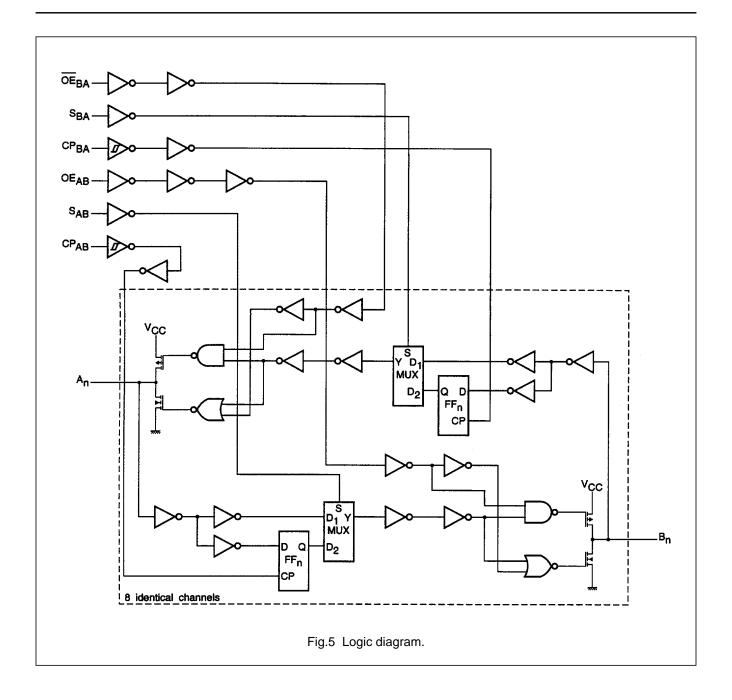
Downloaded from Arrow.com.

74HC/HCT652

Product specification


74HC/HCT652

		INPUT	S ⁽¹⁾			DATA	I/O ⁽²⁾	OPERATION OR FUNCTION		
OE _{AB}	$\overline{\text{OE}}_{\text{BA}}$	CPAB	CP_{BA}	S _{AB}	SBA	A ₁ THRU A ₈	B ₁ THRU B ₈	HC/HCT652		
L	Н	H or L	H or L	Х	Х	Input	Isolation			
L	Н	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data		
Х	Н	↑	H or L	Х	Х	Input	Not specified	Store A, Hold B		
н	Н	\uparrow	\uparrow	L	Х	Input	Output	Store A in both registers		
L	Х	H or L	Ŷ	Х	Х	Not specified	Input	Hold A, Store B		
L	L	\uparrow	\uparrow	Х	L	Ouput	Input	Store B in both registers		
L	L	Х	Х	Х	L	Quput	lagut	Real Time B Data to A Bus		
L	L	Х	H or L	Х	Н	Ouput	Input	Stored B Data to A Bus		
Н	Н	Х	Х	L	Х	loout	Output	Real Time A Data to B Bus		
н	н	H or L	Х	Н	Х	Input	Output	Stored A Data to B Bus		
			H or L			Quitout	Output	Stored A Data to B Bus and		
H	L	L H or L		Н	Н	Output	Output	Stored B Data to A Bus		


FUNCTION TABLE

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - \uparrow = LOW-to-HIGH transition
- The data output functions may be enabled or disabled by various signals at OE_{AB} and OE_{BA} inputs. Data input functions are always enabled, i.e., data at the bus inputs will be stored on every LOW-to-HIGH transition on the clock inputs.

74HC/HCT652

74HC/HCT652

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI.

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}.$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
		74HC									
	PARAMETER		+25			-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORMS
		MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.			
t _{PHL} /t _{PLH}	propagation delay A_n , B_n to B_n , A_n		44 16 13	135 27 23		170 34 29	-	205 41 35	ns	2.0 4.5 6.0	Fig.6
t _{PHL} /t _{PLH}	propagation delay CP_{AB} , CP_{BA} to B_n , A_n		61 22 18	190 38 32	_ _ _	240 48 41		285 57 48	ns	2.0 4.5 6.0	Fig.7
t _{PHL} /t _{PLH}	propagation delay S_{AB} , S_{BA} to B_n , A_n	- - -	63 23 18	195 39 33	- - -	245 49 42	- - -	295 59 50	ns	2.0 4.5 6.0	Fig.8
t _{PZH} /t _{PZL}	3-state output enable time OE_{AB} , \overline{OE}_{BA} to A _n , B _n	_ _ _	47 17 14	150 30 26	- - -	190 38 33	- - -	225 45 38	ns	2.0 4.5 6.0	Fig.9
t _{PHZ} /t _{PLZ}	3-state output disable time OE_{AB} , \overline{OE}_{BA} to A _n , B _n		41 15 12	150 30 26	- - -	190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.9
t _{THL} /t _{TLH}	output transition time		14 5 4	60 12 10	- - -	75 15 13	- - -	90 18 15	ns	2.0 4.5 6.0	Figs 6, 8
t _W	clock pulse width HIGH or LOW CP _{AB} or CP _{BA}	80 16 14	17 6 5	_ _ _	100 20 17	_ _ _	120 24 20	_ _ _	ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time A_n , B_n to CP_{AB} , CP_{BA}	100 20 17	17 6 5	_ _ _	125 25 21	_ _ _	150 30 26	_ _ _	ns	2.0 4.5 6.0	Fig.7
t _h	hold time A_n , B_n to CP_{AB} , CP_{BA}	25 5 4	8 3 2	_ _ _	30 6 5	_ _ _	35 7 6	_ _ _	ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency	6.0 30 35	16 83 98	_ _ _	4.8 24 28	_ _ _	4.0 20 24	_ _ _	MHz	2.0 4.5 6.0	Fig.7

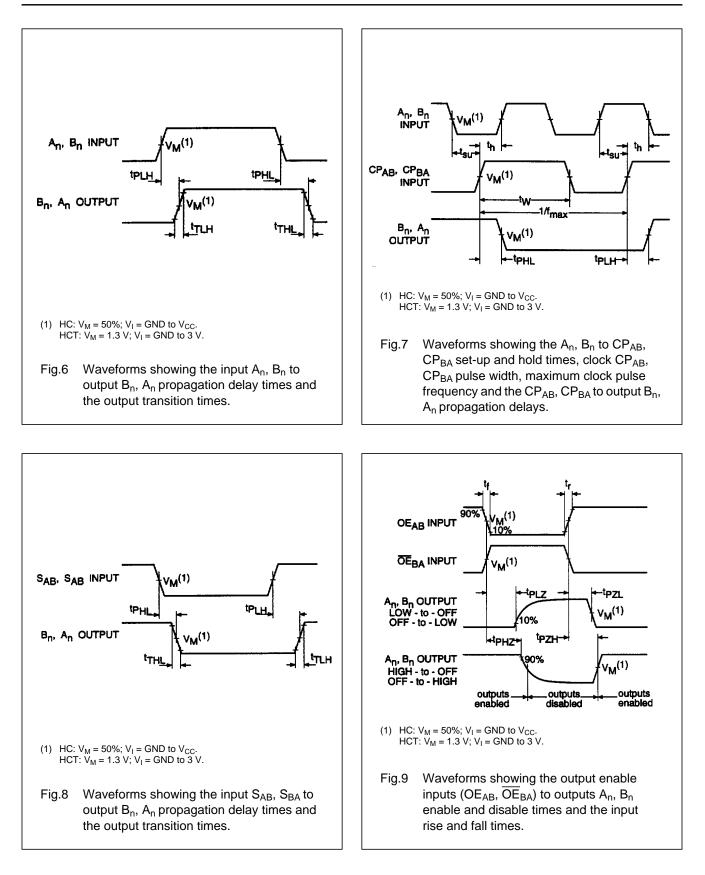
74HC/HCT652

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI.

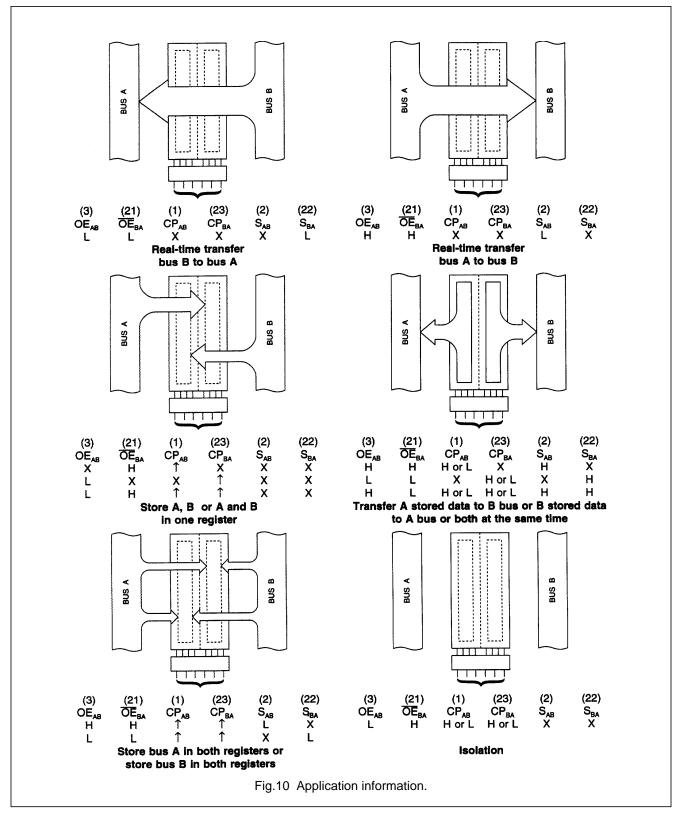
Note to the HCT types

The value of additional quiescent supply current (ΔI_{CC}) for unit a load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below


INPUT	UNIT LOAD COEFFICIENT
S _{AB} , S _{BA}	0.75
A_0 to A_7 and B_0 to B_7	0.75
CP _{AB} , CP _{BA}	1.50
OE _{AB}	1.50
OE _{BA}	1.50

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$.


	PARAMETER		T _{amb} (°C)								TEST CONDITIONS	
INPUT		+25			-40 to +85		-40 to +125			Vcc		
		MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.		(V)	WAVEFORMS	
t _{PHL} /t _{PLH}	propagation delay A_n , B_n to B_n , A_n	_	16	27	-	34	_	41	ns	4.5	Fig.6	
t _{PHL} /t _{PLH}	propagation delay CP_{AB} , CP_{BA} to B_n , A_n	-	23	39	-	49	-	59	ns	4.5	Fig.7	
t _{PHL} /t _{PLH}	propagation delay S_{AB} , S_{BA} to B_n , A_n	-	27	46	-	55	-	66	ns	4.5	Fig.8	
t _{PZH} /t _{PZL}	3-state output enable time OE_{AB} , \overline{OE}_{BA} to A_n , B_n	_	18	33	-	41	-	50	ns	4.5	Fig.9	
t _{PHZ} /t _{PLZ}	3-state output disable time OE_{AB} , \overline{OE}_{BA} to A_n , B_n	-	16	35	-	44	-	53	ns	4.5	Fig.9	
t _{THL} /t _{TLH}	output transition time	-	5	12	-	15	-	18	ns	4.5	Fig.6, 8	
t _W	clock pulse width HIGH or LOW CP _{AB} or CP _{BA}	16	6	-	20	-	24	-	ns	4.5	Fig.7	
t _{su}	set-up time A_n , B_n to CP_{AB} , CP_{BA}	10	5	-	13	-	15	-	ns	4.5	Fig.7	
t _h	hold time A _n , B _n to CP _{AB} , CP _{BA}	5	-2	-	6	-	8	-	ns	4.5	Fig.7	
f _{max}	maximum clock pulse frequency	30	83	-	24	-	20	-	MHz	4.5	Fig.7	

74HC/HCT652

74HC/HCT652

September 1993

74HC/HCT652

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".