

. reescale Semiconductor Technical Data Document Number: MD7IC2050N

Rev. 1, 5/2010

VRoHS

RF LDMOS Wideband Integrated Power Amplifiers

The MD7IC2050N wideband integrated circuit is designed with on-chip matching that makes it usable from 1750- 2050 MHz. This multi- stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulation formats.

Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQ1A} = I_{DQ1B} = 30$ mA, $I_{DQ2A} = 230$ mA, $V_{GS2B} = 1.4$ Vdc, $P_{out} = 10$ Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps}	PAE	Output PAR	ACPR
	(dB)	(%)	(dB)	(dBc)
2025 MHz	30.5	34.7	8.7	-37.4

- Capable of Handling 5:1 VSWR, @ 32 Vdc, 2017.5 MHz, 79 Watts CW Output Power (3 dB Input Overdrive from Rated Pour)
- Stable into a 5:1 VSWR. All Spurs Below -60 dBc @ 20 Watts to 80 Watts CW Pout
- Typical P_{out} @ 3 dB Compression Point ≈ 74 Watts CW

1880 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQ1A} = I_{DQ1B} = 30$ mA, $I_{DQ2A} = 230$ mA, $V_{GS2B} = 1.4$ Vdc, $P_{out} = 10$ Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	Output PAR (dB)	ACPR (dBc)
1880 MHz	30.3	35.2	8.6	-34.9
1900 MHz	30.2	34.9	8.6	-36.3
1920 MHz	30.1	34.8	8.7	-36.9

Features

- 100% PAR Tested for Guaranteed Output Power Capability
- Production Tested in a Symmetrical Doherty Configuration
- Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source S-Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)
- Integrated ESD Protection
- 225°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel

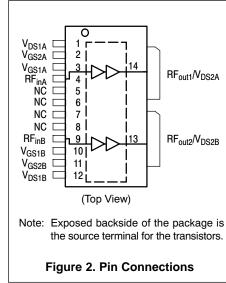
MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1

1880-2100 MHz, 10 W AVG., 28 V SINGLE W-CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS

CASE 1618-02 TO-270 WB-14 PLASTIC MD7IC2050NR1

CASE 1621-02 TO-270 WB-14 GULL PLASTIC MD7IC2050GNR1


CASE 1617-02 TO-272 WB-14 PLASTIC MD7IC2050NBR1



^{1.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

- Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
- 2. Peaking and Carrier orientation is determined by the test fixture design.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	T _J	225	°C
Input Power	P _{in}	28	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Final Doherty Application	1 1		
Thermal Resistance, Junction to Case Case Temperature 81°C, P _{out} = 50 W CW Stage 1A, 28 Vdc, I _{DQ1A} = 30 mA Stage 1B, 28 Vdc, I _{DQ1B} = 30 mA Stage 2A, 28 Vdc, I _{DQ2A} = 230 mA	R _{θJC}	8.2 8.2 1.8	°C/W
Stage 2B, 28 Vdc, V_{GS2B} = 1.4 Vdc Case Temperature 73°C, P_{out} = 10 W CW Stage 1A, 28 Vdc, I_{DQ1A} = 30 mA Stage 1B, 28 Vdc, I_{DQ1B} = 30 mA Stage 2A, 28 Vdc, I_{DQ2A} = 230 mA Stage 2B, 28 Vdc, V_{GS2B} = 1.4 Vdc		1.8 8.3 8.3 1.9 1.9	

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	0 (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	II (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics ⁽¹⁾	*				
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 - On Characteristics ⁽¹⁾			1		
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 23 \mu\text{Adc})$	V _{GS(th)}	1.2	1.9	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 30 mAdc)	V _{GS(Q)}	_	3	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 30 mAdc, Measured in Functional Test)	V _{GG(Q)}	4.1	5.5	7.1	Vdc
Stage 2 - Off Characteristics ⁽¹⁾					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 - On Characteristics ⁽¹⁾			1		
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 150 μAdc)	V _{GS(th)}	1.2	2	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2A} = 230 mAdc)	V _{GS(Q)}	_	3	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ2A} = 230 mAdc, Measured in Functional Test)	V _{GG(Q)}	4.1	5.5	7.1	Vdc
Drain-Source On-Voltage	V _{DS(on)}	0.1	0.3	1.2	Vdc

Functional Tests $^{(2,3,4)}$ (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1A} = I_{DQ1B} = 30 mA, I_{DQ2A} = 230 mA, V_{GS2B} = 1.4 Vdc, P_{out} = 10 W Avg., f = 2025 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	28.5	30.5	33.0	dB
Power Added Efficiency	PAE	32.0	34.7		%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	8.0	8.7	_	dB
Adjacent Channel Power Ratio	ACPR	_	-37.4	-34.0	dBc

1. Each side of device measured separately.

 $(V_{GS} = 10 \text{ Vdc}, I_D = 1 \text{ Adc})$

- 2. Part internally matched both on input and output.
- 3. Measurement made with device in a Symmetrical Doherty configuration.
- 4. Measurement made with device in straight lead configuration before any lead forming operation is applied.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performances (1) (In Freescale Doherty Test Fixture, 50 ohm syste	em) V _{DD} = 28 \	Vdc, I _{DQ1A} =	I _{DQ1B} = 30 m	A, I _{DQ2A} = 23	0 mA,
V _{GS2B} = 1.4 Vdc, 2010-2025 MHz Bandwidth					

GOLD ,					
Pout @ 1 dB Compression Point, CW	P1dB	_	60	_	W
Pout @ 3 dB Compression Point, CW	P3dB	_	74	_	W
IMD Symmetry @ 30 W PEP, P _{out} where IMD Third Order Intermodulation ≅ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)	IMD _{sym}	_	55	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	70	_	MHz
Quiescent Current Accuracy over Temperature with 4.7 kΩ Gate Feed Resistors (-30 to 85°C) (2)	ΔI_{QT}	_	2.64	_	%
Gain Flatness in 15 MHz Bandwidth @ Pout = 10 W Avg.	G _F	_	0.1	_	dB
Gain Variation over Temperature (-30 °C to +85°C)	ΔG	_	0.033	_	dB/°C
Output Power Variation over Temperature (-30 °C to +85 °C)	ΔP1dB	_	0.008	_	dBm/°C

Typical W-CDMA Broadband Performance — 1880 MHz (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1A} = I_{DQ1B} = 30 mA, I_{DQ2A} = 230 mA, I_{QS2B} = 1.4 Vdc, I_{Qu1} = 10 W Avg., Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ \pm 5 MHz Offset.

Frequency	G _{ps} (dB)	PAE (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
1880 MHz	30.3	35.2	8.6	-34.9	-21
1900 MHz	30.2	34.9	8.6	-36.3	-21
1920 MHz	30.1	34.8	8.7	-36.9	-22

^{1.} Measurement made with device in a Symmetrical Doherty configuration.

Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.Select Documentation/Application Notes - AN1977 or AN1987.

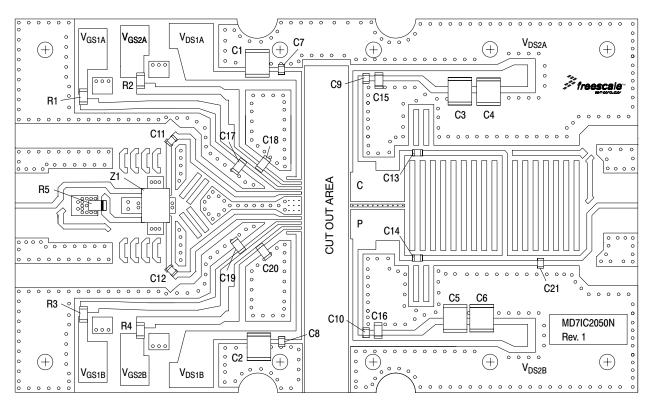


Figure 3. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Layout

Table 6. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C7, C8	4.7 pF Chip Capacitors	ATC600F4R7BT250XT	ATC
C9, C10	5.6 pF Chip Capacitors	ATC600F5R6BT250XT	ATC
C11, C12, C13, C14	39 pF Chip Capacitors	ATC600F390JT250XT	ATC
C15, C16, C17, C18, C19, C20	4.7 μF, 50 V Chip Capacitors	GRM31CR71H475KA12L	Murata
C21	1.0 pF Chip Capacitor	ATC600F1R0BT250XT	ATC
R1, R2, R3, R4	4.7 kΩ, 1/4 W Chip Resistors	CRCW12064701KEA	Vishay
R5	50 Ω, 1/4 W Thick Film Chip Resistor	RK73B2BTTD510J	KOA Speer
Z1	1900 MHz Band 90°, 3 dB Hybrid Coupler	GSC351-HYB1900	Soshin
PCB	0.020", ε _r = 3.5	RF-35	Taconic

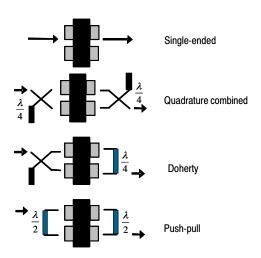


Figure 4. Possible Circuit Topologies

TYPICAL CHARACTERISTICS

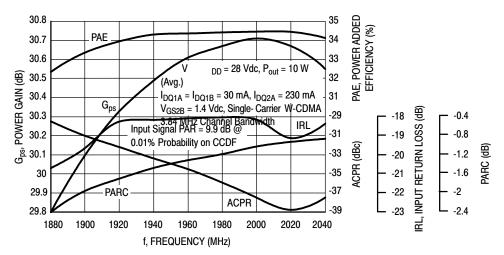


Figure 5. Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 10 Watts Avg.

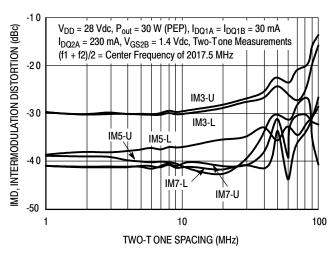


Figure 6. Intermodulation Distortion Products versus Two-T one Spacing



Figure 7. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS

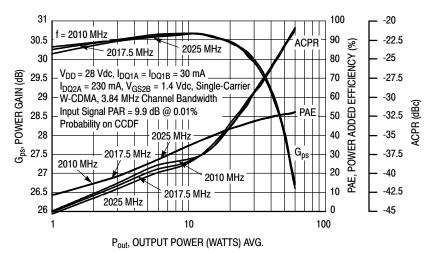


Figure 8. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power

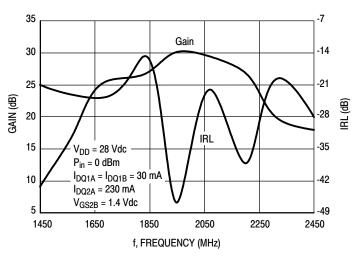


Figure 9. Broadband Frequency Response

W-CDMA TEST SIGNAL

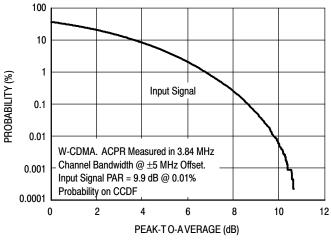


Figure 10. CCDF W-CDMA IQ Magnitude Clipping, Single-Carrier Test Signal

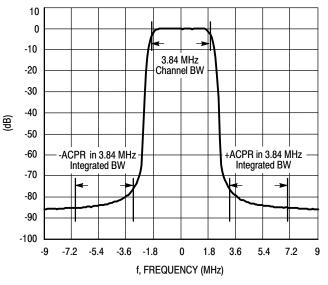


Figure 11. Single-Carrier W-CDMA Spectrum

 V_{DD} = 28 Vdc, I_{DQ1A} = I_{DQB} = 30 mA, I_{DQ2A} = 230 mA, V_{GS2B} = 1.4 Vdc, P_{out} = 10 W Avg.

f MHz	Z _{in} Ω	Z _{load} Ω
1995	60.12 - j33.28	11.79 - j6.72
2000	59.30 - j32.57	11.78 - j6.78
2005	58.41 - j32.06	11.78 - j6.85
2010	57.41 - j31.31	11.78 - j6.92
2015	56.31 - j30.27	11.79 - j7.00
2020	55.94 - j29.62	11.81 - j7.08
2025	55.28 - j28.90	11.81 - j7.16
2030	54.75 - j28.12	11.84 - j7.24
2035	54.39 - j27.55	11.80 - j7.33

Note: Measured with Peaking side open.

 Z_{in} = Device input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

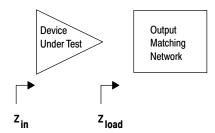


Figure 12. Series Equivalent Input and Load Impedance — Carrier Side

 $V_{DD} = 28 \; Vdc, \; I_{DQ1A} = I_{DQB} = 30 \; mA, \; I_{DQ2A} = 230 \; mA, \; V_{GS2B} = 1.4 \; Vdc, \; P_{out} = 10 \; W \; Avg.$

f MHz	Z _{in} Ω	Z_{load}
1995	60.12 - j33.28	1.86 - j11.38
2000	59.30 - j32.57	1.80 - j11.24
2005	58.41 - j32.06	1.71 - j11.12
2010	57.41 - j31.31	1.64 - j11.00
2015	56.31 - j30.27	1.58 - j10.91
2020	55.94 - j29.62	1.51 - j10.78
2025	55.28 - j28.90	1.45 - j10.66
2030	54.75 - j28.12	1.38 - j10.56
2035	54.39 - j27.55	1.33 - j10.40

Note: Measured with Carrier side open.

 Z_{in} = Device input impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

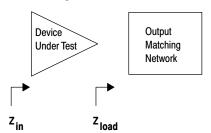
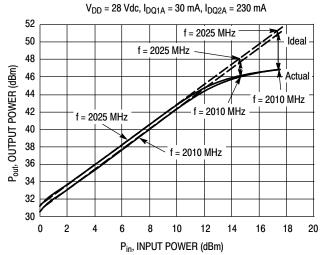



Figure 13. Series Equivalent Input and Load Impedance — Peaking Side

ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS

Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V

f	P1	dB	P3dB		
(MHz)	Watts dBm		Watts	dBm	
2010	40	46	49	46.9	
2025	38.9	45.9	47.9	46.8	

Test Impedances per Compression Level

f (MHz)		$\mathbf{Z}_{\mathbf{source}}$	$\mathbf{Z_{load}}$
2010	P1dB	73.6 + j31.1	6.8 - j13.7
2025	P1dB	68.9 + j26.7	8.3 - j14.3

Figure 14. CW Output Power versus Input Power @ 28 V

NOTE: Measurement made on the Class AB, carrier side of the device.

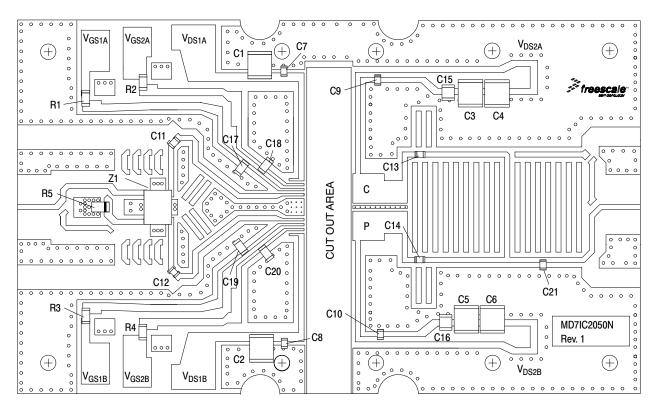


Figure 15. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Layout — 1880 MHz

Table 7. MD7IC2050NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1880 MHz

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C7, C8	6.8 pF Chip Capacitors	ATC600F6R8BT250XT	ATC
C9, C10	15 pF Chip Capacitors	ATC600F150JT250XT	ATC
C11, C12, C13, C14	33 pF Chip Capacitors	ATC600F330JT250XT	ATC
C15, C16	6.8 μF, 50 V Chip Capacitors	GRM32CF51H685ZA01L	Murata
C17, C18, C19, C20	2.2 μF, Chip Capacitors	GRM31CR61H225KA88L	Murata
C21	0.9 pF Chip Capacitor	ATC600F0R9BT250XT	ATC
R1, R2, R3, R4	4.7 kΩ, 1/4 W Chip Resistors	CRCW12064701FKEA	Vishay
R5	50 Ω, 1/4 W Thick Film Chip Resistor	RK73B2BTTD510J	KOA Speer
Z1	1900 MHz Band 90°, 3 dB Hybrid Coupler	GSC351-HYB1900	Soshin
PCB	0.020", ε _r = 3.5	RO4350B	Rogers

TYPICAL CHARACTERISTICS

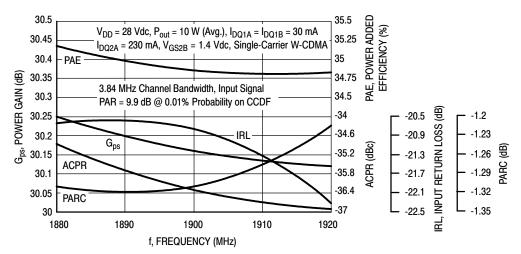


Figure 16. Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 10 Watts Avg. — 1880 MHz

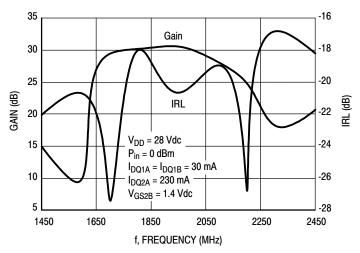


Figure 17. Broadband Frequency Response — 1880 MHz

$$\begin{split} V_{DD} = 28 \text{ Vdc, } I_{DQ1A} = I_{DQB} = 30 \text{ mA, } I_{DQ2A} = 230 \text{ mA,} \\ V_{GS2B} = 1.4 \text{ Vdc, } P_{out} = 10 \text{ W Avg.} \end{split}$$

f MHz	Z _{in} Ω	Z _{load} Ω
1725	24.58 + j28.09	13.68 - j7.83
1750	30.62 + j35.84	14.09 - j7.95
1775	39.80 + j43.59	14.42 - j8.13
1800	53.16 + j51.72	14.72 - j8.33
1825	75.48 + j54.32	15.02 - j8.57
1850	101.49 + j44.03	15.26 - j8.91
1875	127.43 + j11.39	15.47 - j9.29
1900	113.52 - j23.46	15.59 - j9.67
1925	92.03 - j36.95	15.66 - j10.15
1950	74.95 - j38.10	15.64 - j10.65
1975	64.95 - j35.67	15.59 - j11.22
2000	59.30 - j32.57	15.41 - j11.76
2025	55.28 - j28.90	15.20 - j12.36
2050	52.85 - j26.07	14.84 - j12.97
2075	51.34 - j23.91	14.42 - j13.56

Note: Measured with Peaking side open.

 Z_{in} = Device input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

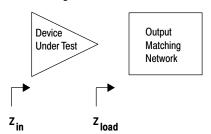


Figure 18. Series Equivalent Input and Load Impedance — Carrier Side — 1880 MHz

$$\begin{split} V_{DD} = 28 \text{ Vdc, } I_{DQ1A} = I_{DQB} = 30 \text{ mA, } I_{DQ2A} = 230 \text{ mA,} \\ V_{GS2B} = 1.4 \text{ Vdc, } P_{out} = 10 \text{ W Avg.} \end{split}$$

f MHz	Z _{in} Ω	Z _{load} Ω
1725	24.58 + j28.09	4.10 - j18.22
1750	30.62 + j35.84	3.61 - j17.55
1775	39.80 + j43.59	3.09 - j16.79
1800	53.16 + j51.72	2.61 - j16.00
1825	75.48 + j54.32	2.31 - j15.22
1850	101.49 + j44.03	1.99 - j14.46
1875	127.43 + j11.39	1.71 - j13.71
1900	113.52 - j23.46	1.47 - j12.96
1925	92.03 - j36.95	1.27 - j12.19
1950	74.95 - j38.10	1.15 - j11.44
1975	64.95 - j35.67	1.04 - j10.70
2000	59.30 - j32.57	1.00 - j9.97
2025	55.28 - j28.90	0.98 - j9.28
2050	52.85 - j26.07	1.05 - j8.57
2075	51.34 - j23.91	1.16 - j7.91

Note: Measured with Carrier side open.

 Z_{in} = Device input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

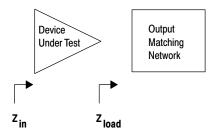
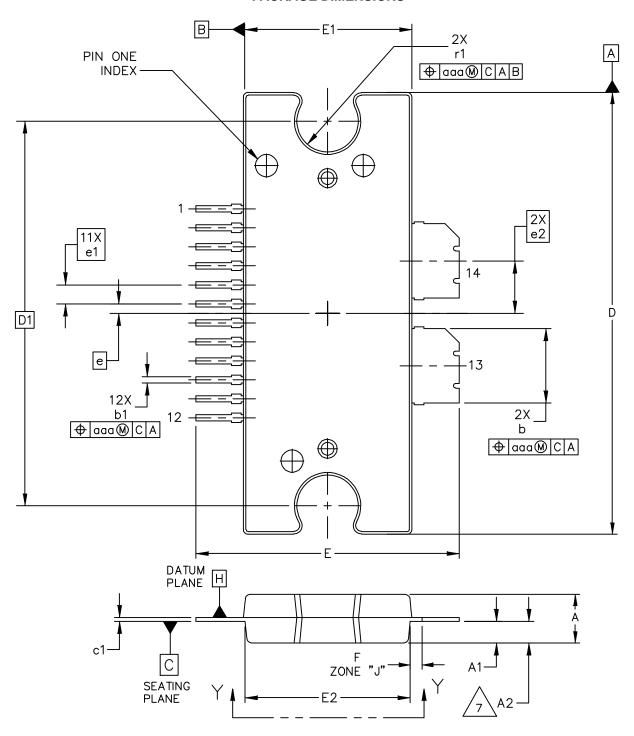
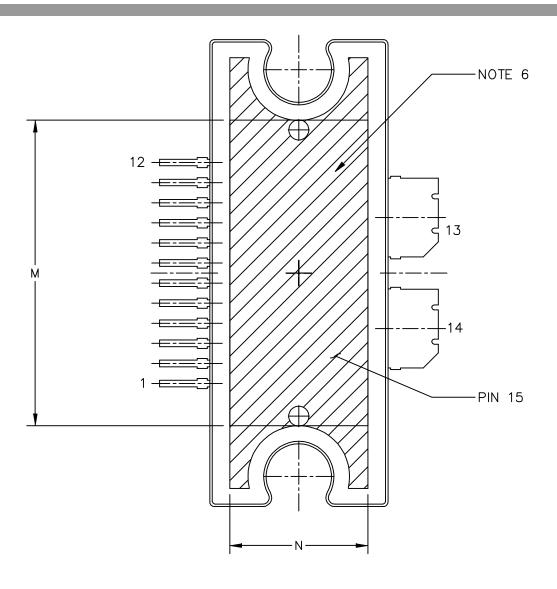



Figure 19. Series Equivalent Input and Load Impedance — Peaking Side — 1880 MHz



PACKAGE DIMENSIONS

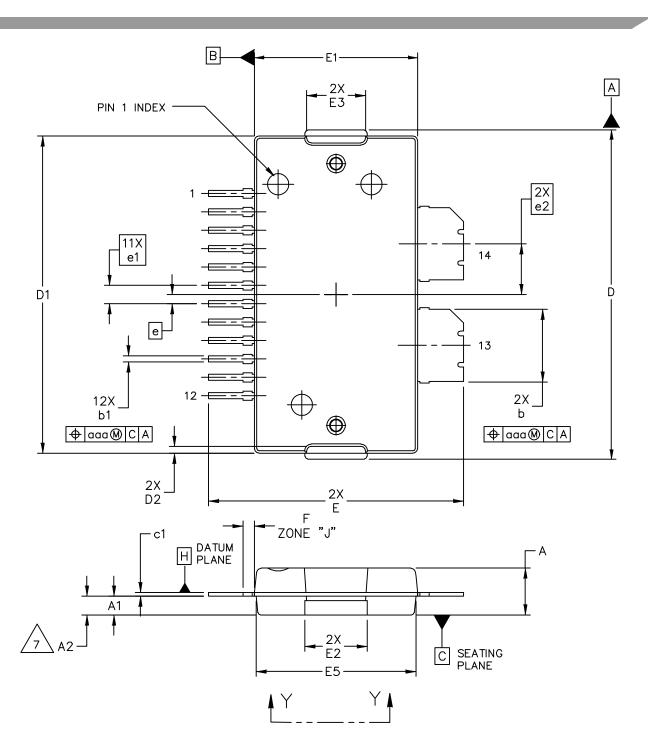
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10649D	REV: A	
TO-272 WIDE BODY 14 LEAD		CASE NUMBER	2: 1617–02	27 JUN 2007
TH LLAD	STANDARD: NO	N-JEDEC		

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10649D	REV: A	
TO-272 WIDE BODY		CASE NUMBER	R: 1617–02	27 JUN 2007
I T LLAD	STANDARD: NO	DN-JEDEC		

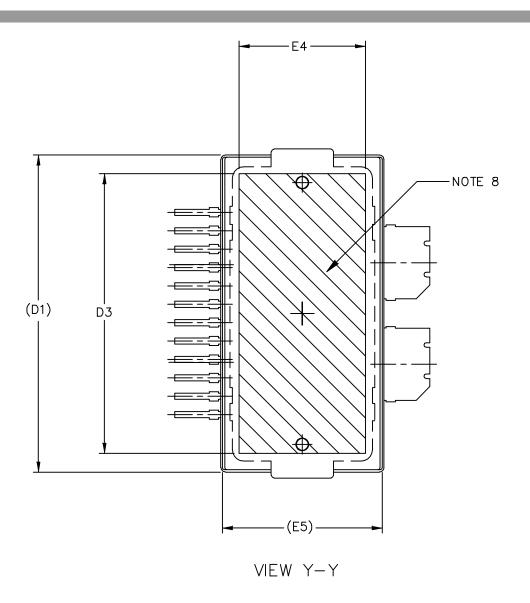
NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DO NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE
 "b" AND "b1" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.


	IN	ICH	MILLIMETER			INCH		М	ILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.100	.104	2.54	2.64	b	.154	.160	3.91	4.06	
A1	.039	.043	0.99	1.09	b1	.010	.016	0.25	0.41	
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	0.28	
D	.928	.932	23.57	23.67	e	.0	20 BSC	(0.51 BSC	
D1	.810	BSC	20	.57 BSC	e1	.0	40 BSC	1	.02 BSC	
E	.551	.559	14.00	14.20	e2	.1105 BSC		2.	.807 BSC	
E1	.353	.357	8.97	9.07	r1	.063	.068	1.6	1.73	
E2	.346	.350	8.79	8.89						
F	.025	BSC	0.	64 BSC	aaa		.004		0.10	
М	.600		15.24							
N	.270		6.86							
©	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			L OUT	LINE	PRINT VER	SION NO	T TO SCALE		
TITLE	TITLE:			DOCL	JMENT NO): 98ASA10649	D	REV: A		
	TO-272 WIDE BODY			CASE	NUMBER	2: 1617–02		27 JUN 2007		

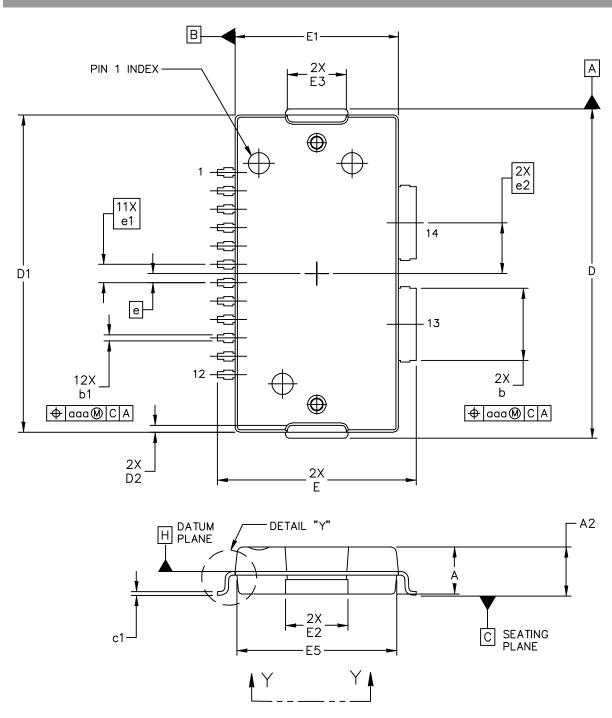
STANDARD: NON-JEDEC

MD7IC2050NR1 MD7IC2050GNR1 MD7IC2050NBR1


14 LEAD

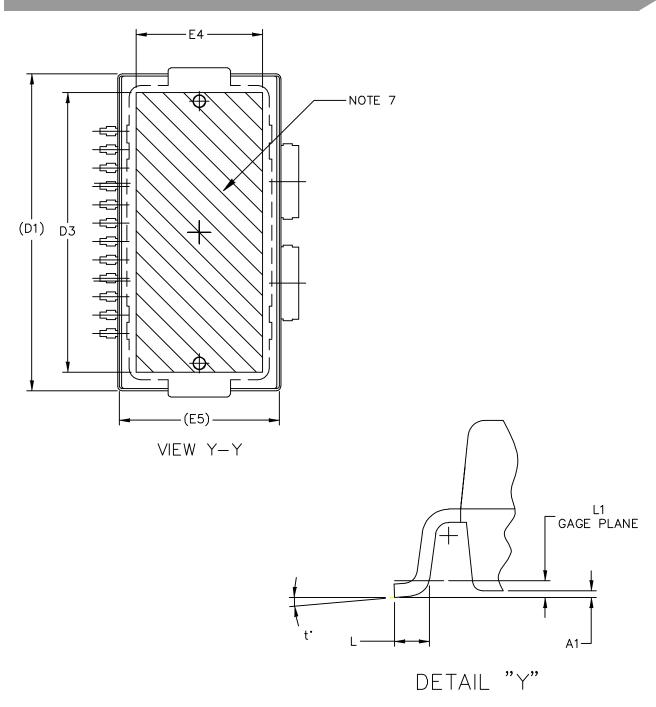
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10650D	REV: A	
TO-270 WIDE BODY		CASE NUMBER	2: 1618–02	19 JUN 2007
I T LLAD	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHA		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10650D	REV: A	
TO-270 WIDE BOD	CASE NUMBER: 1618-02 19 JUN 2007			
	STANDARD: NO	N-JEDEC		



NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.


	INCH		МІ	LLIMETER		INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	F	.025 BSC		0.64 BSC		
A1	.039	.043	0.99	1.09	b	.154	.160	3.9 ⁻	1 4.06	
A2	.040	.042	1.02	1.07	b1	.010	.016	0.25	5 0.41	
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28	
D1	.688	.692	17.48	17.58	е		20 BSC	(0.51 BSC	
D2	.011	.019	0.28	0.48	e1		040 BSC	1.02 BSC		
D3	.600		15.24		e2	.1105 BSC		2.807 BSC		
E	.551	.559	14	14.2						
E1	.353	.357	8.97	9.07	aaa		.004		.10	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35						
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECH				MECHANICA	L OUTLINE PRINT VERS			SION NOT TO SCALE		
TITLE:					DOCU	DOCUMENT NO: 98ASA10650D REV: A			REV: A	
TO-270 WIDE BODY 14 LEAD					CASE NUMBER: 1618-02 19 JUN 2			19 JUN 2007		
I T LLAD					STANDARD: NON-JEDEC					

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE: TO-270 WIDE BOD	ΟΥ	DOCUMENT NO: 98ASA10653D		REV: A	
14 LEAD		CASE NUMBER: 1621-02 19 JUN 2007			
GULL WING	STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE: TO-270 WIDE BOD	Υ	DOCUMENT NO: 98ASA10653D		REV: A	
14 LEAD		CASE NUMBER: 1621-02 19 JUN 2007			
GULL WING	STANDARD: NON-JEDEC				

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	INCH		МП	LLIMETER		INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64	L	.018	.024	0.46	6 0.61
A1	.001	.004	0.02	0.10	L1	.0)10 BSC	0.25 BSC	
A2	.099	.110	2.51	2.79	b	.154	.160	3.9	1 4.06
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	5 0.41
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28
D2	.011	.019	0.28	0.48	е	.020 BSC		0.51 BSC	
D3	.600		15.24		e1	.040 BSC		1.02 BSC	
E	.429	.437	10.9	11.1	e2	.1105 BSC		2.807 BSC	
E1	.353	.357	8.97	9.07	t	2.	8'	2.	8.
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35	aaa	.004		.10	
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				AL OUTLINE PRINT VERSION NOT TO SCALE				T TO SCALE	
TITLE: TO-270 WIDE BODY				DOCUMENT NO: 98ASA10653D REV: A			REV: A		
14 LEAD				CASE NUMBER: 1621-02 19 JUN 2			19 JUN 2007		
GULL WING				STANDARD: NON-JEDEC					

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2009	Initial Release of Data Sheet
1	May 2010	 Corrected Thermal Characteristics table values for thermal resistance as follows: 50 W CW I_{DQ1B} changed from 6.1 to 8.2 °C/W and V_{GS2B} changed from 1.4 to 1.8 °C/W; 10 W CW I_{DQ1B} changed from 3.6 to 8.3 °C/W and V_{GS2B} changed from *Stage 2B is turned off to 1.9 °C/W. Thermal values now reflect the symmetrical Doherty nature of the device, p. 2
		Changed ESD Human Body Model rating from Class 1B to Class 0 to reflect recent ESD test results of the device, p. 3
		Added RF High Power Model availability to Product Software, p. 23

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140

Fax: +1-303-675-2150

LDCF or Free scale Semiconductor @hibbert group.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

Document Number: MD7IC2050N Rev. 1, 5/2010