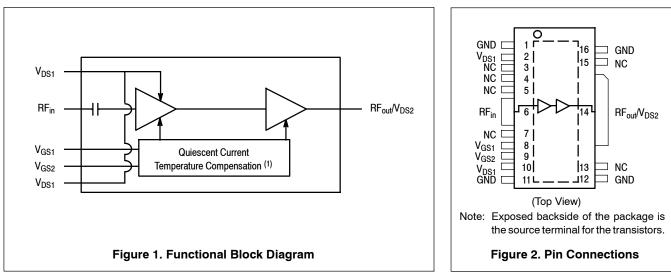


√RoHS

RF LDMOS Integrated Power Amplifiers


Wideband integrated circuit is suitable for industrial heating applications operating at 2450 MHz. This multi-stage structure is rated for 26 to 32 V operation in both CW and pulse applications.

- Typical CW Performance: V_{DD} = 28 Vdc, I_{DQ1} = 55 mA, I_{DQ2} = 195 mA, P_{out} = 25 W CW, f = 2450 MHz Power Gain — 27.7 dB
 - Power Added Efficiency 43.8%
- Capable of Handling 10:1 VSWR, @ 28 Vdc, 2450 MHz, 25 W CW Output Power

Features

- Multi-stage structure is rated for 26 to 32 V Operation
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽¹⁾
- Integrated ESD Protection
- Excellent Thermal Stability
- 225°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel.

1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

© Freescale Semiconductor, Inc., 2014. All rights reserved.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics (In Freescale Narrowband Test Fixture)

Characteristic		Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case		R_{\thetaJC}	0.1	°C/W
(Case Temperature 80°C, P _{out} = 25 W CW)	Stage 1, 28 Vdc, I _{DQ1} = 55 mA Stage 2, 28 Vdc, I _{DQ2} = 195 mA		6.1 1.2	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1B
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics $(T_C = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}			10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}			1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}			1	μAdc
Stage 1 - On Characteristics		•	•	1	

Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 20 μAdc)	V _{GS(th)}	1.2	1.9	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1} = 55 mA) ⁽⁴⁾	V _{GS(Q)}	_	2.7	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ1} = 55 mAdc) ^(4,5)	V _{GG(Q)}	10.3	11.2	12.6	Vdc

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

4. Measured in Freescale Narrowband Test Fixture.

5. See Appendix A for functional test measurements and test fixture.

(continued)

MHT2000NR1 MHT2000GNR1

2

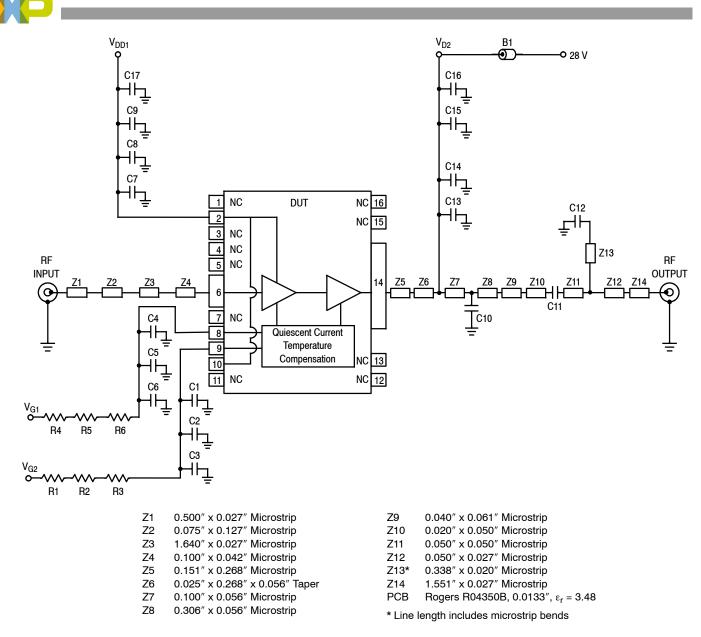
Table 5. Electrical Characteristics	$(T_C = 25^{\circ}C \text{ unless otherwise noted})$ (C	ontinued)
-------------------------------------	---	-----------

Characteristic	Symbol	Min	Тур	Мах	Unit
Stage 2 - Off Characteristics				•	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}			10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}			1	μAdc
Stage 2 - On Characteristics	·				
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 80 \mu \text{Adc})$	V _{GS(th)}	1.2	1.9	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2} = 195 mAdc) (1)	V _{GS(Q)}		2.7	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ2} = 195 mAdc) ^(1,2)	V _{GG(Q)}	9.5	10.5	11.5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 800 mAdc)	V _{DS(on)}	0.15	0.47	0.8	Vdc
Stage 2 - Dynamic Characteristics ⁽³⁾	•		•	•	•
Output Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	111	_	pF

 $I_{DQ2} = 195 \text{ mA}, P_{out} = 25 \text{ W CW}, f = 2450 \text{ MHz}$

Power Gain	G _{ps}	25.5	27.7	30.5	dB
Power Added Efficiency	PAE	41.5	43.8	_	%
Input Return Loss	IRL	—	-18	-10	dB

Functional Tests ⁽²⁾ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 77 mA, I_{DQ2} = 275 mA, P_{out} = 4 W Avg., f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3 /₄, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset.


Power Gain	G _{ps}	25.5	28.5	30.5	dB
Power Added Efficiency	PAE	15	17	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	—	9	—	dB
Adjacent Channel Power Ratio	ACPR	—	-50	-46	dBc
Input Return Loss	IRL	—	-15	-10	dB

1. Measured in Freescale Narrowband Test Fixture.

2. See Appendix A for functional test fixture documentation.

3. Part internally matched both on input and output.

4. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

Part	Description	Part Number	Manufacturer
B1	47 Ω, 100 MHz Short Ferrite Bead	2743019447	Fair-Rite
C1, C4, C7, C12, C15	6.8 pF Chip Capacitors	ATC600S6R8CT250XT	ATC
C2, C5, C8, C13	10 nF Chip Capacitors	C0603C103J5RAC	Kemet
C3, C6, C9, C14	1 μF, 50 V Chip Capacitors	GRM32RR71H105KA01B	Murata
C10	2.4 pF Chip Capacitor	ATC600S2R4BT250XT	ATC
C11	3.3 pF Chip Capacitor	ATC600S3R3BT250XT	ATC
C16, C17	10 µF, 50 V Chip Capacitors	GRM55DR61H106KA88B	Murata
R1, R4	12 KΩ, 1/4 W Chip Resistors	CRCW12061202FKEA	Vishay
R2, R3, R5, R6	1 KΩ, 1/4 W Chip Resistors	CRCW12061001FKEA	Vishay

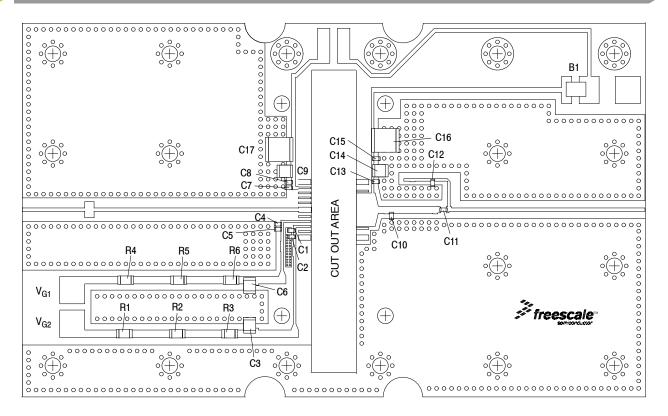
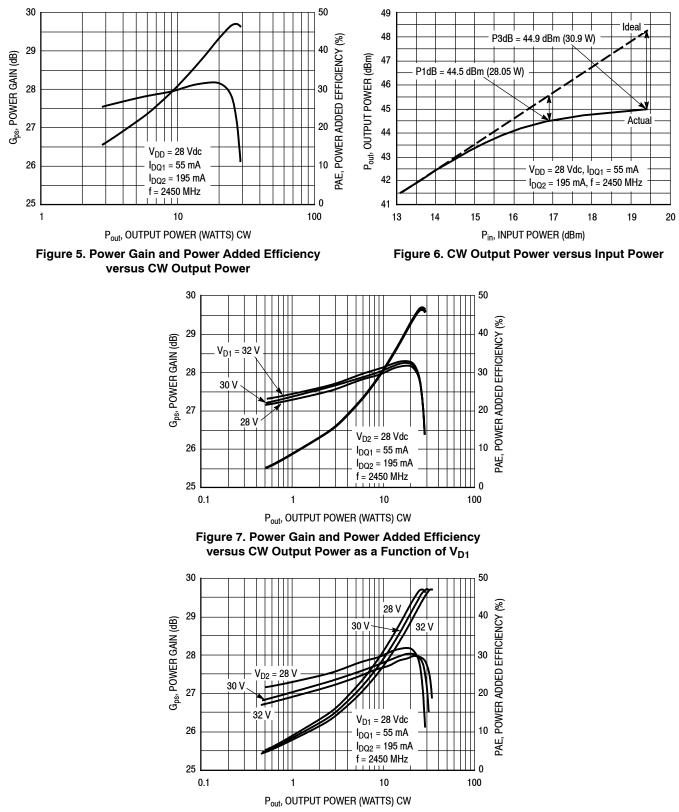
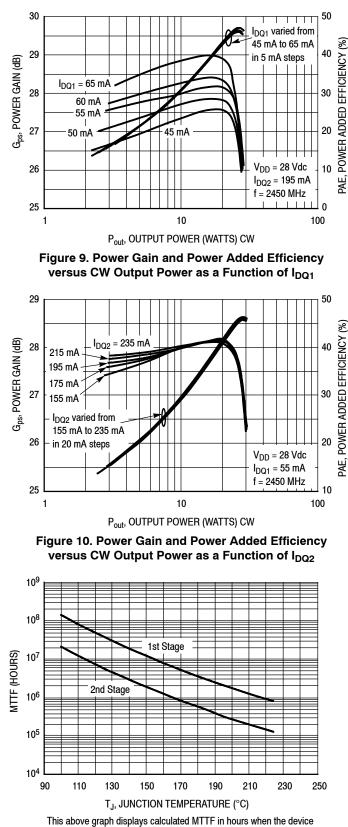
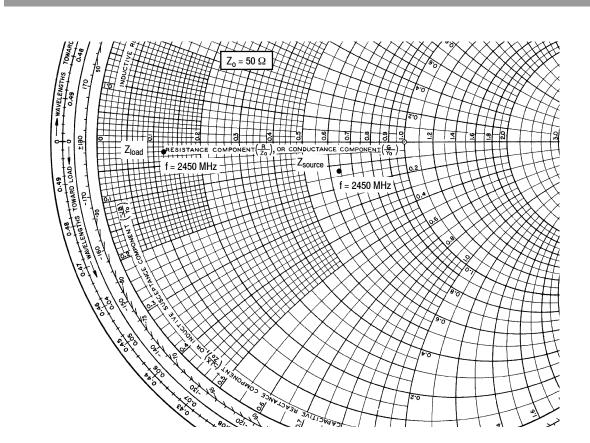



Figure 4. MHT2000NR1 Narrowband Test Circuit Component Layout

TYPICAL CHARACTERISTICS — NARROWBAND

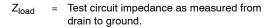


6


TYPICAL CHARACTERISTICS — NARROWBAND

This above graph displays calculated MTTF in hours when the device is operated at $V_{DD} = 28$ Vdc, $P_{out} = 25$ W CW, and PAE = 43.8%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.


Figure 11. MTTF versus Junction Temperature

 V_{DD} = 28 Vdc, I_{DQ1} = 55 mA, I_{DQ2} = 195 mA, P_{out} = 25 W CW

f	Z _{source}	Z _{load}
MHz	Ω	Ω
2450	32 – j6.256	6.2 – j1.17

Z_{source} = Test circuit impedance as measured from gate to ground.

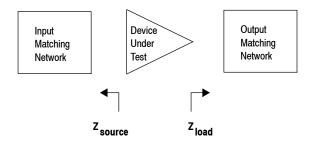
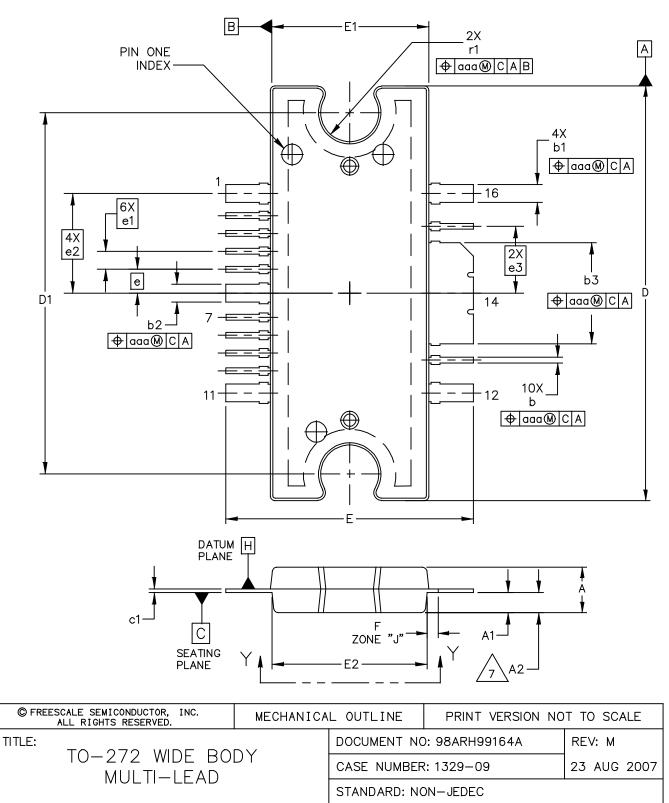
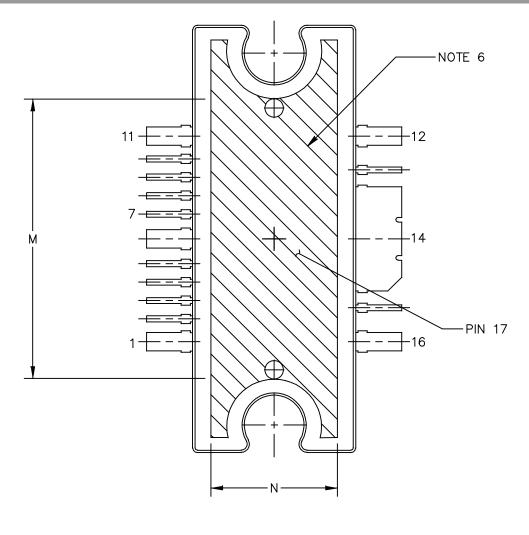
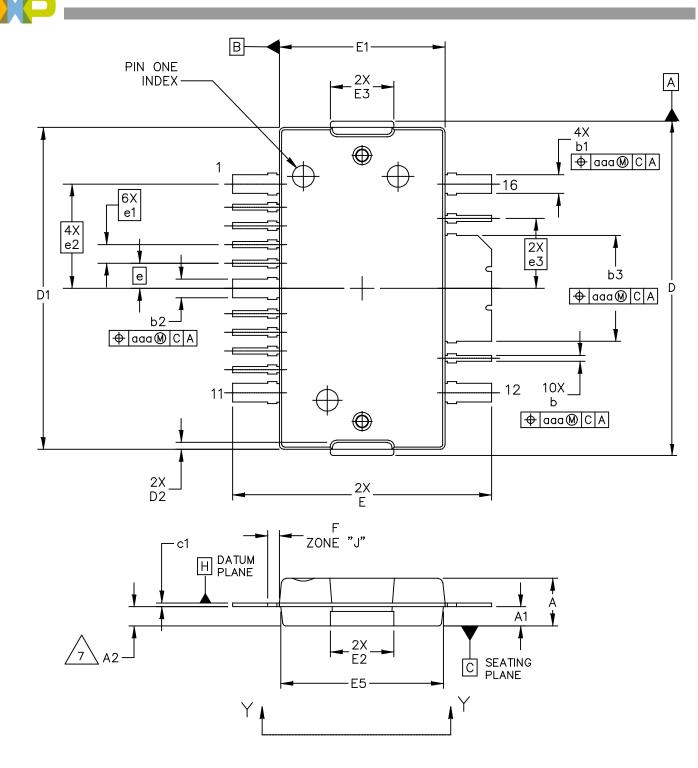




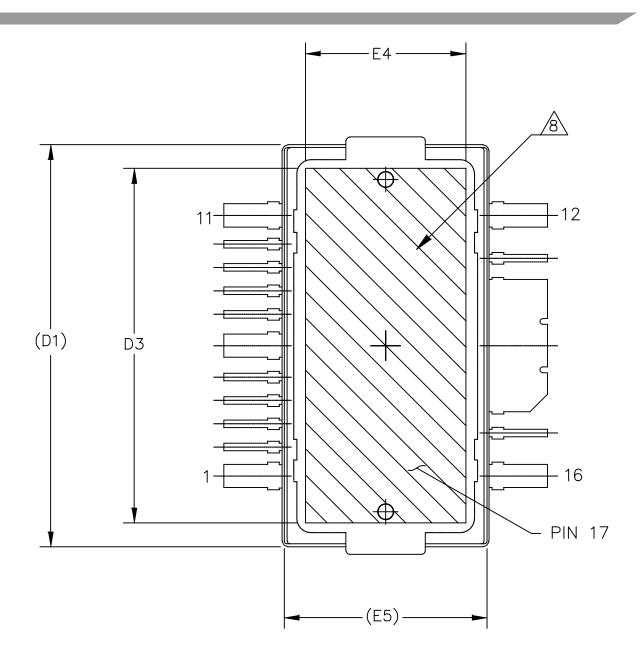
Figure 12. Series Equivalent Source and Load Impedance - Narrowband

PACKAGE DIMENSIONS

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
	DOCUMENT NO: 98ARH99164A REV: M			
TO-272 WIDE BO	CASE NUMBER: 1329-09 23 AUG 200			
		STANDARD: NO	N-JEDEC	


MHT2000NR1 MHT2000GNR1

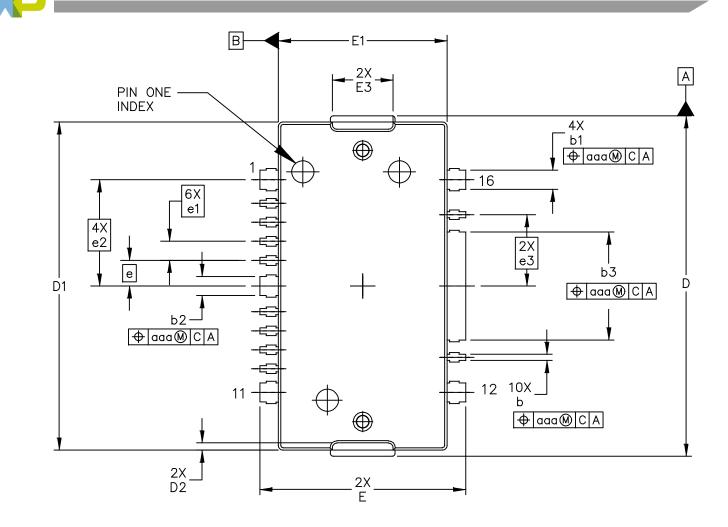

NOTES:

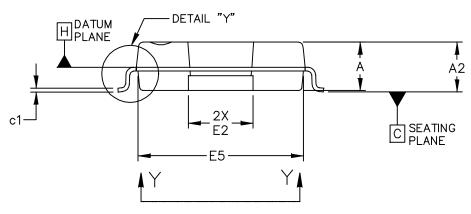
- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	IN	СН	MILLIMETER				INCH	M	ILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.100	.104	2.54	2.64	b	.011	.017	0.28	3 0.43	
A1	.038	.044	0.96	1.12	b1	.037	.043	0.94	4 1.09	
A2	.040	.042	1.02	1.07	b2	.037	.043	0.94	4 1.09	
D	.928	.932	23.57	23.67	bЗ	.225	.231	5.72	2 5.87	
D1	.810	BSC	20).57 BSC	c1	.007	.011	.18	.28	
E	.551	.559	14.00) 14.20	е	.c)54 BSC		1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.0	040 BSC	1.02 BSC		
E2	.346	.350	8.79	8.89	e2	.2	24 BSC		5.69 BSC	
F	.025	BSC	0	.64 BSC	e3	.1	50 BSC	3.81 BSC		
М	.600		15.24	⊦	r1	.063	.068	1.6	1.73	
N	.270		6.86							
					aaa		.004		.10	
© F	REESCALE SEM ALL RIGH	IICONDUCTOR, I TS RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NC	T TO SCALE	
TITLE:	TITLE: TO-272 WIDE BODY				DOCU	MENT NO): 98ARH99164	A	REV: M	
					CASE	NUMBER	R: 1329–09		23 AUG 2007	
	MULTI-LEAD				STAN	DARD: NO	DN-JEDEC			

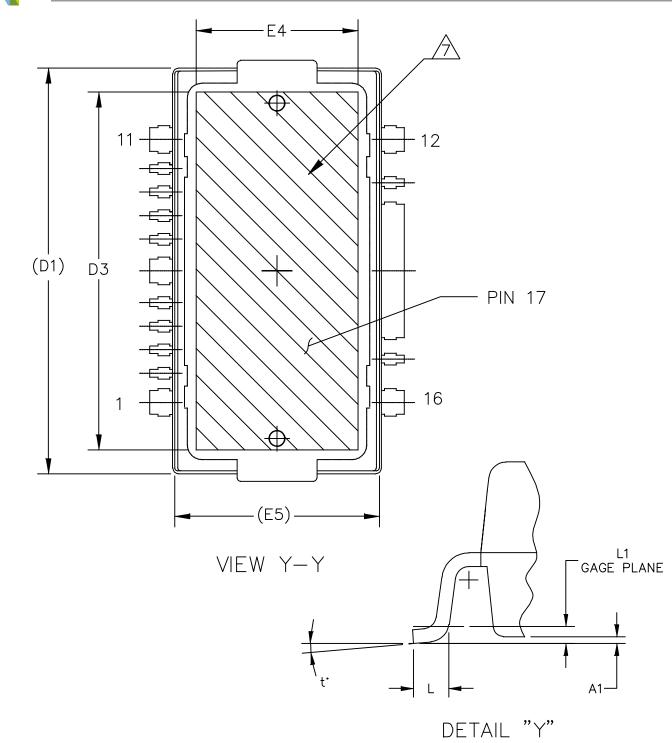
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	T TO SCALE		
TITLE:	DOCUMENT NO: 98ASA10754D REV: A			
TO-270 WIDE BO	CASE NUMBER: 1886-01 31 AUG 2007			
		STANDARD: NON-JEDEC		

VIEW Y-Y


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
	DOCUMENT NO: 98ASA10754D REV: A			
TO-270 WIDE BO	CASE NUMBER: 1886-01 31 AUG 2007			
	STANDARD: NO	DN-JEDEC		



NOTES:


- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

	INCH MILLIMETER				INCH	М	ILLIMETER			
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	МАХ	
A	.100	.104	2.54	2.64 F .025 BSC 0.64 BS		0.64 BSC				
A1	.039	.043	0.99	1.09	b	.011	.017	0.28	3 0.43	
A2	.040	.042	1.02	1.07	b1	.037	.043	0.94	1.09	
D	.712	.720	18.08	18.29	b2	.037	.043	0.94	1.09	
D1	.688	.692	17.48	17.58	b3	.225	.231	5.72	2 5.87	
D2	.011	.019	0.28	0.48	c1	.007	.011	.18	.28	
D3	.600		15.24		е	.054 BSC			1.37 BSC	
E	.551	.559	14	14.2	e1	.040 BSC			1.02 BSC	
E1	.353	.357	8.97	9.07	e2	.2	24 BSC	5	5.69 BSC	
E2	.132	.140	3.35	3.56	e3	.1	50 BSC	3.81 BSC		
E3	.124	.132	3.15	3.35	aaa		.004	.10		
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© I		ICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE	
TITLE:	TO-2		e boi		DOCU	MENT NO): 98ASA10754	D	REV: A	
	10-2	16 LEA			CASE	NUMBER	: 1886–01		31 AUG 2007	
		, , , , , , , , , , , , , , , , , , , ,			STAN	DARD: NO	N-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BO	DOCUMENT NO: 98ASA10755D REV: A			
16 LEAD,	CASE NUMBER: 1887-01 31 AUG 200			
GULL WING	STANDARD: NON-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE: TO-270 WIDE B	DOCUMENT NO): 98ASA10755D	REV: A		
16 LEAD,		CASE NUMBER: 1887-01 31 AUG 2007			
GULL WING	STANDARD: NON-JEDEC				

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

	INCH		MIL	LIMETER			INCH	MI	LLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	.0	10 BSC	((0.25 BSC	
A2	.099	.110	2.51	2.79	b	.011	.017	0.28	0.43	
D	.712	.720	18.08	18.29	b1	.037	.043	0.94	1.09	
D1	.688	.692	17.48	17.58	b2	.037	.043	0.94	1.09	
D2	.011	.019	0.28	0.48	b3	.225	.231	5.72	5.87	
D3	.600		15.24		c1	.007	.011	0.18	0.28	
E	.429	.437	10.9	11.1	е	.05	4 BSC	1.	1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.04	0 BSC	1.0	1.02 BSC	
E2	.132	.140	3.35	3.56	e2	.22	4 BSC	5.69 BSC		
E3	.124	.132	3.15	3.35	eЗ	.15	0 BSC	3.81 BSC		
E4	.270		6.86		t	2'	8.	2'	8.	
E5	.346	.350	8.79	8.89	aaa		.004		0.10	
© I		MICONDUCTOR, IS RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VER	SION NO	NOT TO SCALE	
TITLE:	TITLE: TO-270 WIDE BODY				DOCL	IMENT NO): 98ASA10755	5D	REV: A	
	16 LEAD,				CASE	NUMBER	: 1887–01		31 AUG 2007	
		GULL	WING		STAN	STANDARD: NON-JEDEC				

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- · AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

· EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

For Software, do a Part Number search at <u>http://www.freescale.com</u>, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.


REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2014	Initial Release of Data Sheet

APPENDIX A MHT2000NR1 FUNCTIONAL TEST DATA, FIXTURE AND THERMAL DATA

Z1	0.500″ x 0.027″ Microstrip	Z9	0.040″ x 0.061″ Microstrip
Z2	0.075" x 0.127" Microstrip	Z10	0.020" x 0.050" Microstrip
Z3	1.640" x 0.027" Microstrip	Z11	0.050" x 0.050" Microstrip
Z4	0.100" x 0.042" Microstrip	Z12	0.050" x 0.027" Microstrip
Z5	0.151" x 0.268" Microstrip	Z13*	0.338″ x 0.020″ Microstrip
Z6	0.025" x 0.268" x 0.056" Taper	Z14	1.551" x 0.027" Microstrip
Z7	0.050″ x 0.056″ Microstrip	PCB	Rogers R04350B, 0.0133″, ε _r = 3.48
Z8	0.356″ x 0.056″ Microstrip	* Line I	ength includes microstrip bends

Table A-1. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit				
Functional Tests (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ1} = 77 \text{ mA}$, $I_{DQ2} = 275 \text{ mA}$, $P_{out} = 4 \text{ W Avg.}$, $f = 2700 \text{ MHz}$, WiMAX, OFDM 802.16d, 64 QAM 3 / ₄ , 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset.									

Power Gain	G _{ps}	25.5	28.5	30.5	dB
Power Added Efficiency	PAE	15	17	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	—	9	—	dB
Adjacent Channel Power Ratio	ACPR	—	-50	-46	dBc
Input Return Loss	IRL		-15	-10	dB

(continued)

APPENDIX A MHT2000NR1 FUNCTIONAL TEST DATA, FIXTURE AND THERMAL DATA (continued)

Characteristic	Symbol	Min	Тур	Мах	Unit
Stage 1 - On Characteristics					
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1} = 77 mA)	V _{GS(Q)}	—	2.7		Vdc
Fixture Gate Quiescent Voltage $(V_{DD} = 28 \text{ Vdc}, I_{DQ1} = 77 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GG(Q)}	12.5	15.8	19.5	Vdc
Stage 2 - On Characteristics					
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2} = 275 mAdc)	V _{GS(Q)}	—	2.7	_	Vdc
Fixture Gate Quiescent Voltage $(V_{DD} = 28 \text{ Vdc}, I_{DQ2} = 275 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GG(Q)}	11	14	18	Vdc
Table A-2. Thermal Characteristics					
Characteristic		Symbol	Value		Unit
Thermal Resistance, Junction to Case (Case Temperature 81°C, Pout = 25 W CW) Stage 1, 28 Vdc, Stage 2, 28 Vdc,	54.	R _{θJC} 5.5 1.3			°C/W

Table A-1. Electrical Characteristics (T_C = 25°C unless otherwise noted) (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: MHT2000N Rev. 0, 5/2014