ADC1413S series

Single 14-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface

Rev. 03 — 2 July 2012

Product data sheet

General description

The ADC1413S is a single channel 14-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performance and low power at sample rates up to 125 Msps. Pipelined architecture and output error correction ensure the ADC1413S is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a 3 V source for analog and a 1.8 V source for the output driver, it outputs data in serial mode via a single differential lane, which complies with the JESD204A standard. The integration of Serial Peripheral Interface (SPI) allows the user to easily configure the ADCs and the serial output modes. The device also includes a programmable full-scale SPI to allow a flexible input voltage range from 1 V (p-p) to 2 V (p-p).

Excellent dynamic performance is maintained from the baseband to input frequencies of 170 MHz or more, making the ADC1413S ideal for use in communications, imaging, and medical applications.

2. Features and benefits

- SNR, 72.1 dBFS; SFDR, 86 dBc
- Sample rates up to 125 Msps
- Single channel, 14-bit pipelined ADC core
- 3 V, 1.8 V power supplies
- Flexible input voltage range: 1 V (p-p) to 2 V (p-p)
- serial output
- Compliant with JESD204A serial transmission standard
- Pin compatible with the ADC1613S series, ADC1213S series, and ADC1113S125

- Input bandwidth, 600 MHz
- Power dissipation, 550 mW at 80 Msps
- SPI register programming
- Duty cycle stabilizer
- High Intermediate Frequency (IF) capability
- Offset binary, two's complement, gray code
- Power-down mode and Sleep mode
- HVQFN32 package

3. Applications

- Wireless and wired broadband communications
- Spectral analysis
- Ultrasound equipment

- Portable instrumentation
- Imaging systems

4. Ordering information

Table 1. Ordering information

Type number	Sampling	Package		
	frequency (Msps)	Name	Description	Version
ADC1413S125HN-C1	125	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $7 \times 7 \times 0.8 \text{ mm}$	SOT1152-1
ADC1413S105HN-C1	105	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 7 \times 7 \times 0.8 mm	SOT1152-1
ADC1413S080HN-C1	80	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 7 \times 7 \times 0.8 mm	SOT1152-1
ADC1413S065HN-C1	65	HVQFN32R	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 7 \times 7 \times 0.8 mm	SOT1152-1

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type ^[1]	Description
CLKP	1	I	clock input
CLKM	2	I	complementary clock input
AGND	3	G	analog ground
REFB	4	0	ADC bottom reference
REFT	5	0	ADC top reference
VCM	6	0	ADC output common voltage
INM	7	1	ADC complementary analog input
INP	8		ADC analog input
VDDA	9	Р	analog power supply 3 V
VDDA	10	Р	analog power supply 3 V
SCLK	11	I	SPI clock
SDIO	12	I/O	SPI data input/output
CS	13	I	chip select

Single 14-bit ADC: serial JESD204A interface

Table 2. Pin description ...continued

from the receiver
I from the receiver

^[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.

Limiting values

Table 3. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DDA}	analog supply voltage		-0.4	+4.6	V
V _{DDD(1V8)}	digital supply voltage (1.8 \	/)	-0.4	+2.5	V
T _{stg}	storage temperature		–55	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
Tj	junction temperature		-	125	°C

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient		[1]	25.6	K/W
R _{th(j-c)}	thermal resistance from junction to case		[1]	8.6	K/W

^[1] Value for six layers board in still air with a minimum of 25 thermal vias.

9. Static characteristics

Table 5. Static characteristics [1]

Comple - I	Danamata:	Conditions	NA:	T	Mari	11!4
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V_{DDA}	analog supply voltage		2.85	3.0	3.4	V
V _{DDD(1V8)}	digital supply voltage (1.8 V)		1.65	1.8	1.95	V
I _{DDA}	analog supply current	f_{clk} = 125 Msps; f_i = 70 MHz	-	185	-	mA
I _{DDD(1V8)}	digital supply current (1.8 V)	f_{clk} = 125 Msps; f_i = 70 MHz	-	75	-	mA
P _{tot}	total power dissipation	f _{clk} = 125 Msps	-	690	-	mW
		f _{clk} = 105 Msps	-	625	-	mW
		f _{clk} = 80 Msps	-	550	-	mW
		f _{clk} = 65 Msps	-	495	-	mW
Р	power dissipation	Power-down mode	-	30	-	mW
		Standby mode	-	150	-	mW
Digital inpu	its					
Clock input	ts: pins CLKP and CLKM (AC-coupled)				
Low-Voltage	Positive Emitter-Coupled L	.ogic (LVPECL)				
$V_{i(clk)dif}$	differential clock input voltage	peak-to-peak	-	1.6	-	V
Sine						
$V_{i(clk)dif}$	differential clock input voltage	peak	±0.8	±3.0	-	V
Low Voltage	Complementary Metal Oxid	de Semiconductor (LVCMOS	S)			
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DDA}$	V
V _{IH}	HIGH-level input voltage)	$0.7V_{DDA}$	-	-	V
SPI: pins C	S, SDIO, and SCLK					
V _{IL}	LOW-level input voltage		0	-	$0.3V_{DDA}$	V
V _{IH}	HIGH-level input voltage)	$0.7V_{DDA}$	-	V_{DDA}	V
I _{IL}	LOW-level input current		-10	-	+10	μΑ
I _{IH}	HIGH-level input current	<u> </u>	-50	-	+50	μΑ
Cı	input capacitance		-	4	-	pF

Table 5. Static characteristics ...continued[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Analog inp	uts: pins INP and INM					
I _I	input current	track mode	-5	-	+5	μΑ
R _I	input resistance	track mode	-	15	-	Ω
Cı	input capacitance	track mode	-	5	-	pF
$V_{I(cm)}$	common-mode input voltage	track mode	1.1	1.5	2	V
B _i	input bandwidth		-	600	-	MHz
$V_{I(dif)}$	differential input voltage	peak-to-peak	1	-	2	V
Voltage co	ntrolled regulator output: ¡	oin VCM				
$V_{O(cm)}$	common-mode output voltage		-	0.5V _{DDA}	-	V
I _{O(cm)}	common-mode output current		-	4	-	mA
Reference	voltage input/output: pin \	/REF				
V _{VREF}	voltage on pin VREF	output	0.5	-	1	V
		input	0.5	-	1	V
Data outpu	ts: CMLP, CMLN					
Output leve	Is, V _{DDD(1V8)} = 1.8 V; SWING	G_SEL[2:0] = 000				
V _{OL}	LOW-level output	DC-coupled; output	-	1.5	-	V
	voltage	AC-coupled	-	1.35	-	V
V _{OH}	HIGH-level output	DC-coupled; output	-	1.8	-	V
	voltage	AC-coupled	-	1.65	-	V
Output leve	Is, V _{DDD(1V8)} = 1.8 V; SWING	G_SEL[2:0] = 001				
V _{OL}	LOW-level output	DC-coupled; output	-	1.45	-	V
	voltage	AC-coupled	-	1.275	-	V
V _{OH}	HIGH-level output	DC-coupled; output	-	1.8	-	V
	voltage	AC-coupled	-	1.625	-	V
Output leve	Is, V _{DDD(1V8)} = 1.8 V; SWING	G_SEL[2:0] = 010				
V_{OL}	LOW-level output	DC-coupled; output	-	1.4	-	V
	voltage	AC-coupled	-	1.2	-	V
V _{OH}	HIGH-level output	DC-coupled; output	-	1.8	-	V
	voltage	AC-coupled	-	1.6	-	V
Output leve	Is, $V_{DDD(1V8)} = 1.8 \text{ V}$; SWING	G_SEL[2:0] = 011				
V _{OL}	LOW-level output	DC-coupled; output	-	1.35	-	V
	voltage	AC-coupled	-	1.125	-	V
V _{OH}	HIGH-level output	DC-coupled; output	-	1.8	-	V
	voltage	AC-coupled	-	1.575	-	V
Output leve	Is, V _{DDD(1V8)} = 1.8 V; SWING	G_SEL[2:0] = 100				
V _{OL}	LOW-level output	DC-coupled; output	-	1.3	-	V
	voltage	AC-coupled	-	1.05	-	V
V _{OH}	HIGH-level output	DC-coupled; output	-	1.8	-	V
	voltage	AC-coupled	-	1.55	-	V
ADC1413S_SER 3					a	DIDT 2012. All rights res

ADC1413S series

7 of 36

Single 14-bit ADC: serial JESD204A interface

Static characteristics ...continued[1] Table 5.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Serial config	uration: SYNCP, SYNCN					
V_{IL}	LOW-level input voltage	differential; input	-	0.95	-	V
V_{IH}	HIGH-level input voltage	differential; input	-	1.47	-	V
Accuracy						
INL	integral non-linearity		-5	-	+5	LSB
DNL	differential non-linearity	guaranteed no missing codes	-0.95	±0.5	+0.95	LSB
E _{offset}	offset error		-	±2	-	mV
E _G	gain error	full-scale	-	± 0.5	-	%
Supply						
PSRR	power supply rejection ratio	200 mV (p-p) on pin VDDA; $f_i = DC$	-	-54	-	dB

^[1] Typical values measured at V_{DDA} = 3 V, $V_{DDD(1V8)}$ = 1.8 V, T_{amb} = 25 °C. Minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, $V_{DDD(1V8)}$ = 1.8 V; $V_{i(INP)} - V_{i(INM)}$ = -1 dBFS; internal reference mode; 100 Ω differential applied to serial outputs; unless otherwise specified.

10.1 Dynamic characteristics

Table 6.	Dynamic characteristics [1]	ics [1]													
Symbol	Parameter	Conditions	ADC	ADC1413S065	965	ADC	ADC1413S080	080	AD	ADC1413S105	05	ADC	ADC1413S125	125	Unit
			Min	Typ	Мах	Min	Typ	Мах	Min	Тур	Мах	Min	Тур	Мах	
α2н	second harmonic	f _i = 3 MHz		87	,		87			98			88	ı	dBc
	level	f _i = 30 MHz		98	ı		98	,	ı	98	ı		87		dBc
		f _i = 70 MHz		85	ı		82			84			85	ı	dBc
		$f_i = 170 \text{ MHz}$		82	ı		85			81			83	ı	dBc
αзн	third harmonic level	f _i = 3 MHz		98	,		98			82			87	,	dBc
		f _i = 30 MHz		85	,		82			82			98	,	dBc
		f _i = 70 MHz		84	,		84			83			84	,	dBc
		$f_i = 170 \text{ MHz}$		81	ı		8			80			82	ı	dBc
H	total harmonic	f _i = 3 MHz		83	,		83			82			84	,	dBc
	distortion	f _i = 30 MHz		82	ı		82	,	ı	82	ı		83		dBc
		f _i = 70 MHz		81	ı		8			80			81	ı	dBc
		$f_i = 170 \text{ MHz}$		78	ı		78			77			62	ı	dBc
ENOB	effective number of	f _i = 3 MHz		11.7	ı		11.7			11.6			11.6	ı	bits
	bits	$f_i = 30 \text{ MHz}$		11.6	ı		11.5			11.5			11.5	ı	bits
		f _i = 70 MHz		11.5	ı		11.5	,	ı	4:11	ı		4.1	ı	bits
		$f_i = 170 \text{ MHz}$		11.4	ı		4.11			11.3			11.3	ı	bits
SNR	signal-to-noise ratio	f _i = 3 MHz		72.1	ı		72.0	,	ı	71.8	ı		71.4		dBFS
		f _i = 30 MHz		71.3	ı		71.2	,	ı	71.2	ı		71.1		dBFS
		f _i = 70 MHz		70.7	ı		70.7	ı	ı	9.07	ı		70.5	ı	dBFS
		f _i = 170 MHz		70.2	ı		70.1	,	ı	0.07	ı		6.69		dBFS
SFDR	spurious-free	f _i = 3 MHz		98	ı		98	,	ı	85	ı		87		dBc
	dynamic range	f _i = 30 MHz		85	ı		82	ı	ı	82	ı		98	ı	dBc
NDT C		f _i = 70 MHz	ı	84	ı	ı	8	ı	ı	83	ı	ı	84	ı	dBc
040 ^**		f _i = 170 MHz	ı	8	ı	ı	8	ı	ı	80	ı	ı	82	ı	dBc

© IDT 2012. All rights reserved.

Product data sheet

10. Dynamic characteristics

8 of 36

U dBc dBc dBc dBc dBc Max ADC1413S125 Тyр 9 89 88 86 84 Ξ Мах ADC1413S105 Тyр 9 88 88 86 83 Ξ Max ADC1413S080 Тyр 100 89 88 85 87 Ξ ADC1413S065 Τy 100 89 88 84 87 Dynamic characteristics ...continued[1] $f_1 = 170 \text{ MHz}$ Conditions $f_i = 30 \text{ MHz}$ $f_i = 70 \text{ MHz}$ $f_i = 70 \text{ MHz}$ $f_i = 3 MHz$ channel crosstalk intermodulation **Parameter** distortion Table 6. Symbol $\alpha_{ct(ch)}$ $\frac{1}{2}$

Typical values measured at V_{DDA} = 3 V, V_{DDD(1V8)} = 1.8 V, T_{amb} = 25 °C and C_L = 5 pF. Minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDD(1V8)} = 1.8 V, V_(INP) - V_(INM) = -1 dBFS, internal reference mode; 100 Ω differential applied to serial outputs; unless otherwise specified Ξ

0.2 Clock and digital output timing

Table 7. Clock and digital output timing characteristics [1]

Symbol	Parameter	Conditions	ADC	ADC1413S065	990	ADC	ADC1413S080	080	AD	ADC1413S105	105	ADC	C1413S	ADC1413S125	Unit
			Min	Typ	Тур Мах	Min	Тур	Мах	Min	Тур	Min Typ Max Min Typ Max Min Typ Max	Min	Typ	Мах	
pins CLKP	pins CLKP and CLKM														
fek	clock frequency		45		65	09		80	75		105	100		125	125 Msps
t _{lat(data)}	data latency time	clock cycles	307	,	820	250		283	190		226	160		170	SU
Scik	clock duty cycle	DCS_EN = 1: en	30	20	20	30	20	20	30	20	20	30	20	20	%
t _{d(s)}	sampling delay time		ı	0.8	ı	ı	0.8	ı	ı	0.8	ı	ı	0.8		ns
twake	wake-up time		ı	9/	ı	ı	9/	ı	ı	92	ı	ı	92	ı	SU

Typical values measured at VDDA = 3 V, VDDD(1V8) = 1.8 V, Tamb = 25 °C. Minimum and maximum values are across the full temperature range Tamb = -40 °C to +85 °C at $V_{\text{DDA}} = 3 \text{ V, } V_{\text{DDD}(108)} = 1.8 \text{ V; } V_{\text{(INP)}} - V_{\text{(INNM)}} = -1 \text{ dBFS; internal reference mode; } 100 \Omega \text{ differential applied to serial outputs; unless otherwise specified.}$ Ξ

Single 14-bit ADC: serial JESD204A interface

10.3 Serial output timing

The eye diagram of the serial output is shown in Figure 3 and Figure 4. Test conditions are:

- 3.125 Gbps data rate
- T_{amb} = 25 °C
- DC-coupling with two different receiver common-mode voltages

Fig 3. Eye diagram at 1 V receiver common-mode

Eye diagram at 2 V receiver common-mode

10.4 SPI timing

SPI timing characteristics [1] Table 8.

	•					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{w(SCLK)}$	SCLK pulse width		-	40	-	ns
$t_{\text{w}(\text{SCLKH})}$	SCLK HIGH pulse width		-	16	-	ns
$t_{\text{w}(\text{SCLKL})}$	SCLK LOW pulse width		-	16	-	ns
t _{su}	set-up time	data to SCLK HIGH	-	5	-	ns
		CS to SCLK HIGH	-	5	-	ns
t _h	hold time	data to SCLK HIGH	-	2	-	ns
		CS to SCLK HIGH	-	2	-	ns
f _{clk(max)}	maximum clock frequency		-	25	-	MHz

[1] Typical values measured at V_{DDA} = 3 V, $V_{DDD(1V8)}$ = 1.8 V, T_{amb} = 25 °C. Minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, $V_{DDD(1V8)}$ = 1.8 V; $V_{i(INP)} - V_{i(INM)} = -1$ dBFS; internal reference mode; 100 Ω differential applied to serial outputs; unless otherwise specified.

Single 14-bit ADC: serial JESD204A interface

11. Application information

11.1 **Analog inputs**

11.1.1 Input stage description

The analog input of the ADC1413S supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage (V_{I(cm)}) on pins INP and INM set to 0.5V_{DDA}.

The full-scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p) via a programmable internal reference (see Section 11.2 and Table 21).

Figure 6 shows the equivalent circuit of the sample-and-hold input stage, including ElectroStatic Discharge (ESD) protection and circuit and package parasitics.

The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

11.1.2 Anti-kickback circuitry

Anti-kickback circuitry (RC filter in Figure 7) is needed to counteract the effects of a charge injection generated by the sampling capacitance.

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively.

The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth.

Table 9. RC coupling versus input frequency, typical values

Input frequency (MHz)	Resistance (Ω)	Capacitance (pF)
3	25	12
70	12	8
170	12	8

11.1.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 8 would be suitable for a baseband application.

The configuration shown in Figure 9 is recommended for high frequency applications. In both cases, the choice of transformer is a compromise between cost and performance.

11.2 System reference and power management

11.2.1 Internal/external reference

The ADC1413S has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and SENSE (see Figure 11 to Figure 14), in 1 dB steps between 0 dB and -6 dB, via SPI control bits INTREF[2:0] (when bit INTREF EN = logic 1; see Table 21). The equivalent reference circuit is shown in Figure 10. External reference is also possible by providing a voltage on pin VREF as described in Figure 14.

Single 14-bit ADC: serial JESD204A interface

Table 10 shows how to choose between the different internal/external modes:

Table 10. Reference modes

Mode	SPI bit, "Internal reference"	SENSE pin	VREF pin	Full-scale, (V (p-p))
Internal (Figure 11)	0	GND	330 pF capacitor to GND	2
Internal (Figure 12)	0	VREF pin = SE 330 pF capacito	•	1
Internal, SPI mode (Figure 13)	1	VREF pin = SE 330 pF capacito	•	1 to 2
External (Figure 14)	0	V_{DDA}	External voltage from 0.5 V to 1 V	1 to 2

Figure 11 to Figure 14 illustrate how to connect the SENSE and VREF pins to select the required reference voltage source.

Single 14-bit ADC: serial JESD204A interface

11.2.2 Programmable full-scale

The full-scale is programmable between 1 V (p-p) to 2 V (p-p) (see Table 11).

Table 11. Reference modes

INTREF[2:0]	Level	Full-scale (V (p-p))
000	0 dB	2
001	–1 dB	1.78
010	–2 dB	1.59
011	−3 dB	1.42
100	–4 dB	1.26
101	–5 dB	1.12
110	–6 dB	1
111	not used	Х

11.2.3 Common-mode output voltage (V_{O(cm)})

An 0.1 µF filter capacitor should be connected between pin VCM and ground to ensure a low-noise common-mode output voltage. When AC-coupled, these pins can be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.

11.2.4 Biasing

The common-mode input voltage (V_{I(cm)}) on pins INP and INM should be set externally to $0.5V_{DDA}$ for optimal performance and should always be between 0.9 V and 2 V.

11.3 Clock input

11.3.1 Drive modes

The ADC1413S can be driven differentially (LVPECL). It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor).

11.3.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via internal 5 k Ω resistors.

Single-ended or differential clock inputs can be selected via the SPI (see Table 20). If single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit SE SEL.

If single-ended is implemented without setting bit SE SEL accordingly, the unused pin should be connected to ground via a capacitor.

11.3.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performance of the ADC by compensating the input clock signal duty cycle. When the duty cycle stabilizer is active (bit DCS EN = logic 1; see Table 20), the circuit can handle signals with duty cycles of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS EN = logic 0), the input clock signal should have a duty cycle of between 45 % and 55 %.

Table 12. Duty cycle stabilizer

bit DCS_EN	Description
0	duty cycle stabilizer disable
1	duty cycle stabilizer enable

11.3.4 Clock input divider

The ADC1413S contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV2 SEL = logic 1; see Table 20). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

11.4 Digital outputs

11.4.1 Serial output equivalent circuit

The JESD204A standard specifies that if the receiver and the transmitter are DC-coupled both must be fed from the same supply.

The output should be terminated when 100 Ω (typical) is reached at the receiver side.

19 of 36

11.5 JESD204A serializer

For more information about the JESD204A standard refer to the JEDEC web site.

11.5.1 Digital JESD204A formatter

The block placed after the ADC cores is used to implement all functions of the JESD204A standard. This ensures signal integrity and guarantees the clock and the data recovery at the receiver side.

The block is highly parameterized and can be configured in various ways depending on the sampling frequency and the number of lanes used.

11.5.2 ADC core output codes versus input voltage

Table 13 shows the data output codes for a given analog input voltage.

Table 13. Output codes versus input voltage

INP-INM (V)	Offset binary	Two's complement	OTR
< -1	00 0000 0000 0000	10 0000 0000 0000	1
-1	00 0000 0000 0000	10 0000 0000 0000	0
-0.9998779	00 0000 0000 0001	10 0000 0000 0001	0
-0.9997559	00 0000 0000 0010	10 0000 0000 0010	0
-0.9996338	00 0000 0000 0011	10 0000 0000 0011	0
-0.9995117	00 0000 0000 0100	10 0000 0000 0100	0
			0
-0.0002441	01 1111 1111 1110	11 1111 1111 1110	0
-0.0001221	01 1111 1111 1111	11 1111 1111 1111	0
0	10 0000 0000 0000	00 0000 0000 0000	0
+0.0001221	10 0000 0000 0001	00 0000 0000 0001	0
+0.0002441	10 0000 0000 0010	00 0000 0000 0010	0
			0
+0.9995117	11 1111 1111 1011	01 1111 1111 1011	0
+0.9996338	11 1111 1111 1100	01 1111 1111 1100	0
+0.9997559	11 1111 1111 1101	01 1111 1111 1101	0
+0.9998779	11 1111 1111 1110	01 1111 1111 1110	0
+1	11 1111 1111 1111	01 1111 1111 1111	0
> +1	11 1111 1111 1111	01 1111 1111 1111	1

Single 14-bit ADC: serial JESD204A interface

11.6 Serial Peripheral Interface (SPI)

11.6.1 Register description

The ADC1413S serial interface is a synchronous serial communications port allowing easy interfacing with many industry microprocessors. It provides access to the registers that control the operation of the chip in both read and write modes.

This interface is configured as a 3-wire type (SDIO as bidirectional pin).

Pin SCLK acts as the serial clock and pin $\overline{\text{CS}}$ acts as the serial chip select.

Each read/write operation is sequenced by the CS signal and enabled by a LOW level to to drive the chip with N bytes, depending on the content of the instruction byte (see Table 14).

Table 14. Instruction bytes for the SPI

	MSB							LSB
Bit	7	6	5	4	3	2	1	0
Description	R/W ^[1]	W1	W0	A12	A11	A10	A9	A8
	A7	A6	A5	A4	A3	A2	A1	A0

^[1] R/W indicates whether a read or write transfer occurs after the instruction byte.

Table 15. Read or Write mode access description

R/W ^[1]	Description
0	Write mode operation
1	Read mode operation

^[1] Bits W1 and W0 indicate the number of bytes transferred.

ADC1413S series

23 of 36

Single 14-bit ADC: serial JESD204A interface

Table 16. Number of bytes to be transferred

W1	W0	Number of bytes transferred
0	0	1 byte
0	1	2 bytes
1	0	3 bytes
1	1	4 or more bytes

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incremented to access subsequent addresses.

The steps involved in a data transfer are as follows:

- 1. The falling edge on pin \overline{CS} in combination with a rising edge on pin SCLK determine the start of communications.
- 2. The first phase is the transfer of the 2-byte instruction.
- 3. The second phase is the transfer of the data which can be vary in length but is always a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes).
- 4. A rising edge on pin \overline{CS} indicates the end of data transmission.

11.6.2 Channel control

Table 17.	7. Register allocation map	ation map									
Addres	Address Register name	Access ^[1]				Bit	Bit definition				Default ^[2]
(hex)			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin
ADC co	ADC control register										
0003	SPI control	R/W	ı	ı	ı	1	ı	ı	ENABLE	ı	1111 1111
9000	Reset and Operating modes	R/W	SW_RST	ı	ı		ı	ı	PD[1:0]	[0:	0000
9000	Clock	R/W	ı	ı	ı	SE_SEL	DIFF_SE	ı	CLKDIV2_SEL	DCS_EN	*000 0000
8000	Vref	R/W	ı	ı	ı		INTREF_EN		INTREF[2:0]		0000
0013	Offset	R/W	ı	1			DIG_OF	DIG_OFFSET[5:0]			0000
0014	Test pattern 1	R/W	ı	1	ı	•	ı		TESTPAT_1[2:0]	<u>[</u>	0000
0015	Test pattern 2	R/W				TEST	TESTPAT_2[13:6]				0000
0016	Test pattern 3	R/W		'	TESTPAT_3[5:0]	3[5:0]		ı	ı	ı	0000
JESD20	JESD204A control										
0801	Ser_Status	∝	RXSYNC_ ERROR	R	RESERVED[2:0]	;;o]	0	0	POR_TST	RESERVED	0100
0802	Ser_Reset	R/W	SW_RST	0	0	0	FSM_SW_ RST	0	0	0	0000
0805	Ser_Control1	R/W	0	RESERVED	SYNC_ POL	SYNC_ SINGLE_ ENDED	~	REV_ SCR_	REV_ ENCODER	REV_ SERIAL	0100 1001
8080	Ser_Analog_Ctrl	R/W	0	0	0	0	0		SWING_SEL[2:0]	0]	0000 0011
6080	Ser_ScramblerA	R/W	0				LSB_INIT[6:0]				0000

ADC1413S_SER 3

© IDT 2012. All rights reserved.

Register allocation map ...continued Table 17.

	Default ^[2]	Bit 0 Bin	1111 1111	0000 (0:	1110 1101	0000	0000 T	***0 0000	**** *000	*000 0000 M	0100	0000 1111	0000 S	*000 000	0001 1100	** ** ** **	LANE_PD 0000 0000	ADC_PD 0000
		Bit 1		PRBS_TYPE[1:0]		BID[3:0]	0	F[2:0]		0	N[3:0]		0	CF[1:0]			0 LA	0 AE
		Bit 2		0		B	0		K[4:0]	0	_	NP[4:0]	0	0	LID[4:0]		LANE_ POL	0
,	Bit definition	Bit 3	MSB_INIT[7:0]	0	[0: 7]QIQ		0	0		0			0	0		FCHK[7:0]	0	0
	<u>.</u>	Bit 4	MS	0		0	0	0		0	0		0	0		<u> </u>	LANE_MODE[1:0]	ADC MODE[1:0]
		Bit 5		0		0	0	0	0	0	0	0	0	0	0		LANE_N	ADC N
		Bit 6		0		0	0	0	0	0	CS[0]	0	0	0	0		SCR_IN_ MODE	0
onunaea		Bit 7		0		0	SCR	0	0	0	0	0	0	H	0		0	0
ilion mapo	Access ^[1]		R/W	R/W	~	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	œ	R/W*	R/W*	R/W*	œ	R/W	R/W
lable 17. Register anocation mapconunued	Address Register name		Ser_ScramblerB	Ser_PRBS_Ctrl	Cfg_0_DID	Cfg_1_BID	Cfg_3_SCR_L	Cfg_4_F	Cfg_5_K	Cfg_6_M	Cfg_7_CS_N	Cfg_8_Np	Cfg_9_S	Cfg_10_HD_CF	Cfg_02_2_LID	Cfg02_13_FCHK R	Lane_0_Ctrl	ADC 0 Ctrl
and a	Address	(hex)	080A	080B	0820	0821	0822	0823	0824	0825	0826	0827	0828	0829	082D	084D	0871	0891

an "*" in the Access column means that this register is subject to control access conditions in Write mode. Ξ

an "*" in the Default column replaces a bit of which the value depends on the binary level of external pins (e.g. CFG[3:0], Swing[1:0], Scrambler).

25 of 36

11.6.3 Register description

11.6.3.1 ADC control registers

Table 18. Register SPI control (address 0003h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 2	-	-	111111	not used
1	ENABLE	R/W		ADC SPI control enable:
			0	ADC does not get the next SPI command
			1	ADC gets the next SPI command
0	-	-	1	not used

Table 19. Register Reset and Power-down mode (address 0005h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W		reset digital part:
			0	no reset
			1	performs a reset of the digital part
6 to 2	-	-	00000	not used
1 to 0	PD[1-0]	R/W		Power-down mode:
			00	normal (power-up)
			01	full power-down
			10	sleep
			11	normal (power-up)

Table 20. Register Clock (address 0006h)

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4	SE_SEL	R/W		select SE clock input pin:
			0	select CLKM input
			1	select CLKP input
3	DIFF_SE	R/W		differential/single-ended clock input select:
			0	fully differential
			1	single-ended
2	-	-	0	not used
1	CLKDIV2_SEL	R/W		select clock input divider by 2:
			0	disable
			1	enable
0	DCS_EN	R/W		duty cycle stabilizer enable:
			0	disable
			1	enable

Table 21. Register Vref (address 0008h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3	INTREF_EN	R/W		enable internal programmable VREF mode:
			0	disable
			1	enable
2 to 0	INTREF[2:0]	R/W		programmable internal reference:
			000	0 dB (FS = 2 V)
			001	−1 dB (FS = 1.78 V)
			010	−2 dB (FS = 1.59 V)
			011	−3 dB (FS = 1.42 V)
			100	–4 dB (FS = 1.26 V)
			101	−5 dB (FS = 1.12 V)
			110	−6 dB (FS = 1 V)
			111	not used

Table 22. Digital offset adjustment (address 0013h)

Default values are highlighted.

Register offset					
Decimal	DIG_OFFSET[5:0]				
+31	011111	+31 LSB			
0	000000	0			
-32	100000	–32 LSB			

Table 23. Register Test pattern 1 (address 0014h)

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	TESTPAT_1[2:0]	R/W		digital test pattern:
			000	off
			001	mid-scale
			010	– FS
			011	+FS
			100	toggle '11111111'/'00000000'
		101	custom test pattern, to be written in register 0015h and 0016h	
			110	'010101'
			111	'101010'

Table 24. Register Test pattern 2 (address 0015h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	TESTPAT_2[13:6]	R/W	00000000	custom digital test pattern (bit 13 to 6)

Table 25. Register Test pattern 3 (address 0016h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	TESTPAT_3[5:0]	R/W	00000	custom digital test pattern (bit 5 to 0)
2 to 0	-	-	000	not used

11.6.4 JESD204A digital control registers

Table 26. SER_Status (address 0801h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	RXSYNC_ERROR	R/W	0	set to 1 when a synchronization error occurs
6 to 4	RESERVED[2:0]	-	100	reserved
3 to 2	-	-	00	not used
1	POR_TST	-	0	power-on-reset
0	RESERVED	-	0	reserved

Table 27. SER_Reset (address 0802h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W	0	initiates a software reset of the JEDEC204A unit
6 to 4	-	-	000	not used
3	FSM_SW_RST	R/W	0	initiates a software reset of the internal state machine of JEDEC204A unit
2 to 0	-	-	000	not used

Table 28. SER_Control1 (address 0805h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	RESERVED	R/W	0	reserved
5	SYNC_POL	R/W		defines the sync signal polarity:
			0	synchronization signal is active low
			1	synchronization signal is active high
4	SYNC_SINGLE_ENDED	R/W		defines the input mode of the sync signal:
			0	synchronization input mode is set in Differential mode
			1	synchronization input mode is set in Single-ended mode
3	-	-	1	not used
2	REV_SCR	-		LSB are swapped to MSB at the scrambler input:
			0	disable
			1	enable

ADC1413S_SER 3 © IDT 2012. All rights reserved.

ADC1413S series

Single 14-bit ADC: serial JESD204A interface

Table 28. SER Control1 (address 0805h) ...continued

Default values are highlighted.

Bit	Symbol	Access	Value	Description
1	REV_ENCODER	-		LSB are swapped to MSB at the 8-bit/10-bit encoder input
			0	disable
			1	enable
0	REV_SERIAL -	-		LSB are swapped to MSB at the lane input:
			0	disable
			1	enable

Table 29. SER Analog Ctrl (address 0808h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	SWING_SEL[2:0]	R/W	011	defines the swing output for the lane pads

Table 30. SER_ScramblerA (address 0809h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6 to 0	LSB_INIT[6:0]	R/W	0000000	defines the initialization vector for the scrambler polynomial (lower)

Table 31. SER_ScramblerB (address 080Ah)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	MSB_INIT[7:0]	R/W	11111111	defines the initialization vector for the scrambler polynomial (upper)

Table 32. SER_PRBS_Ctrl (address 080Bh)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 2	-	-	000000	not used
1 to 0	PRBS_TYPE[1:0]	R/W		defines the type of Pseudo-Random Binary Sequence (PRBS) generator to be used:
			00 (reset)	PRBS-7
			01	PRBS-7
			10	PRBS-23
			11	PRBS-31

Table 33. Cfg_0_DID (address 0820h)

Bit	Symbol	Access	Value	Description
7 to 0	DID[7:0]	R	11101101	defines the device (= link) identification number

Table 34. Cfg_1_BID (address 0821h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3 to 0	BID[3:0]	R/W	1010	defines the bank ID – extension to DID

Table 35. Cfg_3_SCR_L (address 0822h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SCR	R/W	0	scrambling enabled
6 to 1	-	-	000000	not used
0	L	R/W	0	defines the number of lanes per converter device, minus 1

Table 36. Cfg_4_F (address 0823h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	F[2:0]	R/W	***	defines the number of octets per frame, minus 1

Table 37. Cfg 5 K (address 0824h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	K[4:0]	R/W	****	defines the number of frames per multiframe, minus 1

Table 38. Cfg_6_M (address 0825h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 1	-	-	0000000	not used
0	M	R/W	*	defines the number of converters per device, minus 1

Table 39. Cfg_7_CS_N (address 0826h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	CS[0]	R/W	1	defines the number of control bits per sample, minus 1
5 to 4	-	-	00	not used
3 to 0	N[3:0]	R/W	0100	defines the converter resolution

Table 40. Cfg_8_Np (address 0827h)

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	NP[4:0]	R/W	01111	defines the total number of bits per sample, minus 1

Table 41. Cfg_9_S (address 0828h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 1	-	-	0000000	not used
0	S	R/W	0	defines number of samples per converter per frame cycle

Table 42. Cfg_10_HD_CF (address 0829h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	HD	R/W	*	defines high density format
6 to 2	-	-	00000	not used
1 to 0	CF[1:0]	R/W	00	defines number of control words per frame clock cycle per link.

Table 43. Cfg02_2_LID (address 082Dh)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	LID[4:0]	R/W	11100	defines lane identification number

Table 44. Cfg01_13_FCHK (address 084Dh)

Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	FCHK[7:0]	R	*****	defines the checksum value for lane checksum corresponds to the sum of all the link configuration
				parameters module 256 (as defined in JEDEC Standard No.204A)

Table 45. Lane_0_Ctrl (address 0871h)

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	SCR_IN_MODE	R/W		defines the input type for scrambler and 8-bit/10-bit units:
			0 (reset)	(normal mode) = Input of the scrambler and 8-bit/10-bit units is the output of the frame assembly unit.
			1	input of the scrambler and 8-bit/10-bit units is the PRSB generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_ctrl register)
5 to 4	LANE_MODE[1:0]	R/W		defines output type of Lane output unit:
			00 (reset)	normal mode: Lane output is the 8-bit/10-bit output unit
			01	constant mode: Lane output is set to a constant (0×0)
			10	toggle mode: Lane output is toggling between 0×0 and 0×1
			11	PRBS mode: Lane output is the PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_ctrl register)
3	-	-	0	not used

ADC1413S series

32 of 36

Single 14-bit ADC: serial JESD204A interface

Table 45. Lane_0_Ctrl (address 0871h) ...continued

Default values are highlighted.

Bit	Symbol	Access	Value	Description
2	LANE_POL	R/W		defines lane polarity:
			0	lane polarity is normal
			1	lane polarity is inverted
1	RESERVED	R/W	0	reserved
0	Lane_PD	R/W		lane power-down control:
			0	lane is operational
			1	lane is in Power-down mode

Table 46. ADC_0_Ctrl (address 0891h)

Default values are highlighted.

Bit	Symbol	Access	Value	Description		
7 to 6	-	-	00 not used			
5 to 4	ADC_MODE[1:0]	R/W		defines input type of JESD204A unit		
			00 (reset)	ADC output is connected to the JESD204A input		
			01	not used		
			10	JESD204A input is fed with a dummy constant, set to: OTR = and ADC[13:0] = "100110111101010"		
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_ctrl register)		
3 to 1	-	-	000	not used		
0	ADC_PD	R/W		ADC power-down control:		
			0	ADC is operational		
			1	ADC is in Power-down mode		

Single 14-bit ADC: serial JESD204A interface

12. Package outline

Fig 24. Package outline SOT1152-1 (HVQFN32)

ADC1413S_SER 3 © IDT 2012. All rights reserved. Rev. 03 — 2 July 2012

Single 14-bit ADC: serial JESD204A interface

13. Abbreviations

Table 47. Abbreviations

Table 47.	Abbreviations
Acronym	Description
ADC	Analog-to-Digital Converter
DCS	Duty Cycle Stabilizer
ESD	ElectroStatic Discharge
IF	Intermediate Frequency
IMD	InterModulation Distortion
LSB	Least Significant Bit
LVCMOS	Low-Voltage Complementary Metal-Oxide Semiconductor
LVPECL	Low-Voltage Positive Emitter-Coupled Logic
MSB	Most Significant Bit
OTR	OuT-of-Range
PRBS	Pseudo-Random Binary Sequence
SFDR	Spurious-Free Dynamic Range
SNR	Signal-to-Noise Ratio
SPI	Serial Peripheral Interface
TX	Transmitter

ADC1413S series

35 of 36

Single 14-bit ADC: serial JESD204A interface

14. Revision history

Table 48. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
ADC1413S_SER v.3	20120702	Product data sheet	-	ADC1413S_SER v.2
ADC1413S_SER v.2	20110608	Product data sheet	-	ADC1413S_SER v.1
Modifications:	 Section 10. 	2 "Clock and digital outpu	t timing" ha	s been updated.
ADC1413S_SER v.1	20110314	Product data sheet	-	-

15. Contact information

For more information or sales office addresses, please visit: http://www.idt.com

ADC1413S series

36 of 36

Single 14-bit ADC: serial JESD204A interface

16. Contents

1	General description 1	11.2.2	Programmable full-scale	16
2	Features and benefits	11.2.3	Common-mode output voltage $(V_{O(cm)}) \dots$	
3	Applications	11.2.4	Biasing	
4	Ordering information	11.3	Clock input	
-		11.3.1	Drive modes	
5	Block diagram 2	11.3.2	Equivalent input circuit	18
6	Pinning information	11.3.3	Duty cycle stabilizer	19
6.1	Pinning	11.3.4	Clock input divider	19
6.2	Pin description	11.4	Digital outputs	19
7	Limiting values 4	11.4.1	Serial output equivalent circuit	19
8	Thermal characteristics 5	11.5	JESD204A serializer	20
9	Static characteristics	11.5.1	Digital JESD204A formatter	20
-		11.5.2	ADC core output codes versus input voltage.	21
10	Dynamic characteristics 8	11.6	Serial Peripheral Interface (SPI)	22
10.1	Dynamic characteristics 8	11.6.1	Register description	22
10.2	Clock and digital output timing 9	11.6.2	Channel control	24
10.3	Serial output timing	11.6.3	Register description	26
10.4	SPI timing	11.6.3.1	ADC control registers	26
11	Application information	11.6.4	JESD204A digital control registers	28
11.1	Analog inputs	12	Package outline	33
11.1.1	Input stage description	13	Abbreviations	34
11.1.2	Anti-kickback circuitry	14	Revision history	35
11.1.3	Transformer	15	Contact information	
11.2	System reference and power management 14			
11.2.1	Internal/external reference 14	16	Contents	36