ADC1413S series

Single 14-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface
Rev. 03 - 2 July 2012
Product data sheet

1. General description

The ADC1413S is a single channel 14-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performance and low power at sample rates up to 125 Msps . Pipelined architecture and output error correction ensure the ADC1413S is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a 3 V source for analog and a 1.8 V source for the output driver, it outputs data in serial mode via a single differential lane, which complies with the JESD204A standard. The integration of Serial Peripheral Interface (SPI) allows the user to easily configure the ADCs and the serial output modes. The device also includes a programmable full-scale SPI to allow a flexible input voltage range from 1 V ($p-p$) to 2 V ($p-p$).

Excellent dynamic performance is maintained from the baseband to input frequencies of 170 MHz or more, making the ADC1413S ideal for use in communications, imaging, and medical applications.

2. Features and benefits

■ SNR, 72.1 dBFS; SFDR, 86 dBc

- Sample rates up to 125 Msps
- Single channel, 14 -bit pipelined ADC core
- $3 \mathrm{~V}, 1.8 \mathrm{~V}$ power supplies
- Flexible input voltage range: 1 V (p-p) to 2 V (p-p)
- serial output
- Compliant with JESD204A serial transmission standard
- Pin compatible with the ADC1613S series, ADC1213S series, and ADC1113S125

■ Input bandwidth, 600 MHz

- Power dissipation, 550 mW at 80 Msps
- SPI register programming
- Duty cycle stabilizer
- High Intermediate Frequency (IF) capability
- Offset binary, two's complement, gray code
- Power-down mode and Sleep mode

■ HVQFN32 package

3. Applications

- Portable instrumentation communications
- Spectral analysis ■ Imaging systems
- Ultrasound equipment

4. Ordering information

Table 1. Ordering information

Type number	Sampling frequency (Msps)	Package		
		Name	Description	Version
ADC1413S125HN-C1	125	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $7 \times 7 \times 0.8 \mathrm{~mm}$	SOT1152-1
ADC1413S105HN-C1	105	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $7 \times 7 \times 0.8 \mathrm{~mm}$	SOT1152-1
ADC1413S080HN-C1	80	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $7 \times 7 \times 0.8 \mathrm{~mm}$	SOT1152-1
ADC1413S065HN-C1	65	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $7 \times 7 \times 0.8 \mathrm{~mm}$	SOT1152-1

5. Block diagram

$005 a a a 196$
Fig 1. Block diagram

6. Pinning information

6.1 Pinning

Fig 2. Pinning diagram

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type $^{[1]}$	Description
CLKP	1	I	clock input
CLKM	2	I	complementary clock input
AGND	3	G	analog ground
REFB	4	O	ADC bottom reference
REFT	5	O	ADC top reference
VCM	6	O	ADC output common voltage
INM	7	I	ADC complementary analog input
INP	8	I	ADC analog input
VDDA	9	P	analog power supply 3 V
VDDA	10	P	analog power supply 3 V
SCLK	11	I	SPI clock
SDIO	12	I/O	SPI data input/output
$\overline{C S}$	13	I	chip select

Table 2. Pin description ...continued

Symbol	Pin	Type ${ }^{[1]}$	Description
OTR	14	O	out-of-range information
VDDD	15	P	digital power supply 1.8 V
DGND	16	G	digital ground
DGND	17	G	digital ground
VDDD	18	P	digital power supply 1.8 V
CMLP	19	O	serial output
CMLN	20	O	serial complementary output
VDDD	21	P	digital power supply 1.8 V
DGND	22	G	digital ground
DGND	23	G	digital ground
n.c.	24	-	not connected
SYNCP	25	I	positive synchronization signal from the receiver
SYNCN	26	I	negative synchronization signal from the receiver
VDDD	27	P	digital power supply 1.8 V
DGND	28	G	digital ground
VDDA	29	P	analog power supply 3 V
AGND	30	G	analog ground
SENSE	31	I	reference programming pin
VREF	32	I/O	voltage reference input/output

[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.

7. Limiting values

Table 3. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {DDA }}$	analog supply voltage		-0.4	+4.6	V
$\mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}$	digital supply voltage $(1.8 \mathrm{~V})$	-0.4	+2.5	V	
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$	
T_{j}	junction temperature	-	125	${ }^{\circ} \mathrm{C}$	

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$R_{\text {th(j-a) }}$	thermal resistance from junction to ambient	${ }^{[1]} 25.6$	K/W	
$R_{\text {th(j-c) }}$	thermal resistance from junction to case	${ }^{[1]} 8.6$	K/W	

[1] Value for six layers board in still air with a minimum of 25 thermal vias.

9. Static characteristics

Table 5. Static characteristics ${ }^{[1]}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supplies						
$V_{\text {DDA }}$	analog supply voltage		2.85	3.0	3.4	V
$\mathrm{V}_{\text {DDD }}$ (1V8)	digital supply voltage (1.8 V)		1.65	1.8	1.95	V
IDDA	analog supply current	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps} ; \\ & \mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz} \end{aligned}$	-	185	-	mA
$\mathrm{I}_{\text {DDD(1V8) }}$	digital supply current (1.8 V)	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps} ; \\ & \mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz} \end{aligned}$	-	75	-	mA
$P_{\text {tot }}$	total power dissipation	$\mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps}$	-	690	-	mW
		$\mathrm{f}_{\mathrm{clk}}=105 \mathrm{Msps}$	-	625	-	mW
		$\mathrm{f}_{\text {clk }}=80 \mathrm{Msps}$	-	550	-	mW
		$\mathrm{f}_{\mathrm{clk}}=65 \mathrm{Msps}$	-	495	-	mW
P	power dissipation	Power-down mode	-	30	-	mW
		Standby mode	-	150	-	mW

Digital inputs
Clock inputs: pins CLKP and CLKM (AC-coupled)
Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

$V_{i(c l k) \text { dif }}$	differential clock input voltage	peak-to-peak	-	1.6	-

Sine

$\mathrm{V}_{\text {i(clk)dif }}$	differential clock input voltage	peak	± 0.8	± 3.0	-

Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS)

V_{IL}	LOW-level input voltage	-	-	$0.3 \mathrm{~V}_{\mathrm{DDA}}$	V
V_{IH}	$\mathrm{HIGH}-l e v e l$				

SPI: pins $\overline{\mathrm{CS}}$, SDIO, and SCLK

$V_{I L}$	LOW-level input voltage	0	-	$0.3 \mathrm{~V}_{\text {DDA }}$	V
V_{IH}	HIGH-level input voltage	$0.7 \mathrm{~V}_{\text {DDA }}$	-	$\mathrm{V}_{\text {DDA }}$	V
I_{IL}	LOW-level input current	-10	-	+10	$\mu \mathrm{~A}$
I_{IH}	HIGH-level input current	-50	-	+50	$\mu \mathrm{~A}$
C_{I}	input capacitance	-	4	-	pF

Table 5. Static characteristics ...continued ${ }^{[1]}$

Table 5. Static characteristics ...continued ${ }^{[1]}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Serial configuration: SYNCP, SYNCN						
$V_{\text {IL }}$	LOW-level input voltage	differential; input	-	0.95	-	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	differential; input	-	1.47	-	V
Accuracy						
INL	integral non-linearity		-5	-	+5	LSB
DNL	differential non-linearity	guaranteed no missing codes	-0.95	± 0.5	+0.95	LSB
$\mathrm{E}_{\text {offset }}$	offset error		-	± 2	-	mV
E_{G}	gain error	full-scale	-	± 0.5	-	\%
Supply						
PSRR	power supply rejection ratio	$\begin{aligned} & 200 \mathrm{mV}(p-p) \text { on } \mathrm{pin} \\ & \text { VDDA; } \mathrm{f}_{\mathrm{i}}=\mathrm{DC} \end{aligned}$	-	-54	-	dB

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}(\mathrm{INP)}}-\mathrm{V}_{\mathrm{i}(\mathrm{INM})}=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.
10. Dynamic characteristics

Table 6. Dynamic characteristics ...continued ${ }^{[1]}$

Symbol	Parameter	Conditions	ADC1413S065			ADC1413S080			ADC1413S105			ADC1413S125			Unit
			Min	Typ	Max										
IMD	intermodulation distortion	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$	-	89	-	-	89	-	-	88	-	-	89	-	dBc
		$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$	-	88	-	-	88	-	-	88	-	-	88	-	dBc
		$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	87	-	-	87	-	-	86	-	-	86	-	dBc
		$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$	-	84	-	-	85	-	-	83	-	-	84	-	dBc
$\alpha_{\text {ct(ch) }}$	channel crosstalk	$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$	-	100	-	-	100	-	-	100	-	-	100	-	dBc

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\text {amb }}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V})}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}(\mathrm{INP})}-\mathrm{V}_{\mathrm{i}(\mathrm{INM})}=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.
10.2 Clock and digital output timing

Symbol	Parameter	Conditions	ADC1413S065			ADC1413S080			ADC1413S105			ADC1413S125			Unit
			Min	Typ	Max										
pins CLKP and CLKM															
$\mathrm{f}_{\mathrm{clk}}$	clock frequency		45	-	65	60	-	80	75	-	105	100	-	125	Msps
$t_{\text {lat(data) }}$	data latency time	clock cycles	307	-	850	250	-	283	190	-	226	160	-	170	ns
$\delta_{\text {clk }}$	clock duty cycle	$\begin{aligned} & \text { DCS_EN = 1: } \\ & \text { en } \end{aligned}$	30	50	70	30	50	70	30	50	70	30	50	70	\%
$\mathrm{t}_{\mathrm{d}(\mathrm{s})}$	sampling delay time		-	0.8	-	-	0.8	-	-	0.8	-	-	0.8	-	ns
$\mathrm{t}_{\text {wake }}$	wake-up time		-	76	-	-	76	-	-	76	-	-	76	-	ns

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\mathrm{amb}}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $V_{D D A}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}(I N P)}-\mathrm{V}_{\mathrm{i}(\mathrm{INM})}=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.
Table 7. Clock and digital output timing characteristics [1] $V_{D D A}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{i}(\mathrm{INP})}-\mathrm{V}_{\mathrm{i}(\mathrm{INM})}--1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified

10.3 Serial output timing

The eye diagram of the serial output is shown in Figure 3 and Figure 4. Test conditions are:

- 3.125 Gbps data rate
- $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
- DC-coupling with two different receiver common-mode voltages

Fig 3. Eye diagram at 1 V receiver common-mode

Fig 4. Eye diagram at 2 V receiver common-mode

10.4 SPI timing

Table 8. SPI timing characteristics ${ }^{[1]}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {w(SCLK) }}$	SCLK pulse width		-	40	-	ns
$\mathrm{t}_{\text {w(SCLKH) }}$	SCLK HIGH pulse width		-	16	-	ns
$\mathrm{t}_{\mathrm{w} \text { (SCLKL) }}$	SCLK LOW pulse width		-	16	-	ns
$t_{\text {su }}$	set-up time	data to SCLK HIGH	-	5	-	ns
		$\overline{\mathrm{CS}}$ to SCLK HIGH	-	5	-	ns
$t_{\text {h }}$	hold time	data to SCLK HIGH	-	2	-	ns
		$\overline{\mathrm{CS}}$ to SCLK HIGH	-	2	-	ns
$\mathrm{f}_{\mathrm{Clk}(\text { max })}$	maximum clock frequency		-	25	-	MHz

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}(1 \mathrm{~V} 8)}=1.8 \mathrm{~V}$; $\mathrm{V}_{\mathrm{i}(I \mathrm{IP})}-\mathrm{V}_{\mathrm{i}(\mathrm{INM})}=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Fig 5. SPI timing

11. Application information

11.1 Analog inputs

11.1.1 Input stage description

The analog input of the ADC1413S supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage $\left(\mathrm{V}_{\mathrm{I}(\mathrm{cm})}\right)$ on pins INP and INM set to $0.5 \mathrm{~V}_{\text {DDA }}$.

The full-scale analog input voltage range is configurable between $1 \mathrm{~V}(p-p)$ and $2 \mathrm{~V}(p-p)$ via a programmable internal reference (see Section 11.2 and Table 21).

Figure 6 shows the equivalent circuit of the sample-and-hold input stage, including ElectroStatic Discharge (ESD) protection and circuit and package parasitics.

Fig 6. Input sampling circuit
The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

11.1.2 Anti-kickback circuitry

Anti-kickback circuitry (RC filter in Figure 7) is needed to counteract the effects of a charge injection generated by the sampling capacitance.

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively.

Fig 7. Anti-kickback circuit
The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth.

Table 9. RC coupling versus input frequency, typical values

Input frequency (MHz)	Resistance (Ω)	Capacitance $\mathbf{(p F)}$
3	25	12
70	12	8
170	12	8

11.1.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 8 would be suitable for a baseband application.

Fig 8. Single transformer configuration

The configuration shown in Figure 9 is recommended for high frequency applications. In both cases, the choice of transformer is a compromise between cost and performance.

Fig 9. Dual transformer configuration

11.2 System reference and power management

11.2.1 Internal/external reference

The ADC1413S has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and SENSE (see Figure 11 to Figure 14), in 1 dB steps between 0 dB and -6 dB , via SPI control bits INTREF[2:0] (when bit INTREF_EN = logic 1; see Table 21). The equivalent reference circuit is shown in Figure 10. External reference is also possible by providing a voltage on pin VREF as described in Figure 14.

Fig 10. Reference equivalent schematic
Table 10 shows how to choose between the different internal/external modes:
Table 10. Reference modes

Mode	SPI bit, "Internal reference"	SENSE pin	VREF pin	Full-scale, (V (p-p))
Internal (Figure 11)	0	GND	330 pF capacitor to GND	2
Internal (Figure 12)	0	VREF pin = SENSE pin and 330 pF capacitor to GND		1
Internal, SPI mode (Figure 13)	1	VREF pin = SENSE pin and 330 pF capacitor to GND		1 to 2
External (Figure 14)	0	$V_{\text {DDA }}$	External voltage from 0.5 V to 1 V	1 to 2

Figure 11 to Figure 14 illustrate how to connect the SENSE and VREF pins to select the required reference voltage source.

Fig 11. Internal reference, 2 V (p-p) full-scale

Fig 13. Internal reference via SPI, 1 V (p-p) to 2 V (p-p) full-scale

Fig 12. Internal reference, 1 V (p-p) full-scale

Fig 14. External reference, $1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ to $2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ full-scale

11.2.2 Programmable full-scale

 The full-scale is programmable between $1 \mathrm{~V}(p-p)$ to $2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ (see Table 11).Table 11. Reference modes

INTREF[2:0]	Level	Full-scale (V (p-p))
000	0 dB	2
001	-1 dB	1.78
010	-2 dB	1.59
011	-3 dB	1.42
100	-4 dB	1.26
101	-5 dB	1.12
110	-6 dB	1
111	not used	x

11.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{O}(\mathrm{cm})}\right)$

An $0.1 \mu \mathrm{~F}$ filter capacitor should be connected between pin VCM and ground to ensure a low-noise common-mode output voltage. When AC-coupled, these pins can be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.

Fig 15. Reference equivalent schematic

11.2.4 Biasing

The common-mode input voltage $\left(\mathrm{V}_{\mathrm{I}(\mathrm{cm})}\right)$ on pins INP and INM should be set externally to $0.5 \mathrm{~V}_{\mathrm{DDA}}$ for optimal performance and should always be between 0.9 V and 2 V .

11.3 Clock input

11.3.1 Drive modes

The ADC1413S can be driven differentially (LVPECL). It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor).

a. Rising edge LVCMOS
b. Falling edge LVCMOS

Fig 16. LVCMOS single-ended clock input

$005 a a a 173$

$005 a a a 054$
a. Sine clock input
b. Sine clock input (with transformer)

$005 a a a 172$
c. LVPECL clock input

Fig 17. Differential clock input

11.3.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via internal $5 \mathrm{k} \Omega$ resistors.

$005 a a a 081$
$\mathrm{V}_{\mathrm{cm}(\mathrm{ck})}=$ common-mode voltage of the differential input stage.
Fig 18. Equivalent input circuit

Single-ended or differential clock inputs can be selected via the SPI (see Table 20). If single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit SE_SEL.

If single-ended is implemented without setting bit SE_SEL accordingly, the unused pin should be connected to ground via a capacitor.

11.3.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performance of the ADC by compensating the input clock signal duty cycle. When the duty cycle stabilizer is active (bit DCS_EN = logic 1; see Table 20), the circuit can handle signals with duty cycles of between 30% and 70% (typical). When the duty cycle stabilizer is disabled
(DCS_EN = logic 0), the input clock signal should have a duty cycle of between 45% and 55 \%.

Table 12. Duty cycle stabilizer

bit DCS_EN	Description
0	duty cycle stabilizer disable
1	duty cycle stabilizer enable

11.3.4 Clock input divider

The ADC1413S contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV2_SEL = logic 1; see Table 20). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

11.4 Digital outputs

11.4.1 Serial output equivalent circuit

The JESD204A standard specifies that if the receiver and the transmitter are DC-coupled both must be fed from the same supply.

Fig 19. CML output connection to the receiver (DC-coupling)
The output should be terminated when 100Ω (typical) is reached at the receiver side.

Fig 20. CML output connection to the receiver (AC-coupling)

11.5 JESD204A serializer

For more information about the JESD204A standard refer to the JEDEC web site.

11.5.1 Digital JESD204A formatter

The block placed after the ADC cores is used to implement all functions of the JESD204A standard. This ensures signal integrity and guarantees the clock and the data recovery at the receiver side.

The block is highly parameterized and can be configured in various ways depending on the sampling frequency and the number of lanes used.

Fig 21. General overview of the JESD204A serializer

Fig 22. Detailed view of the JESD204A serializer with debug functionality

11.5.2 ADC core output codes versus input voltage

Table 13 shows the data output codes for a given analog input voltage.
Table 13. Output codes versus input voltage

INP-INM (V)	Offset binary	Two's complement	OTR
<-1	00000000000000	10000000000000	1
-1	00000000000000	10000000000000	0
-0.9998779	00000000000001	10000000000001	0
-0.9997559	00000000000010	10000000000010	0
-0.9996338	00000000000011	10000000000011	0
-0.9995117	00000000000100	10000000000100	0
\ldots	\ldots.	\ldots	0
-0.0002441	01111111111110	11111111111110	0
-0.0001221	01111111111111	11111111111111	0
0	10000000000000	00000000000000	0
+0.0001221	10000000000001	00000000000001	0
+0.0002441	10000000000010	00000000000010	0
\ldots	\ldots.	\ldots.	0
+0.9995117	11111111111011	01111111111011	0
+0.9996338	11111111111100	01111111111100	0
+0.9997559	11111111111101	01111111111101	0
+0.9998779	11111111111110	01111111111110	0
+1	11111111111111	01111111111111	0
$>+1$	11111111111111	01111111111111	1

11.6 Serial Peripheral Interface (SPI)

11.6.1 Register description

The ADC1413S serial interface is a synchronous serial communications port allowing easy interfacing with many industry microprocessors. It provides access to the registers that control the operation of the chip in both read and write modes.

This interface is configured as a 3-wire type (SDIO as bidirectional pin).
Pin SCLK acts as the serial clock and pin $\overline{\mathrm{CS}}$ acts as the serial chip select.
Each read/write operation is sequenced by the $\overline{C S}$ signal and enabled by a LOW level to to drive the chip with N bytes, depending on the content of the instruction byte (see Table 14).

Table 14. Instruction bytes for the SPI

	MSB						LSB	
Bit	7	6	5	4	3	2	1	0
Description	R/W ${ }^{[1]}$	W1	W0	A12	A11	A10	A9	A8
	A7	A6	A5	A4	A3	A2	A1	A0

[1] R/W indicates whether a read or write transfer occurs after the instruction byte.

Table 15. Read or Write mode access description

$R / W^{[1]}$	Description
0	Write mode operation
1	Read mode operation

[1] Bits W1 and W0 indicate the number of bytes transferred.

Table 16. Number of bytes to be transferred

W1	W0	Number of bytes transferred
0	0	1 byte
0	1	2 bytes
1	0	3 bytes
1	1	4 or more bytes

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incremented to access subsequent addresses.

The steps involved in a data transfer are as follows:

1. The falling edge on pin $\overline{\mathrm{CS}}$ in combination with a rising edge on pin SCLK determine the start of communications.
2. The first phase is the transfer of the 2-byte instruction.
3. The second phase is the transfer of the data which can be vary in length but is always a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes).
4. A rising edge on pin $\overline{\mathrm{CS}}$ indicates the end of data transmission.

Fig 23. Transfer diagram for two data bytes (3-wire type)

Address Register name (hex)		Access ${ }^{[1]}$	Bit definition								$\begin{aligned} & \text { Default }{ }^{[2]} \\ & \text { Bin } \end{aligned}$	
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADC control register												
0003	SPI control		R/W	-	-	-	-	-	-	ENABLE	-	11111111
0005	Reset and Operating modes	R/W	SW_RST	-	-	-	-	-	PD[1:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0006	Clock	R/W	-	-	-	SE_SEL	DIFF_SE	-	CLKDIV2_SEL	DCS_EN	0000 000*	
0008	Vref	R/W	-	-	-	-	INTREF_EN		INTREF[2:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0013	Offset	R/W	-	-	DIG_OFFSET[5:0]						$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0014	Test pattern 1	R/W	-	-	-	-	-	TESTPAT_1[2:0]			$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0015	Test pattern 2	R/W	TESTPAT_2[13:6]								$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0016	Test pattern 3	R/W	TESTPAT_3[5:0]					-	-	-	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
JESD204A control												
0801	Ser_Status	R	RXSYNC ERROR	RESERVED[2:0]			0	0	POR_TST	RESERVED	$\begin{aligned} & 0100 \\ & 0000 \end{aligned}$	
0802	Ser_Reset	R/W	SW_RST	0	0	0		0	0	0	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0805	Ser_Control1	R/W	0	RESERVED	$\begin{gathered} \text { SYNC_- } \\ \text { POL } \end{gathered}$	SYNC SINGLE ENDED	1	$\begin{aligned} & \mathrm{REV}_{-} \\ & \mathrm{SCR} \end{aligned}$	REV ENCODER	REV SERIAL	$\begin{aligned} & 0100 \\ & 1001 \end{aligned}$	
0808	Ser_Analog_Ctrl	R/W	0	0	0	0	0		SWING_SEL[00000011	
0809	Ser_ScramblerA	R/W	0				LSB_INIT[6:				$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	

Table 17. Register allocation map ...continued

Address Register name (hex)		Access ${ }^{[1]}$	Bit definition								$\begin{aligned} & \text { Default }{ }^{[2]} \\ & \text { Bin } \end{aligned}$	
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
080A	Ser_ScramblerB		R/W	MSB_INIT[7:0]								11111111
080B	Ser_PRBS_Ctrl	R/W	0	0	0	0	0	0	PRBS_TYPE[1:0]		$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0820	Cfg_0_DID	R		DID[7:0]							11101101	
0821	Cfg_1_BID	R/W*	0	0	0	0	BID[3:0]				$\begin{aligned} & 0000 \\ & 1010 \end{aligned}$	
0822	Cfg_3_SCR_L	R/W*	SCR	0	0	0	0	0	0	L	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0823	Cfg_4_F	R/W*	0	0	0	0	0	F[2:0]			0000 0***	
0824	Cfg_5_K	R/W*	0	0	0	K[4:0]					000*****	
0825	Cfg_6_M	R/W*	0	0	0	0	0	0	0	M	0000 000*	
0826	Cfg_7_CS_N	R/W*	0	CS[0]	0	0	N[3:0]				$\begin{aligned} & 0100 \\ & 0100 \end{aligned}$	
0827	Cfg_8_Np	R	0	0	0	NP[4:0]					00001111	
0828	Cfg_9_S	R/W*	0	0	0	0	0	0	0	S	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0829	Cfg_10_HD_CF	R/W*	HD	0	0	0	0	0	CF[1:0]		*000 0000	
082D	Cfg_02_2_LID	R/W*	0	0	0	LID[4:0]					00011100	
084D	Cfg02_13_FCHK	R	FCHK[7:0]								**** ****	
0871	Lane_0_Ctrl	R/W	0	SCR_IN MODE	LANE_MODE[1:0]		0	LANE POL	0	LANE_PD	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
0891	ADC_0_Ctrl	R/W	0	0	ADC	E[1:0]	0	0	0	ADC_PD	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	

[^0]
11.6.3 Register description

11.6.3.1 ADC control registers

Table 18. Register SPI control (address 0003h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 2	-	-	111111	not used
1	ENABLE	R/W		ADC SPI control enable:
			0	ADC does not get the next SPI command
			$\mathbf{1}$	ADC gets the next SPI command
0	-	-	1	not used

Table 19. Register Reset and Power-down mode (address 0005h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W		reset digital part:
		$\mathbf{0}$	no reset	
6 to 2	-	$\mathbf{1}$	performs a reset of the digital part	
1 to 0	PD[1-0]	R/W	00000	not used
		$\mathbf{0 0}$	Power-down mode:	
		01	normal (power-up)	
		10	full power-down	
		11	sleep	

Table 20. Register Clock (address 0006h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4	SE_SEL	R/W		select SE clock input pin:
			0	select CLKM input
			1	select CLKP input
3	DIFF_SE	R/W		differential/single-ended clock input select:
			0	fully differential
			1	single-ended
2	-	-	0	not used
1	CLKDIV2_SEL	R/W		select clock input divider by 2 :
			0	disable
			1	enable
0	DCS_EN	R/W		duty cycle stabilizer enable:
			0	disable
			1	enable

Table 21. Register Vref (address 0008h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3	INTREF_EN	R/W		enable internal programmable VREF mode:
			0	disable
			1	enable
2 to 0	INTREF[2:0]	R/W		programmable internal reference:
			000	0 dB (FS = 2 V)
			001	$-1 \mathrm{~dB}(\mathrm{FS}=1.78 \mathrm{~V})$
			010	-2 dB (FS $=1.59 \mathrm{~V})$
			011	-3 dB (FS = 1.42 V)
			100	-4 dB (FS = 1.26 V)
			101	$-5 \mathrm{~dB}(\mathrm{FS}=1.12 \mathrm{~V})$
			110	-6 dB (FS = 1 V)
			111	not used

Table 22. Digital offset adjustment (address 0013h)
Default values are highlighted.

Register offset		
Decimal	DIG_OFFSET[5:0]	
+31	011111	+31 LSB
\ldots	\ldots	\ldots
0	$\mathbf{0 0 0 0 0 0}$	0
\ldots	\ldots	\ldots
-32	100000	-32 LSB

Table 23. Register Test pattern 1 (address 0014h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	TESTPAT_1[2:0]	R/W		digital test pattern:
			000	off
			001	mid-scale
			010	- FS
			011	+ FS
			100	toggle '1111..1111'/'0000..0000'
			101	custom test pattern, to be written in register 0015h and 0016h
			110	'010101...'
			111	'101010...'

Table 24. Register Test pattern 2 (address 0015h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	TESTPAT_2[13:6]	R/W	$\mathbf{0 0 0 0 0 0 0 0}$	custom digital test pattern (bit 13 to $\mathbf{6}$)

Table 25. Register Test pattern 3 (address 0016h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	TESTPAT_3[5:0]	R/W	$\mathbf{0 0 0 0 0}$	custom digital test pattern (bit $\mathbf{5}$ to $\mathbf{0}$)
2 to 0	-	-	000	not used

11.6.4 JESD204A digital control registers

Table 26. SER_Status (address 0801h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	RXSYNC_ERROR	R/W	0	set to 1 when a synchronization error occurs
6 to 4	RESERVED[2:0]	-	$\mathbf{1 0 0}$	reserved
3 to 2	-	-	00	not used
1	POR_TST	-	$\mathbf{0}$	power-on-reset
0	RESERVED	-	0	reserved

Table 27. SER_Reset (address 0802h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W	$\mathbf{0}$	initiates a software reset of the JEDEC204A unit
6 to 4	-	-	000	not used
3	FSM_SW_RST	R/W	0	initiates a software reset of the internal state machine of JEDEC204A unit
2 to 0	-	-	000	not used

Table 28. SER_Control1 (address 0805h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	RESERVED	R/W	0	reserved
5	SYNC_POL	R/W		defines the sync signal polarity:
		0	synchronization signal is active low	
			1	synchronization signal is active high
4	SYNC_SINGLE_ENDED	R/W		defines the input mode of the sync signal:
			0	synchronization input mode is set in Differential mode
		-	1	synchronization input mode is set in Single-ended mode
3	-		not used	
2	REV_SCR		0	LSB are swapped to MSB at the scrambler input:
				disable

Table 28. SER_Control1 (address 0805h) ...continued
Default values are highlighted.

Bit	Symbol	Access	Value	Description
1	REV_ENCODER	-		LSB are swapped to MSB at the 8-bit/10-bit encoder input
			0	disable
			1	enable
0	REV_SERIAL	-		LSB are swapped to MSB at the lane input:
			0	disable
			1	enable

Table 29. SER_Analog_Ctrl (address 0808h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	SWING_SEL[2:0]	R/W	$\mathbf{0 1 1}$	defines the swing output for the lane pads

Table 30. SER_ScramblerA (address 0809h)
Default values are highlighted.
\(\left.\begin{array}{lllll}\hline Bit \& Symbol \& Access \& Value \& Description

\hline 7 \& - \& - \& 0 \& not used\end{array}\right]\)| | R/W | $\mathbf{0 0 0 0 0 0 0}$ | defines the initialization vector for the scrambler polynomial
 (lower) |
| :--- | :--- | :--- | :--- |

Table 31. SER_ScramblerB (address 080Ah)
Default values are highlighted.

	Symbol	Access	Value	Description
7 to 0	MSB_INIT[7:0]	R/W	11111111	defines the initialization vector for the scrambler polynomial (upper)
Table 32. SER_PRBS_Ctrl (address 080Bh) Default values are highlighted.				
Bit	Symbol	Access	Value	Description
7 to 2	-	-	000000	not used
1 to 0	PRBS_TYPE[1:0]	R/W		defines the type of Pseudo-Random Binary Sequence (PRBS) generator to be used:
			00 (reset)	PRBS-7
			01	PRBS-7
			10	PRBS-23
			11	PRBS-31

Table 33. Cfg_0_DID (address 0820h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	DID[7:0]	R	11101101	defines the device (= link) identification number

Table 34. Cfg_1_BID (address 0821h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3 to 0	BID[3:0]	R/W	$\mathbf{1 0 1 0}$	defines the bank ID - extension to DID

Table 35. Cfg_3_SCR_L (address 0822h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SCR	R/W	0	scrambling enabled
6 to 1	-	-	000000	not used
0	L	R/W	0	defines the number of lanes per converter device, minus 1

Table 36. Cfg_4_F (address 0823h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	$F[2: 0]$	R/W	$* * *$	defines the number of octets per frame, minus 1

Table 37. Cfg_5_K (address 0824h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	$\mathrm{~K}[4: 0]$	R/W	$* * * * *$	defines the number of frames per multiframe, minus 1

Table 38. Cfg_6_M (address 0825h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 1	-	-	0000000	not used
0	M	R/W	$*$	defines the number of converters per device, minus 1

Table 39. Cfg_7_CS_N (address 0826h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	CS[0]	R/W	1	defines the number of control bits per sample, minus 1
5 to 4	-	-	00	not used
3 to 0	N[3:0]	R/W	0100	defines the converter resolution

Table 40. Cfg_8_Np (address 0827h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	NP[4:0]	R/W	01111	defines the total number of bits per sample, minus 1

Table 41. Cfg_9_S (address 0828h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 1	-	-	0000000	not used
0	S	R/W	0	defines number of samples per converter per frame cycle

Table 42. Cfg_10_HD_CF (address 0829h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	HD	R/W	${ }^{*}$	defines high density format
6 to 2	-	-	00000	not used
1 to 0	CF[1:0]	R/W	00	defines number of control words per frame clock cycle per link.

Table 43. Cfg02_2_LID (address 082Dh)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	LID[4:0]	R/W	$\mathbf{1 1 1 0 0}$	defines lane identification number

Table 44. Cfg01_13_FCHK (address 084Dh)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	FCHK[7:0]	R	$* * * * * * * *$	defines the checksum value for lane checksum corresponds to the sum of all the link configuration parameters module 256 (as defined in JEDEC Standard No.204A)

Table 45. Lane_0_Ctrl (address 0871h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	SCR_IN_MODE	R/W		defines the input type for scrambler and 8-bit/10-bit units:
			0 (reset)	(normal mode) = Input of the scrambler and 8-bit/10-bit units is the output of the frame assembly unit.
			1	input of the scrambler and 8-bit/10-bit units is the PRSB generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_ctrl register)
5 to 4	LANE_MODE[1:0]	R/W		defines output type of Lane output unit:
			00 (reset)	normal mode: Lane output is the 8-bit/10-bit output unit
			01	constant mode: Lane output is set to a constant (0×0)
			10	toggle mode: Lane output is toggling between 0×0 and 0×1
			11	PRBS mode: Lane output is the PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_ctrl register)
3	-	-	0	not used

Table 45. Lane_0_Ctrl (address 0871h) ...continued Default values are highlighted.

Bit	Symbol	Access	Value	Description
2	LANE_POL	R/W		defines lane polarity:
		$\mathbf{0}$	lane polarity is normal	
		1	lane polarity is inverted	
1	RESERVED	R/W	$\mathbf{0}$	reserved
0	Lane_PD	R/W		lane power-down control:
		$\mathbf{0}$	lane is operational	
		1	lane is in Power-down mode	

Table 46. ADC_0_Ctrl (address 0891h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 6	-	-	00	not used
5 to 4	ADC_MODE[1:0]	R/W		defines input type of JESD204A unit
			00 (reset)	ADC output is connected to the JESD204A input
			01	not used
			10	JESD204A input is fed with a dummy constant, set to: OTR $=0$ and ADC[13:0] = "10011011101010"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_ctrl register)
3 to 1	-	-	000	not used
0	ADC_PD	R/W		ADC power-down control:
			0	ADC is operational
			1	ADC is in Power-down mode

12. Package outline

HVQFN32R: plastic thermal enhanced very thin quad flat package; no leads;
32 terminals; resin based; body $7 \times 7 \times 0.8 \mathrm{~mm}$

detail X

Dimensions

Unit		A	b	D	D_{h}	E	$E_{\text {h }}$	e	e_{1}	e_{2}	L	L_{1}	v	w	y	y_{1}
mm	max	0.90	0.28	7.1	4.05	7.1	4.05	0.65	4.55	4.55	0.55	0.10	0.1	0.05	0.08	0.1
	nom	0.80	0.23	7.0	4.00	7.0	4.00				0.50	0.05				
	min	0.75	0.18	6.9	3.95	6.9	3.95				0.45	0.00				

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included
sot1152-1_po

Outline version	References			European projection	Issue date
	IEC	JEDEC	JEITA		
SOT1152-1	---	---	-- -		$\begin{aligned} & \text { 09-10-13 } \\ & 09-11-16 \end{aligned}$

Fig 24. Package outline SOT1152-1 (HVQFN32)

13. Abbreviations

Table 47. Abbreviations

Acronym	Description
ADC	Analog-to-Digital Converter
DCS	Duty Cycle Stabilizer
ESD	ElectroStatic Discharge
IF	Intermediate Frequency
IMD	InterModulation Distortion
LSB	Least Significant Bit
LVCMOS	Low-Voltage Complementary Metal-Oxide Semiconductor
LVPECL	Low-Voltage Positive Emitter-Coupled Logic
MSB	Most Significant Bit
OTR	OuT-of-Range
PRBS	Pseudo-Random Binary Sequence
SFDR	Spurious-Free Dynamic Range
SNR	Signal-to-Noise Ratio
SPI	Serial Peripheral Interface
TX	Transmitter

14. Revision history

Table 48. Revision history

| Document ID | Release date | Data sheet status | Change
 notice | Supersedes |
| :--- | :---: | :--- | :--- | :--- | :--- |
| ADC1413S_SER v. 3 | 20120702 | Product data sheet | - | ADC1413S_SER v. 2 |
| ADC1413S_SER v. 2 | 20110608 | Product data sheet | - | ADC1413S_SER v. 1 |
| Modifications: | \bullet | Section | 10.2 "Clock and digital output timing" has been updated. | |
| ADC1413S_SER v. 1 | 20110314 | Product data sheet | - | - |

15. Contact information

For more information or sales office addresses, please visit: http://www.idt.com

16. Contents

1 General description 1
2 Features and benefits 1
3 Applications 1
4 Ordering information 2
5 Block diagram 2
6 Pinning information 3
6.1 Pinning 3
6.2 Pin description 3
7 Limiting values. 4
8 Thermal characteristics 5
9 Static characteristics 5
10 Dynamic characteristics 8
10.1 Dynamic characteristics 8
10.2 Clock and digital output timing 9
10.3 Serial output timing 10
10.4 SPI timing 11
11 Application information 12
11.1 Analog inputs 12
11.1.1 Input stage description 12
11.1.2 Anti-kickback circuitry 13
11.1.3 Transformer 13
11.2 System reference and power management 14
11.2.1 Internal/external reference 14
11.2.2 Programmable full-scale 16
11.2.3 Common-mode output voltage ($\mathrm{V}_{\mathrm{O}(\mathrm{cm})}$) 17
11.2.4 Biasing 17
11.3 Clock input 17
11.3.1 Drive modes 17
11.3.2 Equivalent input circuit 18
11.3.3 Duty cycle stabilizer 19
11.3.4 Clock input divider 19
11.4 Digital outputs 19
11.4.1 Serial output equivalent circuit 19
11.5 JESD204A serializer 20
11.5.1 Digital JESD204A formatter 20
11.5.2 ADC core output codes versus input voltage. 21
11.6 Serial Peripheral Interface (SPI) 22
11.6.1 Register description 22
11.6.2 Channel control 24
11.6.3 Register description 26
11.6.3.1 ADC control registers 26
11.6.4 JESD204A digital control registers 28
12 Package outline 33
13 Abbreviations 34
14 Revision history 35
15 Contact information 35
16 Contents 36

[^0]: [1] an "*" in the Access column means that this register is subject to control access conditions in Write mode.
 [2] an "*" in the Default column replaces a bit of which the value depends on the binary level of external pins (e.g. CFG[3:0], Swing[1:0], Scrambler).

