ADC1413D series

Dual 14-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface
Rev. 07 - 2 July 2012
Product data sheet

1. General description

The ADC1413D is a dual-channel 14-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performance and low power at sample rates up to 125 Msps . Pipelined architecture and output error correction ensure the ADC1413D is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a 3 V source for analog and a 1.8 V source for the output driver, it embeds two serial outputs. Each lane is differential and complies with the JESD204A standard. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADCs. A set of IC configurations is also available via the binary level control pins taken, which are used at power-up. The device also includes a programmable full-scale SPI to allow a flexible input voltage range of 1 V to 2 V (peak-to-peak).

Excellent dynamic performance is maintained from the baseband to input frequencies of 170 MHz or more, making the ADC1413D ideal for use in communications, imaging, and medical applications.

2. Features and benefits

■ SNR, 72 dBFS; SFDR, 86 dBc
■ Sample rate up to 125 Msps

- Clock input divided by 2 for less jitter contribution
- $3 \mathrm{~V}, 1.8 \mathrm{~V}$ power supplies
- Flexible input voltage range: $1 \mathrm{~V}(p-p)$ to 2 V (p-p)
■ Two configurable serial outputs
- Compliant with JESD204A serial transmission standard
- Pin compatible with the ADC1613D series, ADC1213D series, and ADC1113D125
- Input bandwidth, 600 MHz
- Power dissipation, 995 mW at 80 Msps
- SPI register programming
- Duty cycle stabilizer (DCS)
- High IF capability
- Offset binary, two's complement, gray code
- Power-down mode and Sleep mode

■ HVQFN56 package

3. Applications

- Wireless and wired broadband communications
- Spectral analysis
Portable instrumentation
- Ultrasound equipment
- Imaging systems
Software defined radio

4. Ordering information

Table 1. Ordering information

| Type number | Sampling
 frequency
 (Msps) | Nackage | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Name | Description | Version | |
| ADC1413D125HN-C1 | 125 | HVQFN56 | plastic thermal enhanced very thin quad flat package;
 no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$ | SOT684-7 |
| ADC1413D105HN-C1 | 105 | HVQFN56 | plastic thermal enhanced very thin quad flat package;
 no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$ | SOT684-7 |
| ADC1413D080HN-C1 | 80 | HVQFN56 | plastic thermal enhanced very thin quad flat package;
 no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$ | SOT684-7 |
| ADC1413D065HN-C1 | 65 | HVQFN56 | plastic thermal enhanced very thin quad flat package;
 no leads; 56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$ | SOT684-7 |

5. Block diagram

Fig 1. Block diagram

6. Pinning information

6.1 Pinning

Fig 2. Pinning diagram

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type $^{[1]}$	Description
INAP	1	I	channel A analog input
INAM	2	I	channel A complementary analog input
VCMA	3	O	channel A output common voltage
REFAT	4	O	channel A top reference
REFAB	5	O	channel A bottom reference
AGND	6	G	analog ground
CLKP	7	I	clock input
CLKM	8	I	complementary clock input
AGND	9	G	analog ground
REFBB	10	O	channel B bottom reference
REFBT	11	O	channel B top reference
VCMB	12	O	channel B output common voltage
INBM	13	I	channel B complementary analog input

Table 2. Pin description ...continued

Symbol	Pin	Type ${ }^{[1]}$	Description
INBP	14	1	channel B analog input
VDDA	15	P	analog power supply 3 V
VDDA	16	P	analog power supply 3 V
SCLK	17	1	SPI clock
SDIO	18	I/O	SPI data input/output
$\overline{\mathrm{CS}}$	19	1	chip select
AGND	20	G	analog ground
RESET	21	1	JEDEC digital IP reset
SCRAMBLER	22	1	scrambler enable and disable
CFG0	23	I/O	See Table 28 (input) or OTRA (output)[2]
CFG1	24	I/O	See Table 28 (input) or OTRB (output) ${ }^{[2]}$
CFG2	25	I/O	See Table 28 (input)
CFG3	26	I/O	See Table 28 (input)
VDDD	27	P	digital power supply 1.8 V
DGND	28	G	digital ground
DGND	29	G	digital ground
DGND	30	G	digital ground
VDDD	31	P	digital power supply 1.8 V
CMLPB	32	0	channel B output
CMLNB	33	0	channel B complementary output
VDDD	34	P	digital power supply 1.8 V
DGND	35	G	digital ground
DGND	36	G	digital ground
VDDD	37	P	digital power supply 1.8 V
CMLNA	38	0	channel A complementary output
CMLPA	39	0	channel A output
VDDD	40	P	digital power supply 1.8 V
DGND	41	G	digital ground
DGND	42	G	digital ground
SYNCP	43	I	synchronization from FPGA
SYNCN	44	1	synchronization from FPGA
DGND	45	G	digital ground
VDDD	46	P	digital power supply 1.8 V
SWING_0	47	I	JESD204 serial buffer programmable output swing
SWING_1	48	1	JESD204 serial buffer programmable output swing
DNC	49	0	do not connect
VDDA	50	P	analog power supply 3 V
AGND	51	G	analog ground
AGND	52	G	analog ground

Table 2. Pin description ...continued

Symbol	Pin	Type ${ }^{[1]}$	Description
VDDA	53	P	analog power supply 3 V
SENSE	54	I	reference programming pin
VREF	55	I/O	voltage reference input/output
VDDA	56	P	analog power supply 3 V

[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.
[2] OTRA stands for "OuT of Range A". OTRB stands for "OuT of Range B"

7. Limiting values

Table 3. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {DDA }}$	analog supply voltage		-0.4	+4.6	V
$\mathrm{~V}_{\text {DDD }}$	digital supply voltage		-0.4	+2.5	V
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$	
T_{j}	junction temperature	-	125	${ }^{\circ} \mathrm{C}$	

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$R_{\text {th(}(-a)}$	thermal resistance from junction to ambient	${ }^{[1]} 17.8$	K/W	
$R_{\text {th(j-c) }}$	thermal resistance from junction to case	${ }^{[1]} 6.8$	K/W	

[1] Value for six layers board in still air with a minimum of 25 thermal vias.

9. Static characteristics

Table 5. Static characteristics ${ }^{[1]}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supplies						
$V_{\text {DDA }}$	analog supply voltage		2.85	3.0	3.4	V
$V_{\text {DDD }}$	digital supply voltage		1.65	1.8	1.95	V
$l_{\text {DDA }}$	analog supply current	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps} ; \\ & \mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz} \end{aligned}$	-	343	-	mA
$I_{\text {DDD }}$	digital supply current	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps} ; \\ & \mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz} \end{aligned}$	-	150	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{f}_{\mathrm{clk}}=125 \mathrm{Msps}$	-	1270	-	mW
		$\mathrm{f}_{\mathrm{clk}}=105 \mathrm{Msps}$	-	1150	-	mW
		$\mathrm{f}_{\mathrm{clk}}=80 \mathrm{Msps}$	-	995	-	mW
		$\mathrm{f}_{\mathrm{clk}}=65 \mathrm{Msps}$	-	885	-	mW
P	power dissipation	Power-down mode	-	30	-	mW
		Standby mode	-	200	-	mW

Clock inputs: pins CLKP and CLKM (AC-coupled)
Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

$V_{\text {i(clk)dif }}$	differential clock input voltage	peak-to-peak	-	1.6	V

SINE

$V_{\text {i(clk)dif }}$	differential clock input voltage	peak	-	± 3.0	-

Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS)

$V_{I L}$	LOW-level input voltage	-	-	$0.3 \mathrm{~V}_{\mathrm{DDA}}$	V
V_{IH}	HIGH -level input voltage	$0.7 \mathrm{~V}_{\text {DDA }}$	-	-	V

Logic inputs: Power-down: pins CFG0 to CFG3, SCRAMBLER, SWING_0, SWING_1, and RESET

VIL	LOW-level input voltage	-	0	-	V
V_{IH}	HIGH-level input voltage	-	$0.66 \mathrm{~V}_{\text {DDD }}$	-	V
$\mathrm{I}_{\text {IL }}$	LOW-level input current	-6	-	+6	$\mu \mathrm{A}$
I_{H}	HIGH-level input current	-30	-	+30	$\mu \mathrm{A}$
SPI: pins $\overline{C S}$, SDIO, and SCLK					
VIL	LOW-level input voltage	0	-	$0.3 \mathrm{~V}_{\text {DDA }}$	V
V_{IH}	HIGH-level input voltage	$0.7 \mathrm{~V}_{\text {DDA }}$	-	$V_{\text {DDA }}$	V
$\mathrm{I}_{\text {IL }}$	LOW-level input current	-10	-	+10	$\mu \mathrm{A}$
I_{IH}	HIGH-level input current	-50	-	+50	$\mu \mathrm{A}$
C_{1}	input capacitance	-	4	-	pF
Analog inputs: pins INAP, INAM, INBP, and INBM					
I_{1}	input current track mode	-5	-	+5	$\mu \mathrm{A}$
R_{I}	input resistance track mode	-	15	-	Ω
C_{1}	input capacitance track mode	-	5	-	pF
$\mathrm{V}_{\mathrm{I}(\mathrm{cm})}$	common-mode input track mode voltage	0.9	1.5	2	V

Table 5. Static characteristics ${ }^{[1]}$...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
B_{i}	input bandwidth		-	600	-	MHz
$V_{1(\text { dif) }}$	differential input voltage	peak-to-peak	1	-	2	V
Voltage controlled regulator output: pins VCMA and VCMB						
$\mathrm{V}_{\mathrm{O}(\mathrm{cm})}$	common-mode output voltage		-	$\mathrm{V}_{\text {DDA }} / 2$	-	V
$\left.\mathrm{l}_{\mathrm{O}} \mathrm{cm}\right)$	common-mode output current		-	4	-	mA
Reference voltage input/output: pin VREF						
$V_{\text {VREF }}$	voltage on pin VREF	output	0.5	-	1	V
		input	0.5	-	1	V

Data outputs: pins CMLPA, CMLNA

Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=000$						
V_{OL}	LOW-level output voltage	DC coupled; output	-	1.5	-	V
		AC coupled	-	1.35	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.65	-	V
Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=001$						
VoL	LOW-level output voltage	DC coupled; output	-	1.45	-	V
		AC coupled	-	1.275	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.625	-	V
Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=010$						
V_{OL}	LOW-level output voltage	DC coupled; output	-	1.4	-	V
		AC coupled	-	1.2	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.6	-	V

Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=011$						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	DC coupled; output	-	1.35	-	V
		AC coupled	-	1.125	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.575	-	V
Output levels, $\mathrm{V}_{\text {DDD }}=1.8 \mathrm{~V}$; SWING_SEL[2:0] $=100$						
V_{OL}	LOW-level output voltage	DC coupled; output	-	1.3	-	V
		AC coupled	-	1.05	-	V
V_{OH}	HIGH-level output voltage	DC coupled; output	-	1.8	-	V
		AC coupled	-	1.55	-	V
Serial configuration: pins SYNCCP, SYNCCN						
$V_{\text {IL }}$	LOW-level input vo	differential; input	-	0.95	-	V
V_{IH}	HIGH-level input v	differential; input	-	1.47	-	V
Accuracy						
INL	integral non-linearity		-	± 5	-	LSB

Table 5. Static characteristics ${ }^{[1]}$...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
DNL	differential non-linearity	guaranteed no missing codes	-0.95	± 0.5	+0.95	LSB
$\mathrm{E}_{\text {offset }}$	offset error		-	± 2	-	mV
E_{G}	gain error	full-scale	-	± 0.5	-	\%
$\mathrm{M}_{\mathrm{G} \text { (CTC) }}$	channel-to-channel gain matching		-	1.1	-	\%
Supply						
PSRR	power supply rejection ratio	$\begin{aligned} & 200 \mathrm{mV}(p-p) \text { on } \mathrm{pin} \\ & \text { VDDA; } \mathrm{f}_{\mathrm{i}}=\mathrm{DC} \end{aligned}$	-	-54	-	dB

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\text {DDD }}=1.8 \mathrm{~V}$; V_{1} (INAP, INBP) $-\mathrm{V}_{I}$ (INAM, INBM) $=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.
10. Dynamic characteristics
Table 6. Dynamic characteristics ${ }^{[1]}$
10.1 Dynamic characteristics

Analog signal processing

| $\alpha_{2 H}$ | second harmonic level |
| :--- | :--- | | $f_{i}=3 \mathrm{MHz}$ |
| :--- |
| $f_{i}=30 \mathrm{MHz}$ | $\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$

$\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$ $f_{1}=3 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=3 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=70 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=170 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{i}}=30 \mathrm{MHz}$

10.2 Clock and digital output timing
Table 7. Clock and digital output characteristics ${ }^{[1]}$

Symbol	Parameter	Conditions	ADC1413D065			ADC1413D080			ADC1413D105			ADC1413D125			Unit
			Min	Typ	Max										
Clock timing input: pins CLKP and CLKM															
$\mathrm{f}_{\mathrm{clk}}$	clock frequency		45	-	65	60	-	80	75	-	105	100	-	125	Msps
$\mathrm{t}_{\text {lat(data) }}$	data latency time	clock cycles	307	-	850	250	-	283	190	-	226	160	-	170	ns
$\delta_{\text {clk }}$	clock duty cycle	DCS_EN = logic 1	30	50	70	30	50	70	30	50	70	30	50	70	\%
$\mathrm{t}_{\mathrm{d}(\mathrm{s})}$	sampling delay tim		-	0.8	-	-	0.8	-	-	0.8	-	-	0.8	-	ns
$\mathrm{t}_{\text {wake }}$	wake-up time		-	76	-	-	76	-	-	76	-	-	76	-	$\mu \mathrm{s}$

[^0]
10.3 Serial output timing

The eye diagram of the serial output is shown in Figure 3 and Figure 4. Test conditions are:

- 3.125 Gbps data rate
- $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
- DC coupling with two different receiver common-mode voltages

Fig 3. Eye diagram at 1 V receiver common-mode

Fig 4. Eye diagram at 2 V receiver common-mode

10.4 SPI timing

Table 8. SPI timing characteristics ${ }^{[1]}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{SCLK})}$	SCLK pulse width		-	40	-	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{SCLKH})}$	SCLK HIGH pulse width		-	16	-	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{SCLKL})}$	SCLK LOW pulse width		-	16	-	ns
t_{su}	set-up time	data to SCLKH	-	5	-	ns
		$\overline{\mathrm{CS}}$ to SCLKH	-	5	-	ns
t_{h}	hold time	$\overline{\mathrm{CS}}$ to SCLK to SCLKH	-	2	-	ns
$\mathrm{f}_{\mathrm{clk}(\max)}$	maximum clock frequency		-	2	-	ns

[1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\text {DDA }}=3 \mathrm{~V}, \mathrm{~V}_{\text {DDD }}=1.8 \mathrm{~V}$; V_{1} (INAP, INBP) $-\mathrm{V}_{1}$ (INAM,INBM) $=-1 \mathrm{dBFS}$; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

Fig 5. SPI timing

11. Application information

11.1 Analog inputs

11.1.1 Input stage description

The analog input of the ADC1413D supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage $\left(\mathrm{V}_{\text {I(cm) }}\right)$ on pins NXP and INxM set to $0.5 \mathrm{~V}_{\text {DDA }}$.

The full-scale analog input voltage range is configurable between $1 \mathrm{~V}(p-p)$ and $2 \mathrm{~V}(p-p)$ via a programmable internal reference (see Section 11.2 and Table 21).

Figure 6 shows the equivalent circuit of the sample-and-hold input stage, including ElectroStatic Discharge (ESD) protection and circuit and package parasitics.

Fig 6. Input sampling circuit
The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

11.1.2 Anti-kickback circuitry

Anti-kickback circuitry (RC filter in Figure 7) is needed to counteract the effects of a charge injection generated by the sampling capacitance.

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively.

Fig 7. Anti-kickback circuit
The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth.

Table 9. RC coupling versus input frequency, typical values

Input frequency $\mathbf{(M H z)}$	Resistance (Ω)	Capacitance $\mathbf{(p F)}$
3	25	12
70	12	8
170	12	8

11.1.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 8 would be suitable for a baseband application.

Fig 8. Single transformer configuration

Fig 9. Dual transformer configuration
The configuration shown in Figure 9 is recommended for high frequency applications. In both cases, the choice of transformer is a compromise between cost and performance.

11.2 System reference and power management

11.2.1 Internal/external reference

The ADC1413D has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and SENSE (see Figure 11 to Figure 14), in 1 dB steps between 0 dB and -6 dB , via SPI control bits INTREF[2:0] (when bit INTREF_EN = logic 1; see Table 21). The equivalent reference circuit is shown in Figure 10. An external reference is also possible by providing a voltage on pin VREF as described in Figure 13.

Fig 10. Reference equivalent schematic
If bit INTREF_EN is set to logic 0 , the reference voltage is determined either internally or externally as detailed in Table 10.

Table 10. Reference modes

Mode	SPI bit, "Internal reference"	SENSE pin	VREF pin	Full-scale (V (p-p))
Internal (Figure 11)	0	GND	330 pF capacitor to GND	
Internal (Figure 12)	0	VREF pin = SENSE pin and $330 ~ p F ~ c a p a c i t o r ~ t o ~ G N D ~$		

Figure 11 to Figure 14 illustrate how to connect the SENSE and VREF pins to select the required reference voltage source.

Fig 11. Internal reference, 2 V (p-p) full-scale

Fig 13. External reference, 1 V (p-p) to 2 V (p-p) full-scale

Fig 12. Internal reference, 1 V (p-p) full-scale

Fig 14. Internal reference via SPI, 1 V (p-p) to 2 V (p-p) full-scale

11.2.2 Programmable full-scale

 The full-scale is programmable between $1 \mathrm{~V}(p-p)$ to $2 \mathrm{~V}(p-p)$ (see Table 11).Table 11. Programmable full-scale

INTREF[2:0]	Level (dB)	Full-scale (V (p-p))
000	0	2
001	-1	1.78
010	-2	1.59
011	-3	1.42
100	-4	1.26
101	-5	1.12
110	-6	1
111	not used	x

11.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{O}(\mathrm{cm})}\right)$

An $0.1 \mu \mathrm{~F}$ filter capacitor should be connected between pins VCMA and VCMB and ground to ensure a low-noise common-mode output voltage. When AC-coupled, these pins can be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.

Fig 15. Reference equivalent schematic

11.2.4 Biasing

The common-mode input voltage, $\mathrm{V}_{\mathrm{I}(\mathrm{cm})}$, at the inputs to the sample-and-hold stage (pins INAM, INBM, INAP, and INBP) must be between 0.9 V and 2 V for optimal performance.

11.3 Clock input

11.3.1 Drive modes

The ADC1413D can be driven differentially (LVPECL). It can also be driven by a single-ended Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) signal connected to pin CLKP (pin CLKM should be connected to ground via a capacitor) or pin CLKM (pin CLKP should be connected to ground via a capacitor).

a. Rising edge LVCMOS
b. Falling edge LVCMOS

Fig 16. LVCMOS single-ended clock input

$005 a a a 173$

$005 a a a 054$
a. Sine clock input
b. Sine clock input (with transformer)

005aaa172
c. LVPECL clock input

Fig 17. Differential clock input

11.3.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via $5 \mathrm{k} \Omega$ internal resistors.

$005 a a a 081$
$\mathrm{V}_{\mathrm{cm}(\mathrm{ck})}=$ common-mode voltage of the differential input stage.
Fig 18. Equivalent input circuit

Single-ended or differential clock inputs can be selected via the SPI (see Table 20). If single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit SE_SEL.

If single-ended is implemented without setting bit SE_SEL accordingly, the unused pin should be connected to ground via a capacitor.

11.3.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performance of the ADC by compensating the input clock signal duty cycle. When the duty cycle stabilizer is active (bit DCS_EN = logic 1; see Table 20), the circuit can handle signals with duty cycles of between 30% and 70% (typical). When the duty cycle stabilizer is disabled
(DCS_EN = logic 0), the input clock signal should have a duty cycle of between 45% and 55 \%.

Table 12. Duty cycle stabilizer

Bit DCS_EN	Description
0	duty cycle stabilizer disable
1	duty cycle stabilizer enable

11.3.4 Clock input divider

The ADC1413D contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV2_SEL = logic 1; see Table 20). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

11.4 Digital outputs

11.4.1 Serial output equivalent circuit

The JESD204A standard specifies that if the receiver and the transmitter are DC-coupled, both must be fed from the same supply.

Fig 19. CML output connection to the receiver (DC-coupled)
The output should be terminated when 100Ω (typical) is reached at the receiver side.

Fig 20. CML output connection to the receiver (AC-coupled)

11.5 JESD204A serializer

For more information about the JESD204A standard refer to the JEDEC web site.

11.5.1 Digital JESD204A formatter

The block placed after the ADC cores is used to implement all functionalities of the JESD204A standard. This ensures signal integrity and guarantees the clock and the data recovery at the receiver side.

The block is highly parameterized and can be configured in various ways depending on the sampling frequency and the number of lanes used.

Fig 21. General overview of the JESD204A serializer

Fig 22. Detailed view of the JESD204A serializer with debug functionality

11.5.2 ADC core output codes versus input voltage

Table 13 shows the data output codes for a given analog input voltage.
Table 13. Output codes versus input voltage

INP - INM (V)	Offset binary	Two's complement	OTR
<-1	00000000000000	10000000000000	1
-1	00000000000000	10000000000000	0
-0.9998779	00000000000001	10000000000001	0
-0.9997559	00000000000010	10000000000010	0
-0.9996338	00000000000011	10000000000011	0
-0.9995117	00000000000100	10000000000100	0
\ldots	\ldots.	\ldots.	0
-0.0002441	01111111111110	11111111111110	0
-0.0001221	01111111111111	11111111111111	0
0	10000000000000	00000000000000	0
+0.0001221	10000000000001	00000000000001	0
+0.0002441	10000000000010	00000000000010	0
\ldots	\ldots.	\ldots.	0
+0.9995117	11111111111011	01111111111011	0

Table 13. Output codes versus input voltage ...continued

INP - INM (V)	Offset binary	Two's complement	OTR
+0.9996338	11111111111100	01111111111100	0
+0.9997559	11111111111101	01111111111101	0
+0.9998779	11111111111110	01111111111110	0
+1	11111111111111	01111111111111	0
$>+1$	11111111111111	01111111111111	1

11.6 Serial Peripheral Interface (SPI)

11.6.1 Register description

The ADC1413D serial interface is a synchronous serial communications port allowing easy interfacing with many industry microprocessors. It provides access to the registers that control the operation of the chip in both read and write modes.

This interface is configured as a 3-wire type (SDIO as bidirectional pin).
SCLK acts as the serial clock, and pin $\overline{\mathrm{CS}}$ acts as the serial chip select.
Each read/write operation is sequenced by the $\overline{\mathrm{CS}}$ signal and enabled by a LOW level to to drive the chip with 2 bytes to 5 bytes, depending on the content of the instruction byte (see Table 14).

Table 14. SPI instruction bytes

	MSB						LSB	
Bit	7	6	5	4	3	2	1	0
Description	R/W ${ }^{[1]}$	W1	W0	A12	A11	A10	A9	A8
	A7	A6	A5	A4	A3	A2	A1	A0

[1] R/W indicates whether a read (logic 1) or write (logic 0) transfer occurs after the instruction byte.

Table 15. Read or Write mode access description

$R / W^{[1]}$	Description
0	Write mode operation
1	Read mode operation

[1] Bits W1 and W0 indicate the number of bytes transferred after the instruction byte.

Table 16. Number of bytes to be transferred

W1	W0	Number of bytes transferred
0	0	1 byte
0	1	2 bytes
1	0	3 bytes
1	1	4 or more bytes

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incremented to access subsequent addresses.

The steps for a data transfer:

1. The falling edge on pin $\overline{\mathrm{CS}}$ in combination with a rising edge on pin SCLK determine the start of communications.
2. The first phase is the transfer of the 2-byte instruction.
3. The second phase is the transfer of the data which can vary in length but is always a multiple of 8 bits. The Most Significant Bit (MSB) is always sent first (for instruction and data bytes).
4. A rising edge on pin $\overline{\mathrm{CS}}$ indicates the end of data transmission.

Fig 23. Transfer diagram for two data bytes (3-wire type)

11.6.2 Channel control

The two ADC channels can be configured at the same time or separately. By using the register "Channel index", the user can choose which ADC channel receives the next SPI-instruction. By default the channel A and B receives the same instructions in write mode. In read mode only A is active.
Table 17. Register allocation map

Address Register name (hex)		Access ${ }^{[1]}$	Bit definition								Default (bin)	
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADC control register												
0003	Channel index		R/W	-	-	-	-	-	-	ADCB	ADCA	11111111
0005	Reset and Power-down modes	R/W	SW_RST	-	-	-	-	-		1:0]	00000000	
0006	Clock	R/W	-	-	-	SE_SEL	DIFF_SE	-	CLKDIV2_SEL	DCS_EN	00000001	
0008	Vref	R/W	-	-	-	-	INTREF_EN		INTREF[2:0]		00000000	
0013	Offset	R/W	-	-	DIG_OFFSET[5:0]						00000000	
0014	Test pattern 1	R/W	-	-	-	-	-		TESTPAT_1[20		00000000	
0015	Test pattern 2	R/W	TESTPAT_2[13:6]								00000000	
0016	Test pattern 3	R/W	TESTPAT_3[5:0]						-	-	00000000	
JESD204A control												
0801	Ser_Status	R	RXSYNC ERROR	RESERVED[2:0]			0	0	POR_TST	RESERVED	01000000	
0802	Ser_Reset	R/W	SW_RST	0	0	0	$\underset{\substack{\text { FSM_SW_ } \\ \text { RST }}}{ }$	0	0	0	00000000	
0803	Ser_Cfg_Setup	R/W	0	0	0	0	CFG_SETUP[3:0]				00001000	
0805	Ser_Control1	R/W	0	TRISTATE CFG_PINS	SYNC POL	SYNC SINGLE ENDED	1	$\begin{aligned} & \mathrm{REV}- \\ & \mathrm{SCR} \end{aligned}$	REV ENCODER	REV_SERIAL	01001001	
0806	Ser_Control2	R/W	0	0	0	0	0	0	SWAP LANE_1_2	SWAP ADC_0_1	00000011	
0808	Ser_Analog_Ctrl	R/W	0	0	0	0	0	SWING_SEL[2:0]			00000011	
0809	Ser_ScramblerA	R/W	0	LSB_INIT[6:0]							00000000	
080A	Ser_ScramblerB	R/W	MSB_INIT[7:0]								11111111	
080B	Ser_PRBS_Ctrl	R/W	0	0	0	0	0	0	PRBS_TYPE[1:0]		00000000	
0820	Cfg_0_DID	R*		DID[7:0]							11101101	
0821	Cfg_1_BID	R/W*	0	0	0	0	BID[3:0]				00001010	
0822	Cfg_3_SCR_L	R/W*	SCR	0	0	0	0	0	0	L	00000000	
0823	Cfg_4_F	R/W*	0	0	0	0	0	F[2:0]			00000001	
0824	Cfg_5_K	R/W*	0	0	0	K[4:0]					00001000	
0825	Cfg_6_M	R/W*	0	0	0	0	0	0	0	M	00000000	

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

Address Register name (hex)		Access ${ }^{[1]}$	Bit definition								Default (bin)	
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADC control register												
0003	Channel index		R/W	-	-	-	-	-	-	ADCB	ADCA	11111111
0005	Reset and Power-down modes	R/W	SW_RST	-	-	-	-	-		1:0]	00000000	
0006	Clock	R/W	-	-	-	SE_SEL	DIFF_SE	-	CLKDIV2_SEL	DCS_EN	00000001	
0008	Vref	R/W	-	-	-	-	INTREF_EN		INTREF[2:0]		00000000	
0013	Offset	R/W	-	-	DIG_OFFSET[5:0]						00000000	
0014	Test pattern 1	R/W	-	-	-	-	-		TESTPAT_1[2]		00000000	
0015	Test pattern 2	R/W	TESTPAT_2[13:6]								00000000	
0016	Test pattern 3	R/W	TESTPAT_3[5:0]						-	-	00000000	
JESD204A control												
0801	Ser_Status	R	RXSYNC ERROR	RESERVED[2:0]			0	0	POR_TST	RESERVED	01000000	
0802	Ser_Reset	R/W	SW_RST	0	0	0	$\underset{\substack{\text { FSM_SW_ } \\ \text { RST }}}{ }$	0	0	0	00000000	
0803	Ser_Cfg_Setup	R/W	0	0	0	0	CFG_SETUP[3:0]				00001000	
0805	Ser_Control1	R/W	0	TRISTATE CFG_PINS	SYNC_ POL	SYNC SINGLE ENDED	1	$\begin{aligned} & \mathrm{REV}- \\ & \mathrm{SCR} \end{aligned}$	REV ENCODER	REV_SERIAL	01001001	
0806	Ser_Control2	R/W	0	0	0	0	0	0	SWAP LANE_1_2	$\begin{aligned} & \text { SWAP_- } \\ & \text { ADC_0_1 } \end{aligned}$	00000011	
0808	Ser_Analog_Ctri	R/W	0	0	0	0	0	SWING_SEL[2:0]			00000011	
0809	Ser_ScramblerA	R/W	0	LSB_INIT[6:0]							00000000	
080A	Ser_ScramblerB	R/W	MSB_INIT[7:0]								11111111	
080B	Ser_PRBS_Ctrl	R/W	0	0	0	0	0	0	PRBS_TYPE[1:0]		00000000	
0820	Cfg_0_DID	R^{*}		DID[7:0]							11101101	
0821	Cfg_1_BID	R/W*	0	0	0	0	BID[3:0]				00001010	
0822	Cfg_3_SCR_L	R/W*	SCR	0	0	0	0	0	0	L	00000000	
0823	Cfg_4_F	R/W*	0	0	0	0	0	F[2:0]			00000001	
0824	Cfg_5_K	R/W*	0	0	0	K[4:0]					00001000	
0825	Cfg_6_M	R/W*	0	0	0	0	0	0	0	M	00000000	

Table 17. Register allocation map ...continued

Address Register name (hex)		Access ${ }^{[1]}$	Bit definition								Default (bin)	
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0826	Cfg_7_CS_N		R/W*	0	CS[0]	0	0	N[3:0]				01000100
0827	Cfg_8_Np	R/W	0	0	0	NP[4:0]					00001111	
0828	Cfg_9_S	R/W*	0	0	0	0	0	0	0	S	00000000	
0829	Cfg_10_HD_CF	R/W*	HD	0	0	0	0	0	CF[1:0]		00000000	
082C	Cfg_01_2_LID	R/W*	0	0	0	LID[4:0]					00011011	
082D	Cfg_02_2_LID	R/W*	0	0	0	LID[4:0]					00011100	
084C	Cfg01_13_FCHK	R	FCHK[7:0]								00000000	
084D	Cfg02_13_FCHK	R	FCHK[7:0]								00000000	
0870	Lane0_0_Ctrl	R/W	0	$\begin{gathered} \text { SCR_IN_ } \\ \text { MODE } \end{gathered}$	LANE	DE[1:0]	0	$\begin{gathered} \text { LANE_- } \\ \text { POL } \end{gathered}$	LANE_CLK POS_EDGE	LANE_PD	00000001	
0871	Lane1_0_Ctrl	R/W	0	$\begin{aligned} & \text { SCR_IN_ } \\ & \text { MODE } \end{aligned}$	LANE	DE[1:0]	0	$\begin{gathered} \text { LANE_- } \\ \text { POL } \end{gathered}$	LANE_CLK POS_EDGE	LANE_PD	00000000	
0890	ADCA_0_Ctrl	R/W	0	0	ADC	[[1:0]	0	0	0	ADC_PD	00000001	
0891	ADCB_0_Ctrl	R/W	0	0	ADC	E[1:0]	0	0	0	ADC_PD	00000000	

[^1]
11.6.3 Register description

11.6.3.1 ADC control registers

Table 18. Register Channel index (address 0003h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
$\mathbf{7}$ to 2	-	-	111111	not used
1	ADCB	R/W		ADC B gets the next SPI command:
			0	ADC B not selected
			$\mathbf{1}$	ADC B selected
0	ADCA	R/W		ADC A gets the next SPI command:
			$\mathbf{0}$	ADC A not selected
			$\mathbf{1}$	ADC A selected

Table 19. Register Reset and Power-down mode (address 0005h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W		reset digital part:
		$\mathbf{0}$	no reset	
6 to 2	-	1	performs a reset of the digital part	
1 to 0	PD[1:0]	R/W	0000	not used
			$\mathbf{0 0}$	Power-down mode:
		01	normal (power-up)	
		10	full power-down	
		11	sleep	

Table 20. Register Clock (address 0006h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4	SE_SEL	R/W		select SE clock input pin:
			0	select CLKM input
			1	select CLKP input
3	DIFF_SE	R/W		differential/single-ended clock input select:
			0	fully differential
			1	single-ended
2	-	-	0	not used
1	CLKDIV2_SEL	R/W		select clock input divider by 2 :
			0	disable
			1	active
0	DCS_EN	R/W		duty cycle stabilizer enable:
			0	disable
			1	active

Table 21. Register Vref (address 0008h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3	INTREF_EN	R/W		enable internal programmable VREF mode:
			0	disable
			1	active
2 to 0	INTREF[2:0]	R/W		programmable internal reference:
			000	0 dB (FS=2 V)
			001	-1 dB (FS=1.78 V)
			010	-2 dB (FS=1.59 V)
			011	-3 dB (FS=1.42 V)
			100	-4 dB (FS=1.26 V)
			101	$-5 \mathrm{~dB}(\mathrm{FS}=1.12 \mathrm{~V})$
			110	-6 dB (FS=1 V)
			111	not used

Table 22. Digital Offset adjustment (address 0013h)
Default values are highlighted.

Register Offset		
Decimal	DIG_OFFSET[5:0]	
+31	011111	+31 LSB
\ldots	\ldots	\ldots
0	$\mathbf{0 0 0 0 0 0}$	0
\ldots	\ldots	\ldots
-32	100000	-32 LSB

Table 23. Register Test pattern 1 (address 0014h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	TESTPAT_1[2:0]	R/W		digital test pattern:
		$\mathbf{0 0 0}$	off	
		001	mid-scale	
		010	- FS	
		011 + FS 100	toggle '1111..1111'/'0000..0000'	
		101	custom test pattern, to be written in register 0015h and 0016h	
		110	'010101...'	
		111	'101010...'	

Table 24. Register Test pattern 2 (address 0015h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	TESTPAT_2[13:6]	R/W	$\mathbf{0 0 0 0 0 0 0 0}$	custom digital test pattern (bit 13 to 6)

Table 25. Register Test pattern 3 (address 0016h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 2	TESTPAT_3[5:0]	R/W	$\mathbf{0 0 0 0 0 0}$	custom digital test pattern (bit 5 to $\mathbf{0}$)
1 to 0	-	-	00	not used

11.6.4 JESD204A digital control registers

Table 26. Ser_Status (address 0801h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	RXSYNC_ERROR	R	0	set to 1 when a synchronization error occurs
6 to 4	RESERVED[2:0]	-	$\mathbf{1 0 0}$	reserved
3 to 2	-	-	00	not used
1	POR_TST	R	$\mathbf{0}$	power-on-reset
$\mathbf{0}$	RESERVED	-	0	reserved

Table 27. Ser_Reset (address 0802h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W	$\mathbf{0}$	initiates a software reset of the JESD204A unit
6 to 4	-	-	000	not used
3	FSM_SW_RST	R/W	$\mathbf{0}$	initiates a software reset of the internal state machine of JESD204A unit
2 to 0	-	-	000	not used

Table 28. Ser_Cfg_Setup (address 0803h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3 to 0	CFG_SETUP[3:0]	R/W		quick configuration of JESD204A. These settings overrule the configuration of pins CFG3 to CFG0 (see Table 29).

Table 29. JESD204A configuration table

	_SETUP[3:0]	ADC A	ADC B	Lane 0	Lane 1	F[1]	HD ${ }^{1]}$	$\mathrm{K}^{[1]}$	M ${ }^{[1]}$	L[1]	Comment	CS ${ }^{1]}$	CF[1]	S ${ }^{[1]}$
0	0000	ON	ON	ON	ON	2	0	9	2	2	$(F \times K) \geq 17$	1	0	1
1	0001	ON	ON	ON	OFF	4	0	5	2	1	$(F \times K) \geq 17$	1	0	1
2	0010	ON	ON	OFF	ON	4	0	5	2	1	$(F \times K) \geq 17$	1	0	1
3	0011	ON	OFF	ON	ON	1	1	17	1	2	$(F \times K) \geq 17$	1	0	1
4	0100	OFF	ON	ON	ON	1	1	17	1	2	$(F \times K) \geq 17$	1	0	1
5	0101	ON	OFF	ON	OFF	2	0	9	1	1	$(F \times K) \geq 17$	1	0	1
6	0110	ON	OFF	OFF	ON	2	0	9	1	1	$(F \times K) \geq 17$	1	0	1
7	0111	OFF	ON	ON	OFF	2	0	9	1	1	$(F \times K) \geq 17$	1	0	1
8	1000	OFF	ON	OFF	ON	2	0	9	1	1	$(F \times K) \geq 17$	1	0	1
9	1001							erved						
10	1010						res	erved						
1	1011						res	erved						
12	1100						rese	erved						
13	1101						rese	erved						
1	1110	ON	ON	ON	ON	2	0	9	2	2	test: loop alignment	1	0	1
15	1111	OFF	OFF	OFF	OFF	2	0	9	2	2	chip power-down	1	0	1

[1] F: Octets per frame clock cycle
HD: High-density mode
K: Frame per multi-frame
M: Converters per device
L: Lane per converter device
CS: Number of control bits per conversion sample
CF: Control words per frame clock cycle and link
S: Number of samples transmitted per single converter per frame cycle

Table 30. Ser_Control1 (address 0805h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	TRISTATE_CFG_PINS	R/W	1	pins CFG3 to CFG0 are set to high-impedance. Switch to 0 automatically after start-up or reset.
5	SYNC_POL	R/W		defines the sync signal polarity:
			0	synchronization signal is active LOW
			1	synchronization signal is active HIGH
4	SYNC_SINGLE_ENDED	R/W		defines the input mode of the sync signal:
			0	synchronization input mode is set in Differential mode
			1	synchronization input mode is set in Single-ended mode
3	-	-	1	not used
2	REV_SCR	-		LSBs are swapped with MSBs at the scrambler input:
			0	disable
			1	enable
1	REV_ENCODER	-		LSBs are swapped with MSBs at the 8-bit/10-bit encoder input:
			0	disable
			1	enable
0	REV_SERIAL	-		LSBs are swapped with MSBs at the lane input:
			0	disable
			1	enable

Table 31. Ser_Control2 (address 0806h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 2	-	-	000000	not used
1	SWAP_LANE_0_1	R/W		swaps the outputs of the JESD204A unit. (output buffer A is connected to Lane 1, output buffer B is connected to Lane 0):
			0	disable
			1	enable
0	SWAP_ADC_A_B	R/W		swaps the inputs of the JESD204A unit. (ADC A output is connected to input $B, A D C B$ is connected to input A):
			0	disable
				enable

Table 32. Ser_Analog_Ctrl (address 0808h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 3	-	-	00000	not used
2 to 0	SWING_SEL[2:0]	R/W	$\mathbf{0 1 1}$	defines the swing output for the lane pads

Table 33. Ser_ScramblerA (address 0809h)
Default values are highlighted.
\(\left.\begin{array}{lllll}\hline Bit \& Symbol \& Access \& Value \& Description

\hline 7 \& - \& - \& 0 \& not used\end{array}\right]\)| | | R/W | $\mathbf{0 0 0 0 0 0 0}$ |
| :--- | :--- | :--- | :--- |
| 6 to 0 | LSB_INIT[6:0] | | dower)
 (lowe initialization vector for the scrambler polynomial |

Table 34. Ser_ScramblerB (address 080Ah)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	MSB_INIT[7:0]	R/W	11111111	defines the initialization vector for the scrambler polynomial (upper)

Table 35. Ser_PRBS_Ctrl (address 080Bh)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 2	-	-	000000	not used
1 to 0	PRBS_TYPE[1:0]	R/W		defines the type of Pseudo-Random Binary Sequence (PRBS) generator to be used:
		$\mathbf{0 0}$ (reset)	PRBS-7	
01	PRBS-7			
		10	PRBS-23	
		11	PRBS-31	

Table 36. Cfg_0_DID (address 0820h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	DID[7:0]	R	11101101	defines the device (= link) identification number

Table 37. Cfg_1_BID (address 0821h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 4	-	-	0000	not used
3 to 0	BID[3:0]	R/W	$\mathbf{1 0 1 0}$	defines the bank ID - extension to DID

Table 38. Cfg_3_SCR_L (address 0822h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	SCR	R/W	0	scrambling enabled
6 to 1	-	-	000000	not used
0	L	R/W	0	defines the number of lanes per converter device, minus 1

Table 39. Cfg_4_F (address 0823h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description	
7 to 3	-	-	00000	not used	
2 to 0	F[2:0]	R/W	001	defines the number of octets per frame, minus 1	
ADC1413D_SER 7				OIDT 2012. Al I rights reserved.	

Table 40. Cfg_5_K (address 0824h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	$\mathrm{~K}[4: 0]$	R/W	01000	defines the number of frames per multiframe, minus 1

Table 41. Cfg_6_M (address 0825h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 1	-	-	0000000	not used
0	M	R/W	0	defines the number of converters per device, minus 1

Table 42. Cfg_7_CS_N (address 0826h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	CS[0]	R/W	1	defines the number of control bits per sample, minus 1
5 to 4	-	R	00	not used
3 to 0	N[3:0]	R/W	0100	defines the converter resolution

Table 43. Cfg_8_Np (address 0827h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	NP[4:0]	R/W	01111	defines the total number of bits per sample, minus 1

Table 44. Cfg_9_S (address 0828h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 1	-	-	0000000	not used
0	S	R/W	0	defines number of samples per converter per frame cycle

Table 45. Cfg_10_HD_CF (address 0829h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	HD	R/W	0	defines high density format
6 to 2	-	-	00000	not used
1 to 0	CF[1:0]	R/W	00	defines number of control words per frame clock cycle per link.

Table 46. Cfg_01_2_LID (address 082Ch)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	LID[4:0]	R/W	$\mathbf{1 1 0 1 1}$	defines lane $\mathbf{0}$ identification number

Table 47. Cfg_02_2_LID (address 082Dh)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 5	-	-	000	not used
4 to 0	LID[4:0]	R/W	$\mathbf{1 1 1 0 0}$	defines lane 1 identification number

Table 48. Cfg01_13_FCHK (address 084Ch)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	FCHK[7:0]	R	00000000	defines the checksum value for lane 0 checksum corresponds to the sum of all the link configuration parameters modulo 256 (as defined in JEDEC Standard No.204A)

Table 49. Cfg02_13_FCHK (address 084Dh)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 0	FCHK[7:0]	R	00000000	defines the checksum value for lane 1 checksum corresponds to the sum of all the link configuration parameters module 256 (as defined in JEDEC Standard No.204A)

Table 50. Lane0_0_Ctrl (address 0870h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	SCR_IN_MODE	R/W		defines the input type for scrambler and 8-bit/10-bit units:
			0 (reset)	(normal mode) = input of the scrambler and 8-bit/10-bit units is the output of the frame assembly unit.
			1	input of the scrambler and 8-bit/10-bit units is the PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_Ctrl register)
5 to 4	LANE_MODE[1:0]	R/W		defines output type of lane output unit:
			00 (reset)	normal mode: lane output is the 8-bit/10-bit output unit
			01	constant mode: lane output is set to a constant (0×0)
			10	toggle mode: lane output is toggling between 0×0 and 0×1
			11	PRBS mode: lane output is the PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_Ctrl register)
3	-	-	0	not used
2	LANE_POL	R/W		defines lane polarity:
			0	lane polarity is normal
			1	lane polarity is inverted
1	LANE_CLK_POS_EDGE	R/W		defines lane clock polarity:
			0	lane clock provided to the serializer is active on positive edge
			1	lane clock provided to the serializer is active on negative edge

Table 50. Lane0_0_Ctrl (address 0870h) ...continued Default values are highlighted.

Bit	Symbol	Access	Value	Description
0	LANE_PD	R/W		lane power-down control:
		0	lane is operational	

Table 51. Lane1_0_Ctrl (address 0871h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7	-	-	0	not used
6	SCR_IN_MODE	R/W		defines the input type for scrambler and 8-bit/10-bit units:
			0 (reset)	(normal mode) = input of the scrambler and 8-bit/10-bit units is the output of the frame assembly unit.
			1	input of the scrambler and 8-bit/10-bit units is the PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_Ctrl register)
5 to 4	LANE_MODE[1:0]	R/W		defines output type of lane output unit:
			00 (reset)	normal mode: lane output is the 8-bit/10-bit output unit
			01	constant mode: lane output is set to a constant (0×0)
			10	toggle mode: lane output is toggling between 0×0 and 0×1
			11	PRBS mode: lane output is the PRSB generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_Ctrl register)
3	-	-	0	not used
2	LANE_POL	R/W		defines lane polarity:
			0	lane polarity is normal
			1	lane polarity is inverted
1	LANE_CLK_POS_EDGE	R/W		defines lane clock polarity:
			0	lane clock provided to the serializer is active on positive edge
			1	lane clock provided to the serializer is active on negative edge
0	LANE_PD	R/W		lane power-down control:
			0	lane is operational
			1	lane is in Power-down mode

Table 52. ADCA_0_Ctrl (address 0890h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 6	-	-	00	not used
5 to 4	ADC_MODE[1:0]	R/W		defines input type of JESD204A unit:
			00 (reset)	ADC output is connected to the JESD204A input
			01	not used
			10	JESD204A input is fed with a dummy constant, set to: OTR $=0$ and ADC[13:0] = "10011011101010"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_Ctrl register)
3 to 1	-	-	000	not used
0	ADC_PD	R/W		ADC power-down control:
			0	ADC is operational
			1	ADC is in Power-down mode

Table 53. ADCB_0_Ctrl (address 0891h)
Default values are highlighted.

Bit	Symbol	Access	Value	Description
7 to 6	-	-	00	not used
5 to 4	ADC_MODE[1:0]	R/W		defines input type of JESD204A unit
			00 (reset)	ADC output is connected to the JESD204A input
			01	not used
			10	JESD204A input is fed with a dummy constant, set to: OTR $=0$ and ADC[13:0] = "10011011101010"
			11	JESD204A is fed with a PRBS generator (PRBS type is defined with "PRBS_TYPE[1:0]" (Ser_PRBS_Ctrl register)
3 to 1	-	-	000	not used
0	ADC_PD	R/W		ADC power-down control:
			0	ADC is operational
			1	ADC is in Power-down mode

12. Package outline

HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;
56 terminals; body $8 \times 8 \times 0.85 \mathrm{~mm}$

Fig 24. Package outline SOT684-7 (HVQFN56)

13. Abbreviations

Table 54. Abbreviations

Acronym	Description
ADC	Analog-to-Digital Converter
DCS	Duty Cycle Stabilizer
ESD	ElectroStatic Discharge
IF	Intermediate Frequency
IMD	InterModulation Distortion
LSB	Least Significant Bit
LVCMOS	Low Voltage Complementary Metal Oxide Semiconductor
LVPECL	Low-Voltage Positive Emitter-Coupled Logic
MSB	Most Significant Bit
OTR	OuT-of-Range
PRBS	Pseudo-Random Binary Sequence
SFDR	Spurious-Free Dynamic Range
SNR	Signal-to-Noise Ratio
SPI	Serial Peripheral Interface
TX	Transmitter

14. Revision history

Table 55. Revision history

| Document ID | Release date | Data sheet status | Change
 notice | Supersedes |
| :--- | :---: | :--- | :--- | :--- | :--- |
| ADC1413D_SER v.7 | 20120702 | Product data sheet | - | ADC1413D_SER v.6 |
| ADC1413D_SER v.6 | 20110608 | Product data sheet | - | ADC1413D_SER v.5 |
| Modifications: | \bullet | Section 10.2 "Clock and digital output timing" has been updated. | | |
| ADC1413D_SER v.5 | 20110209 | Product data sheet | - | ADC1413D_SER v.4 |
| ADC1413D_SER v.4 | 20100423 | Preliminary data sheet | - | ADC1413D_SER v.3 |
| ADC1413D_SER v.3 | 20100412 | Objective data sheet | - | ADC1413D065_080_105_125_2 |
| ADC1413D065_080_105_125_2 | 20090604 | Objective data sheet | - | ADC1413D065_080_105_125_1 |
| ADC1413D065_080_105_125_1 | 20090528 | Objective data sheet | - | - |

15. Contact information

For more information or sales office addresses, please visit: http://www.idt.com

16. Contents

1 General description 1
11.2.2 Programmable full-scale 18
2 Features and benefits 1
3 Applications 2
4 Ordering information 2
5 Block diagram 3
6 Pinning information 4
6.1 Pinning 4
6.2 Pin description 4
7 Limiting values 6
8 Thermal characteristics 6
9 Static characteristics 7
10 Dynamic characteristics 10
10.1 Dynamic characteristics 10
10.2 Clock and digital output timing 11
10.3 Serial output timing 12
10.4 SPI timing 13
11 Application information 14
11.1 Analog inputs 14
11.1.1 Input stage description 14
11.1.2 Anti-kickback circuitry 15
11.1.3 Transformer 15
11.2 System reference and power management 16
11.2.1 Internal/external reference 16
11.2.3 Common-mode output voltage $\left(\mathrm{V}_{\mathrm{O}(\mathrm{cm})}\right)$ 19
11.2.4 Biasing 19
11.3 Clock input 19
11.3.1 Drive modes. 19
11.3.2 Equivalent input circuit 20
11.3.3 Duty cycle stabilizer 21
11.3.4 Clock input divider 21
11.4 Digital outputs 21
11.4.1 Serial output equivalent circuit 21
11.5 JESD204A serializer 22
11.5.1 Digital JESD204A formatter 22
11.5.2 ADC core output codes versus input voltage 23
11.6 Serial Peripheral Interface (SPI) 24
11.6.1 Register description 24
11.6.2 Channel control 25
11.6.3 Register description 28
11.6.3.1 ADC control registers 28
11.6.4 JESD204A digital control registers 30
12 Package outline 38
13 Abbreviations 39
14 Revision history 40
15 Contact information 40
16 Contents 41

[^0]: [1] Typical values measured at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$. Minimum and maximum values are across the full temperature range $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V}$, $V_{D D D}=1.8 \mathrm{~V} ; \mathrm{V}_{\text {I }}($ INAP, INBP $)-\mathrm{V}_{\text {I }}($ INAM, INBM $)=-1 \mathrm{dBFS}$; internal reference mode; 100 W differential applied to serial outputs; unless otherwise specified.

[^1]: [1] an "*" in the Access column means that this register is subject to control access conditions in Write mode.

