## 1. General description

The High-Definition Multimedia Interface (HDMI) switch enables connection of multiple DVI/HDMI inputs to a receiver with at least one input. The TDA19997HL is a switch with four HDMI 1.4 compliant DVI/HDMI inputs and one DVI/HDMI output. Each HDMI input has its own dedicated embedded EDID memory. A fifth DDC-bus input is available for VGA or second HDMI input of SoC. The built-in auto-adaptive equalizer improves signal quality, allowing the use of cable lengths up to 30 m .

The TDA19997HL supports Deep Color mode in 10-bit and 12-bit per channel up to $1920 \times 1080$ p at $50 / 60 \mathrm{~Hz}$. The TDA19997HL supports DVI/HDMI streams with or without High-bandwidth Digital Content Protection (HDCP 1.3) and all Data Island packets.

The TDA19997HL settings are controllable via the $I^{2} \mathrm{C}$-bus.

## 2. Features

- Complies with the HDMI 1.4, DVI 1.0, EIA/CEA-861D and HDCP 1.3 standards
- Four independent DVI/HDMI inputs, up to 2.25 gigasamples per second
- Pin compatible with TDA9996/TDA9995
- Robust auto-adaptive equalizer (up to 20 m AWG26 at $2.25 \mathrm{Gbit} / \mathrm{s}$ )

■ Robust auto-adaptive equalizer (up to 30 m AWG24 at $1.5 \mathrm{Gbit} / \mathrm{s}$ )

- Integrated $50 \Omega$ single-ended termination resistors
- +5 V signal detection for each HDMI input
- Supports color depth processing at 24 -bit, 30 -bit or 36 -bit per pixel
- Supports all Data Island packets
- Activity detection on each input, manages output activity and power consumption
- Extended mode: re-generate output TMDS waveform removing jitter and skew
- Frequency measurement allowing direct reading of format/resolution
- Automatic mode for main features:
- Automatic Hot Plug Detect (HPD) generation and termination resistors management
- Automatic HPD generation with programmable duration
- Automatic EDID load
- Display Data Channel (DDC) bus:
- 5 V tolerant, DDC-bus inputs with bit rates up to $400 \mathrm{kbit} / \mathrm{s}$
- One DDC-bus output with the same latency as the HDMI stream pipeline delay
- DDC-bus master switch functionality avoids bus corruption

- DDC-bus level-shifting buffer with digital lock-up protection
- A fifth DDC-bus input available for VGA or second HDMI input of SoC
- $\mathrm{I}^{2} \mathrm{C}$-bus controllable at bit rates up to $400 \mathrm{kbit} / \mathrm{s}$

■ Non-volatile memory for switch management (Hot Plug Detect, Power-down)

- Non-volatile storage for EDID's allowing easy loading
- Embedded Extended Display Identification Data (EDID) memory:
- 253-byte shared and 3-byte of dedicated EDID memory per HDMI input
- Non-volatile memory for programming default EDID content
- Supports sources without +5 V
- 5 embedded EDID memory supplied by +5 V from HDMI source
- An extra 128-byte blocks for DVI or PC formats
- EDID update by $\mathrm{I}^{2} \mathrm{C}$-bus, example for AVR applications
- Fail-safe output in Idle mode
- Mute pin preventing from pop noise/image noise
- ATC/Rx compliant for 36-bit Deep Color 1080p 60 Hz

■ ATC/Tx eye diagram compliant for 36-bit Deep color 1080p 60 Hz

- Programmable slave address for easy cascade approach
- Ready for HDMI Audio return Channel (HDMI 1.4 features refer to AN907)
- 3.3 V and 1.8 V power supplies
- Additional ESD protection pin for CEC line
- ESD protection:
- HBM: class 2
- MM: class B
- FCDM: class IV
- IEC 61000-4-2 class 3 for HDMI inputs
- Power-down mode with dedicated pin
- CMOS process
- Lead ( Pb ) free LQFP100 $14 \times 14 \times 1 \mathrm{~mm}$ package, pitch 0.5 mm


## 3. Applications

- HDTV (plasma, Rear projection TV and LCD TV)
- YCbCr or RGB Hi-Speed video digitizer
- Projector

■ Home theater

- AVR
- Switch box


## 4. Quick reference data

Table 1. Quick reference data

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HDMI input pins: RXx_D0+, RXx_D0-, RXx_D1+, RXx_D1-, RXx_D2+, RXx_D2-, RXx_HPD, RXx_5V, RXy_DDC_DAT, RXy_DDC_CLK, CEC[1][2] |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{ESD}}$ | electrostatic discharge voltage | IEC 61000-4-2 class 3 (contact discharge) | 7 | - | - | kV |
| HDMI pins: OUT_D0-, OUT_D0+, OUT_D1-, OUT_D1+, OUT_D2-, OUT_D2+, RXx_D0+, RXx_D0-, RXx_D1+, RXx_D1-, RXx_D2+, RXx_D2-[1] |  |  |  |  |  |  |
| $\mathrm{f}_{\text {max }}$ | maximum frequency |  | 2.25 | - | - | GHz |
| Supplies |  |  |  |  |  |  |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | HDMI supply voltage (3.3 V) |  | 3.13 | 3.3 | 3.47 | V |
| $\mathrm{V}_{\text {DDH(1V8) }}$ | HDMI supply voltage (1.8 V) |  | 1.65 | 1.8 | 1.95 | V |
| $V_{\text {DDS }}$ (3V3) | supervisor supply voltage (3.3 V) |  | 3.0 | 3.3 | 3.6 | V |
| $\mathrm{V}_{\text {DDDC(1V8) }}$ | core digital supply voltage (1.8 V) |  | 1.65 | 1.8 | 1.95 | V |

[1] $x=A, B, C, D$.
[2] $y=A, B, C, D, E$.

## 5. Ordering information

Table 2. Ordering information

| Type number | Maximum data rate <br> per channel | Package |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Name | Description | Version |  |  |
| TDA19997HL | 2.25 gigasamples per <br> second | LQFP100 | plastic low profile quad flat package; 100 leads; <br> body $14 \times 14 \times 1.4 \mathrm{~mm}$ | SOT407-1 |  |

## 6. Block diagram



Fig 1. Block diagram

## 7. Pinning information

### 7.1 Pinning



Fig 2. Pin configuration

### 7.2 Pin description

Table 3. Pin description

| Symbol | Pin | Type ${ }^{[1]}$ | Description |
| :---: | :---: | :---: | :---: |
| $V_{S S}$ | 1 | G | ground |
| OUT_C+ | 2 | O | HDMI output positive clock channel |
| OUT_C- | 3 | O | HDMI output negative clock channel |
| $\mathrm{V}_{\text {DDO(3V3) }}$ | 4 | P | output supply voltage; 3.3 V |
| OUT_DDC_CLK | 5 | O | DDC-bus clock output; open-drain; 5 V tolerant |
| OUT_DDC_DAT | 6 | I/O | DDC-bus data input/output; open-drain; 5 V tolerant |
| $\mathrm{V}_{\text {SS }}$ | 7 | G | ground |
| $\mathrm{V}_{\text {DDDC(1V8) }}$ | 8 | P | digital core supply voltage; 1.8 V |
| RXA_HPD | 9 | O | HDMI output A Hot Plug Detect; 5 V tolerant |
| RXA_5V | 10 | 1 | input A HDMI +5 V |
| RXA_DDC_DAT | 11 | I/O | HDMI input/output A DDC-bus serial data; open-drain; 5 V tolerant |
| RXA_DDC_CLK | 12 | 1 | HDMI input A DDC-bus serial clock; open-drain; 5 V tolerant |
| RXA_C- | 13 | I | HDMI input A negative clock channel |
| RXA_C+ | 14 | I | HDMI input A positive clock channel |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | 15 | P | HDMI input A supply voltage; 3.3 V |
| RXA_D0- | 16 | I | HDMI input A negative data channel 0 |
| RXA_D0+ | 17 | 1 | HDMI input A positive data channel 0 |
| $V_{\text {SS }}$ | 18 | G | ground |
| RXA_D1- | 19 | I | HDMI input A negative data channel 1 |
| RXA_D1+ | 20 | I | HDMI input A positive data channel 1 |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | 21 | P | HDMI input A supply voltage; 3.3 V |
| RXA_D2- | 22 |  | HDMI input A negative data channel 2 |

Table 3. Pin description ...continued

| Symbol | Pin | Type [1] | Description |
| :---: | :---: | :---: | :---: |
| RXA_D2+ | 23 | 1 | HDMI input A positive data channel 2 |
| $\left.\mathrm{V}_{\text {DDH(1 }} \mathrm{V} 8\right)$ | 24 | P | HDMI core supply voltage; 1.8 V |
| AUX_5V | 25 | 1 | auxiliary input; 5 V |
| $V_{S S}$ | 26 | G | ground |
| TEST1 | 27 | 1 | reserved for test (connect to ground) |
| RXB_HPD | 28 | O | HDMI output B Hot Plug Detect; 5 V tolerant |
| RXB_5V | 29 | 1 | input B HDMI +5 V |
| RXB_DDC_DAT | 30 | I/O | HDMI input/output B DDC-bus serial data; open-drain; 5 V tolerant |
| RXB_DDC_CLK | 31 | I | HDMI input B DDC-bus serial clock; open-drain; 5 V tolerant |
| RXB_C- | 32 | I | HDMI input B negative clock channel |
| RXB_C+ | 33 | 1 | HDMI input B positive clock channel |
| $\mathrm{V}_{\mathrm{DDH}(3 \mathrm{~V} 3)}$ | 34 | P | HDMI input B supply voltage; 3.3 V |
| RXB_D0- | 35 | 1 | HDMI input B negative data channel 0 |
| RXB_D0+ | 36 | 1 | HDMI input B positive data channel 0 |
| $V_{S S}$ | 37 | G | ground |
| RXB_D1- | 38 | 1 | HDMI input B negative data channel 1 |
| RXB_D1+ | 39 | 1 | HDMI input B positive data channel 1 |
| $\mathrm{V}_{\mathrm{DDH}}(3 \mathrm{~V} 3)$ | 40 | P | HDMI input B supply voltage; 3.3 V |
| RXB_D2- | 41 | 1 | HDMI input B negative data channel 2 |
| RXB_D2+ | 42 | 1 | HDMI input B positive data channel 2 |
| $V_{S S}$ | 43 | G | ground |
| CDEC_DDC | 44 |  | internal supply voltage regulator decoupling capacitor; 1.8 V |
| $V_{\text {DDDC(1V8) }}$ | 45 | P | digital core supply voltage; 1.8 V |
| $\mathrm{V}_{\text {DDDC(3V3) }}$ | 46 | P | digital core supply voltage; 3.3 V |
| TEST2 | 47 | 1 | reserved for test (connect to ground) |
| PD | 48 | 1 | power-down control input; active HIGH |
| I2C_SDA | 49 | O | $1^{2} \mathrm{C}$-bus output serial data |
| 12C_SCL | 50 | 1 | $1^{2} \mathrm{C}$-bus serial clock |
| RXE_DDC_CLK | 51 | 1 | Additional input DDC-bus serial clock; open-drain; 5 V tolerant |
| RXE_DDC_DAT | 52 | I/O | Additional input/output DDC-bus serial data; open-drain; 5 V tolerant |
| INT_N/MUTE | 53 | 0 | interrupt request for $\mathrm{I}^{2} \mathrm{C}$-bus mode or 5 V detection MUTE output pin |
| CDEC_STBY | 54 |  | internal supply voltage regulator decoupling capacitor; 1.8 V |
| $\mathrm{V}_{\text {DDS }}$ (3V3) | 55 | P | supervisor supply voltage; 3.3 V |
| $\mathrm{V}_{\text {SS }}$ | 56 | G | ground |
| CEC | 57 |  | 8 kV System level ESD protection |
| RXC_HPD | 58 | 1 | HDMI input C Hot Plug Detect; 5 V tolerant |
| RXC_5V | 59 | 1 | input C HDMI +5 V |
| RXC_DDC_DAT | 60 | I/O | HDMI input/output C DDC-bus serial data; open-drain; 5 V tolerant |

Table 3. Pin description ...continued

| Symbol | Pin | Type ${ }^{[1]}$ | Description |
| :---: | :---: | :---: | :---: |
| RXC_DDC_CLK | 61 | 1 | HDMI input C DDC-bus serial clock; open-drain; 5 V tolerant |
| RXC_C- | 62 | 1 | HDMI input C negative clock channel |
| RXC_C+ | 63 | 1 | HDMI input C positive clock channel |
| $\mathrm{V}_{\mathrm{DDH}}(3 \mathrm{~V} 3)$ | 64 | P | HDMI input C supply voltage; 3.3 V |
| RXC_D0- | 65 | 1 | HDMI input C negative data channel 0 |
| RXC_D0+ | 66 | 1 | HDMI input C positive data channel 0 |
| $V_{\text {SS }}$ | 67 | G | ground |
| RXC_D1- | 68 | 1 | HDMI input C negative data channel 1 |
| RXC_D1+ | 69 | 1 | HDMI input C positive data channel 1 |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | 70 | P | HDMI input C supply voltage; 3.3 V |
| RXC_D2- | 71 | 1 | HDMI input C negative data channel 2 |
| RXC_D2+ | 72 | 1 | HDMI input C positive data channel 2 |
| $\mathrm{V}_{\text {SS }}$ | 73 | G | ground |
| R12K | 74 | 1 | termination resistor control |
| $\left.\mathrm{V}_{\text {DDH(1 }} \mathrm{V} 8\right)$ | 75 | P | HDMI core supply voltage; 1.8 V |
| RXD_HPD | 76 | O | HDMI output D Hot Plug Detect; 5 V tolerant |
| RXD_5V | 77 | 1 | input D HDMI +5 V |
| RXD_DDC_DAT | 78 | I/O | HDMI input/output D DDC-bus serial data; open-drain; 5 V tolerant |
| RXD_DDC_CLK | 79 | 1 | HDMI input D DDC-bus serial clock; open-drain; 5 V tolerant |
| RXD_C- | 80 | 1 | HDMI input D negative clock channel |
| RXD_C+ | 81 | 1 | HDMI input D positive clock channel |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | 82 | P | HDMI input D supply voltage; 3.3 V |
| RXD_D0- | 83 | I | HDMI input $D$ negative data channel 0 |
| RXD_D0+ | 84 | 1 | HDMI input D positive data channel 0 |
| $\mathrm{V}_{\text {SS }}$ | 85 | G | ground |
| RXD_D1- | 86 | I | HDMI input D negative data channel 1 |
| RXD_D1+ | 87 | 1 | HDMI input D positive data channel 1 |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | 88 | P | HDMI input D supply voltage; 3.3 V |
| RXD_D2- | 89 | 1 | HDMI input D negative data channel 2 |
| RXD_D2+ | 90 | 1 | HDMI input D positive data channel 2 |
| $\mathrm{V}_{\text {DDDC(1V8) }}$ | 91 | P | digital core supply voltage; 1.8 V |
| $V_{S S}$ | 92 | G | ground |
| OUT_D2+ | 93 | 0 | HDMI output positive data channel 2 |
| OUT_D2- | 94 | O | HDMI output negative data channel 2 |
| $V_{\text {DDO(1V8) }}$ | 95 | P | output supply voltage; 1.8 V |
| OUT_D1+ | 96 | O | HDMI output positive data channel 1 |
| OUT_D1- | 97 | O | HDMI output negative data channel 1 |
| $V_{S S}$ | 98 | G | ground |
| OUT_D0+ | 99 | 0 | HDMI output positive data channel 0 |
| OUT_D0- | 100 | 0 | HDMI output negative data channel 0 |

[1] $\mathrm{P}=$ power supply; $\mathrm{G}=$ ground; $\mathrm{I}=$ input and $\mathrm{O}=$ output; $\mathrm{I} / \mathrm{O}=$ input/output.

## 8. Functional description

The TDA19997HL is a DVI/HDMI switch comprising four DVI/HDMI inputs and one output optimized for Hi-Speed TMDS data. All inputs meet HDMI compliance tests and include a built-in auto-adaptive input equalizer. The TDA19997HL includes an activity detection module and Hot Plug Detect management.

In addition, the TDA19997HL stores the Extended Display Identification Data (EDID) for each input in the built-in EDID memory. Full DDC-bus functionality is provided by the TDA19997HL, including level-shifting.

### 8.1 HDMI input

The TDA19997HL supports bit rate inputs up to $2.25 \mathrm{Gbit} / \mathrm{s}$ enabling high frame rate formats such as 1080p60, 1080i120 and 720p120 in 36-bit Deep Color mode.

The termination resistor control (R12K) needs an external resistor of $12 \mathrm{k} \Omega \pm 1 \%$.
The termination resistor can be disconnected from the 3.3 V supply to remove the common-mode voltage via the $I^{2} \mathrm{C}$-bus and/or when RXx_HPD is LOW.

### 8.2 Equalizer

The input equalizer is fully auto-adaptive, needing no external control. Signals from short cables with very low TMDS clock frequencies ( 20 MHz ) to long cables (up to 20 m ) at high TMDS clock frequencies ( 225 MHz ) are easily managed by the TDA19997HL's equalizer.

### 8.3 Activity detection

When activity is detected, the output is automatically activated. If no input activity is detected, the output is disabled to avoid false detections by the HDMI receiver. The power consumption is reduced accordingly. The detection range is fixed by $I^{2} \mathrm{C}$-bus. An interrupt output can be used to indicate any activity change.

- In $I^{2} \mathrm{C}$-bus mode: the TMDS frequency can be read, however, the precision of the value depends on internal oscillator accuracy.


### 8.4 Embedded EDID memory

The size of the EDID memory is 253-byte shared and 3-byte dedicated for each input. The memory can be accessed by each input at the same time.

EDID content programming is performed using the non-volatile memory. The EDID memory can be powered by +5 V from the source or directly from the PCB using the dedicated AUX_5V pin. In Power-down mode, the EDID memory remains active and it is possible to modify its content. Access from pins RXx_DDC_DAT and RXx_DDC_CLK is independent of other supplies. Consequently, the source has access to the EDID memory when TDA19997HL is not powered.

Content can be modified using the $I^{2} \mathrm{C}$-bus. However, data modified using the $\mathrm{I}^{2} \mathrm{C}$-bus must be powered by the 1.8 V supply from pin CDEC_DDC or the AUX_5V auxiliary supply pin.

EDID memory accesses are only acknowledged when EDID-only mode is enabled.
Remark: Embedded non-volatile memory content shall be programmed with all termination resistors disconnected to ensure proper programming.

### 8.5 Display Data Channel (DDC)

The DDC-bus is 5 V tolerant and supports all direct connections from the HDMI source. The TDA19997HL provides level-shifting and buffering for both OUT_DDC_DAT and OUT_DDC_CLK pins. It allows level-shifting from 5 V on the source side to 3.3 V on the receiver side.

To prevent a lock-up condition, a specific digital protection is implemented on the DDC-bus.

Pins RXx_DDC_DAT, RXx_DDC_CLK, OUT_DDC_DAT and OUT_DDC_CLK are compatible with the $1^{2} \mathrm{C}$-bus specification in Fast-mode ( 400 kHz ):

- Pins RXx_DDC_DAT and RXx_DDC_CLK at $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V
- Pins OUT_DDC_DAT and OUT_DDC_CLK at $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6 V

When the TDA19997HL is not 1.8 V core supplied, pins OUT_DDC_DAT and OUT_DDC_CLK are high-impedance. In addition, pins RXx_DDC_DAT and RXx_DDC_CLK are high-impedance when the device is not 5 V supplied.

TDA19997HL acts as a DDC-bus master switch to prevent bus corruption. When the input selection changes, the upstream DDC-bus communication (using RXx_DDC_DAT and RXx_DDC_CLK) is disconnected and a stop bit is sent on the downstream DDC-bus communication (using OUT_DDC_DAT and OUT_DDC_CLK). The DDC-bus is then connected on the next upstream DDC during a free bus period to avoid bus corruption.

### 8.6 HDMI features

TDA19997HL does not decode Data Island or Deep Color information, it forwards these packets including null packets.

## 8.7 +5 V signal detection

+5 V signal detection from source is used for activity control through $\mathrm{I}^{2} \mathrm{C}$-bus by setting a bit and an interrupt.

### 8.8 AUX_5V pin

This pin can be used to supply the built-in EDID memory and DDC-bus enabling access to EDID memory using the DDC-bus without a +5 V signal from any of the input sources. When pin AUX_5V is powered, the TDA19997HL provides support for HDMI cabled sources without a +5 V signal. In addition, the AUX_5V supply ensures EDID data stored in active memory is not lost when a +5 V signal is not available from the input sources. Input signal detection ( +5 V ) is also available when AUX_5V pin is powered.

AUX_5V is necessary when using the fifth DDC-bus input (RXE_DDC_DAT, RXE_DDC_CLK).

### 8.9 HDMI output

The TDA19997HL HDMI output port is only activated when data is detected on the selected input.

HDMI output can be switched off (high-impedance) using an $1^{2}$ C-bus bit or using pin PD.

- Idle mode: HDMI output is either fixed at a constant value (fail-safe protection) or high-impedance. Configuration is performed using an $I^{2} \mathrm{C}$-bus bit. When output is fixed at a constant value, it creates a voltage difference in the differential pairs and stabilizes the receiver differential amplifier. The disadvantage of this protection against noise is increased power consumption (current from switch and pull-up on receiver side). If the two differential output pairs are high-impedance, the receiver differential pair is common mode (receiver pull-up). The receiver differential amplifier is not stable and does not need any additional power (no current from switch).


### 8.10 Power management

The following five power modes are available:

- Operating mode: the device is fully functional
- Power-off mode: no supplies are available
- EDID-only mode: only +5 V from the source available
- Power-down mode: all supplies are available and pin PD is HIGH.
- Idle mode: all supplies are available and there is no HDMI input. As a power saving feature, Idle mode is automatically selected when there is no activity on the inputs. When activity is detected, Operating mode wake-up is automatically selected

Table 4. Power management

| Functions | Mode |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | EDID-only | Power-down | Idle | Operating |
| +5 V signal detection | n/a | on | on | on |
| RXx_HPD (if 5 V ) ${ }^{[2][3]}$ | [1] | [4] | [4] | [4] |
| RXx_DDC_DAT; RXx_DDC_CLK (if 5 V ) [5][3] | on | [4] | [4] | [4] |
| EDID DDC read (if 5 V ) ${ }^{[3]}$ | [1] | [4] | [4] | [4] |
| EDID ${ }^{2} \mathrm{C}$-bus write (If 5 V ) ${ }^{[3]}$ | off | on | on | on |
| OUT_DDC_DAT; OUT_DDC_CLK | off | off | [4] | [4] |
| INT_N management | off | on | on | on |
| Termination resistors | off | off | [4] | [4] |
| Activity detection | off | off | [4] | [4] |
| Equalizer (when active) | off | off | [4] | [4] |
| TMDS buffer extended mode | off | off | [1] | [1] |
| TMDS output (if active) | off | off | [4] | [4] |
| Configuration register read/write | off | on | on | on |
| Configuration nonvolatile memory download | off | on | on | on |
| Configuration nonvolatile memory write | off | off | on | on |

[^0][3] When 5 V is indicated, $\mathrm{a}+5 \mathrm{~V}$ input signal is available on at least one HDMI input and/or pin AUX_5V is powered.
[4] Bit state dependent.
[5] $x=A, B, C, D$ or $E$.

### 8.11 Power supplies

The termination supply voltage must be $3.3 \mathrm{~V} \pm 5 \%$ with a termination resistance of $50 \Omega \pm 10 \%$ as defined in the HDMI 1.3a specification.

A dedicated $3.3 \mathrm{~V} \pm 10$ \% supply (powering interrupt pin INT_N/MUTE) is kept for compatibility with TDA9996. This pin shall be connected to the rest of 3.3 V supply line.

The 1.8 V supply must also be $\pm 10 \%$.
A double Power-On Reset (POR) is implemented to manage different delays between both supply ramp-ups. POR is managed internally without a reset pin. All 1.8 V power supply pins ( $\mathrm{V}_{\text {DDDC }}, \mathrm{V}_{\text {DDH }}, \mathrm{V}_{\text {DDO }}$ ) could be connected together (i.e. these pins must be shorted out).
+5 V from the HDMI connector and AUX_5V pin are used to supply the EDID memory and the corresponding DDC-bus slave module. To maintain the EDID (volatile memory part) contents modified by ${ }^{2} \mathrm{C}$-bus, it is necessary to have +5 V (from HDMI connector or AUX_5V pin) constantly available.

## $8.12 \mathrm{I}^{2} \mathrm{C}$-bus

The TDA19997HL allows software programming of its internal registers using the $\mathrm{I}^{2} \mathrm{C}$-bus. The $I^{2} \mathrm{C}$-bus is a separate bus to the DDC-bus, ensuring that $\mathrm{I}^{2} \mathrm{C}$-bus programming of the TDA19997HL's registers does not influence DDC-bus operation. The TDA19997HL supports $\mathrm{I}^{2} \mathrm{C}$-bus Fast-mode ( 400 kHz ).

### 8.12.1 $\mathrm{I}^{2} \mathrm{C}$-bus protocol

To access registers, the TDA19997HL uses the $\mathrm{I}^{2} \mathrm{C}$-bus. The TDA19997HL acts as an $1^{2} \mathrm{C}$-bus slave device. Pin I2C_SCL is used as the input pin. Both Fast-mode ( 400 kHz ) and Standard-mode ( 100 kHz ) are supported by the TDA19997HL. The slave $\mathrm{I}^{2} \mathrm{C}$-bus address is shown in Table 5.

The $I^{2} \mathrm{C}$-bus slave address is $1100 \mathrm{~A} 2 \mathrm{~A} 1 \mathrm{~A} 0 \mathrm{R} / \mathrm{W}$. Address bit values are stored in the non-volatile configuration memory and enable selection of the slave address. The default slave address value is 1100 000x.

The $\mathrm{I}^{2} \mathrm{C}$-bus slave address is identical to TDA9996.
Table 5. Default slave address

| Device type | Bit |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A6 | A5 | A4 | A3 | A2 | A1 | A0 | R/W |
| TDA19997HL | 1 | 1 | 0 | 0 | A2 | A1 | A0 | $1 / 0$ |

${ }^{2}$ C-bus access is explained in Figure 3. The $I^{2}$ C-bus master writes the TDA19997HL address and the subaddress to access the specific register, then it writes the data.


Fig 3. $I^{2} \mathrm{C}$-bus access

### 8.12.2 Memory page management

The $I^{2} \mathrm{C}$-bus memory is split into several pages, selected using the common register CURPAGE_ADR. It is only necessary to write in this register once to change the current page. Multiple read or write operations in the same page must start by writing to register CURPAGE_ADR once.

- Page 00h: general control
- Page 20h: EDID block0
- Page 21h: EDID block1 and control
- Page 22h: second EDID blockO
- Page 30h: configuration


## 9. Limiting values

Table 6. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{DDx}(3 \mathrm{~V} 3)}$ | supply voltage on all 3.3 V pins | -0.5 | +4.6 | V |  |
| $\mathrm{~V}_{\mathrm{DDx}(1 \mathrm{~V} 8)}$ | supply voltage on all 1.8 V pins | -0.5 | +2.5 | V |  |
| $\Delta \mathrm{~V}_{\mathrm{DD}}$ | supply voltage difference | -0.5 | +0.5 | V |  |
| $\mathrm{~T}_{\text {stg }}$ | storage temperature | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{amb}}$ | ambient temperature | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature | - | +125 | ${ }^{\circ} \mathrm{C}$ |  |

HDMI input pins: RXx_D0+, RXx_D0-, RXx_D1+, RXx_D1-, RXx_D2+, RXx_D2-, RXx_HPD, RXx_5V, RXy_DDC_DAT, RXy_DDC_CLK, CEC[1][2]

| $V_{\text {ESD }}$ | electrostatic discharge voltage | IEC 61000-4-2 class 3 (contact discharge) | 7 | - | kV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HDMI output pins: OUT_D0-, OUT_D0+, OUT_D1-, OUT_D1+, OUT_D2-, OUT_D2+, OUT_DDC_DAT, OUT_DDC_CLK |  |  |  |  |  |
| $V_{\text {ESD }}$ | electrostatic discharge voltage | IEC 61000-4-2 class 2 (contact discharge) | 5 | - | kV |
| All pins |  |  |  |  |  |
| $V_{\text {ESD }}$ | electrostatic discharge voltage | EIA/JESD22-A114-F (human body model) class 2 | -2500 | +2500 | V |
|  |  | EIA/JESD22-A115-A (machine model) class B | -200 | +200 | V |
|  |  | $\begin{aligned} & \text { EIA/JESD22-C101-D (FCDM) } \\ & \text { class IV } \end{aligned}$ | 1500 | - | V |

[1] $x=A, B, C, D$.
[2] y $=A, B, C, D, E$.

## 10. Thermal characteristics

Table 7. Thermal characteristics

| Symbol | Parameter | Conditions | Typ | Unit |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{R}_{\mathrm{th}(\mathrm{ja})}$ | thermal resistance from junction to ambient | in free air | 49.5 | K/W |
| $\mathrm{R}_{\mathrm{th}(\mathrm{j})}$ | thermal resistance from junction to case | 18.9 | K/W |  |

## 11. Characteristics

Table 8. Characteristics
$V_{D D H(3 V 3)}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V} ; V_{D D D(3 V 3)}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; V_{D D H(1 \mathrm{~V} 8)}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V} ; V_{D D D C(1 \mathrm{~V}))}=1.65 \mathrm{~V}$ to 1.95 V ; $T_{\text {amb }}=0{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$; typical values measured at $V_{D D H(3 V 3)}$ and $V_{D D D C(3 V 3)}=3.3 \mathrm{~V} ; V_{D D H(1 \mathrm{~V})}$ and $V_{D D D C(1 \mathrm{V8)}}=1.8 \mathrm{~V}$ and $T_{\text {amb }}=25^{\circ} \mathrm{C}$; $f_{\max }=2.25 \mathrm{GHz}$; unless otherwise specified.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplies |  |  |  |  |  |  |
| $\mathrm{V}_{\text {DDH(3V3) }}$ | HDMI supply voltage ( 3.3 V ) |  | 3.13 | 3.3 | 3.47 | V |
| $\mathrm{V}_{\text {DDH(128) }}$ | HDMI supply voltage (1.8 V) |  | 1.65 | 1.8 | 1.95 | V |
| $\mathrm{V}_{\text {DDS }}$ (3V3) | supervisor supply voltage ( 3.3 V ) |  | 3.0 | 3.3 | 3.6 | V |
| $V_{\text {DDDC(3V3 }}$ | core digital supply voltage ( 3.3 V ) |  | 3.0 | 3.3 | 3.6 | V |
| $V_{\text {DDDC(1V8) }}$ | core digital supply voltage ( 1.8 V ) |  | 1.65 | 1.8 | 1.95 | V |
| $V_{\text {DDO(3V3) }}$ | output supply voltage ( 3.3 V ) |  | 3.0 | 3.3 | 3.6 | V |
| $\mathrm{V}_{\text {DDO(1V8) }}$ | output supply voltage (1.8 V) |  | 1.65 | 1.8 | 1.95 | V |
| $\mathrm{I}_{\text {DDH(3V3) }}$ | HDMI supply current (3.3 V) |  | [1][2] - | 22 | 29 | mA |
| $\mathrm{I}_{\text {DDH(1V8) }}$ | HDMI supply current (1.8 V) |  | - | 13 | 16 | mA |
| $\mathrm{I}_{\text {DDS }}(3 \mathrm{~V} 3)$ | supervisor supply current (3.3 V) |  | - | 2 | 3 | mA |
| $\mathrm{I}_{\text {DDDC(3V3) }}$ | core digital supply current (3.3 V) |  | - | 6 | 8 | mA |
| $\mathrm{I}_{\text {DDDC(1V8) }}$ | core digital supply current (1.8 V) | Pin 8 | - | 51 | 70 | mA |
|  |  | Pin 45 | - | 77 | 90 | mA |
|  |  | Pin 91 | - | 92 | 105 | mA |
| $\mathrm{I}_{\text {DDO(3V3) }}$ | output supply current (3.3 V) |  | - | 23 | 28 | mA |
| $\mathrm{I}_{\text {DDO(1V8) }}$ | output supply current (1.8 V) |  | - | 15 | 18 | mA |
| $\mathrm{I}_{\text {AUX_5V }}$ | current on pin AUX_5V |  | - | 3 | 5 | mA |
| $\mathrm{T}_{\mathrm{j}(\max )}$ | maximum junction temperature | $\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}=49.5 \mathrm{~K} / \mathrm{W}$ | - | - | 124 | ${ }^{\circ} \mathrm{C}$ |

Table 8. Characteristics ...continued
$V_{D D H(3 V 3)}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V} ; V_{D D D C(3 \mathrm{~V} 3)}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; V_{D D H(1 \mathrm{~V}))}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V} ; V_{D D D C(1 \mathrm{~V} 8)}=1.65 \mathrm{~V}$ to 1.95 V ; $T_{\text {amb }}=0{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$; typical values measured at $V_{D D H(3 V 3)}$ and $V_{D D D C(3 V 3)}=3.3 \mathrm{~V} ; V_{D D H(1 \mathrm{~V}))}$ and $V_{D D D C(1 \mathrm{V8)}}=1.8 \mathrm{~V}$ and $T_{\text {amb }}=25{ }^{\circ} \mathrm{C} ; f_{\max }=2.25 \mathrm{GHz}$; unless otherwise specified.

| Symbol | Parameter | Conditions |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{\text {cons }}$ | Power consumption | 0 = Power-down; no 5 V |  |  |  |  |  |
|  |  | 3.3 V |  | - | - | 0 | mW |
|  |  | 1.8 V |  | - | - | 0 | mW |
|  |  | 1 = EDID read only; using $+5 \mathrm{~V}(20 \mathrm{~mW})$ from source for EDID |  |  |  |  |  |
|  |  | 3.3 V |  | - | - | 0 | mW |
|  |  | 1.8 V |  | - | - | 0 | mW |
|  |  | 2 = Idle mode; EDID + $\mathrm{I}^{2} \mathrm{C}$-bus + HDMI, No HDMI activity on selected input, 20 mW from source |  |  |  |  |  |
|  |  | 3.3 V | [3] | - | - | 28 | mW |
|  |  | 1.8 V |  | - | - | 15 | mW |
|  |  | 3 = Operating mode; all on, with HDMI activity on selected input |  |  |  |  |  |
|  |  | 3.3 V | [3] | - | - | 241 | mW |
|  |  | 1.8 V |  | - | - | 583 | mW |
|  |  | total power consumption in Operating mode | [3] | - | - | 824 | mW |

Table 8. Characteristics ...continued
$V_{D D H(3 V 3)}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V} ; V_{D D D(3 V 3)}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; V_{D D H(1 \mathrm{~V} 8)}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V} ; V_{D D D C(1 \mathrm{~V})}=1.65 \mathrm{~V}$ to 1.95 V ;
$T_{\text {amb }}=0{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$; typical values measured at $V_{D D H(3 V 3)}$ and $V_{D D D C(3 V 3)}=3.3 \mathrm{~V} ; V_{D D H(1 \mathrm{~V} 8)}$ and $V_{D D D C(1 \mathrm{V8)}}=1.8 \mathrm{~V}$ and $T_{\text {amb }}=25{ }^{\circ}$ C; $f_{\text {max }}=2.25 \mathrm{GHz}$; unless otherwise specified.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HDMI inputs: pins RXx_C+, RXx_C-, RXx_D0+, RXx_D0-, RXx_D1+, RXx_D1-, RXx_D2+ and RXx_D2-[4] |  |  |  |  |  |  |
| $V_{i(\text { diff }}$ | differential input voltage | $\mathrm{R} 12 \mathrm{~K}=12 \mathrm{k} \Omega \pm 1 \%$ | 150 | - | 1200 | mV |
| $\mathrm{V}_{\text {I(cm) }}$ | common-mode input voltage |  | 2.735 | - | 3.475 | V |
| HDMI output pins: OUT_D0-, OUT_D0+, OUT_D1-, OUT_D1+, OUT_D2- and OUT_D2+ |  |  |  |  |  |  |
| $\mathrm{V}_{\text {o(p-p) }}$ | peak-to-peak output voltage | with test load and operating | 400 | 525 | 600 | mV |
| $\mathrm{V}_{\text {OH }}$ | HIGH-level output voltage | conditions as described in the HDMI 1.3a specification | 3.125 | 3.3 | 3.475 | V |
| $V_{\text {OL }}$ | LOW-level output voltage |  | 2.535 | 2.8 | 3.065 | v |
| HDMI pins: RXx_C+ and RXx_C-[4] |  |  |  |  |  |  |
| $\mathrm{f}_{\text {clk(max) }}$ | maximum clock frequency |  | 225 | - | - | MHz |



| Digital inputs[5]: pins PD |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IL}} \quad$ LOW-level input voltage | - | - | 0.8 | V |
| $\mathrm{V}_{\mathrm{IH}} \quad \mathrm{HIGH}$-level input voltage | 2.0 | - | - | V |
| Digital inputs[5]: pin RXx_HPD[4] |  |  |  |  |
| $\mathrm{V}_{\text {IL }} \quad$ LOW-level input voltage | - | - | 0.8 | V |
| $\mathrm{V}_{\mathrm{IH}} \quad \mathrm{HIGH}$-level input voltage | 2.0 | - | - | V |
| $\mathrm{C}_{\mathrm{i}} \quad$ input capacitance | - | - | 2.8 | pF |

Digital outputs: pin INT_N/MUTE

| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} ; \mathrm{l}_{\mathrm{OH}}=2 \mathrm{~mA}$ | 2.4 | - | - | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} ; \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$ | - | - | 0.4 | V |
| $1^{2} \mathrm{C}$-bus: pins I2C_SCL and I2C_SDA (Fast-mode) ${ }^{[5]}$ |  |  |  |  |  |  |
| $\mathrm{f}_{\text {SCL }}$ | SCL clock frequency |  | - | - | 400 | kHz |
| $\mathrm{C}_{\mathrm{b}}$ | capacitive load for each bu |  | - | - | 400 | pF |
| $\mathrm{C}_{\mathrm{i}}$ | input capacitance |  | - |  | 10 | pF |


| DDC $1^{2}$ C-bus: | pins RXx_DDC_DAT and RXx_DDC_CLK[6][5] |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f}_{\mathrm{SCL}}$ | SCL clock frequency | Standard-mode | - | - | 100 | kHz |
|  |  | Fast-mode | - | - | 400 | kHz |
| $\mathrm{C}_{\mathrm{i}}$ | input capacitance |  | - | - | 10 | pF |


| $\mathrm{f}_{\text {SCL }}$ | SCL clock frequency | Standard-mode | - | - | 100 | kHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Fast-mode |  |  | 400 | kHz |

MTP endurance

| $\mathrm{N}_{\text {endu(W) }}$ | write endurance | number of cycles at <br> $T_{j}=125^{\circ} \mathrm{C}$ | $1000-$ |
| :--- | :--- | :--- | :--- |

[^1][4] $x=A, B, C, D$.
[5] 5 V tolerant.
[6] $x=A, B, C, D, E$.

## 12. Typical operating characteristics


(1) $V_{D D \times(1 \mathrm{~V} 8)}=$ sum of current from all $V_{D D(1 V 8)}$ supply pins.
(2) $\mathrm{V}_{\mathrm{DDx}(3 \mathrm{~V} 3)}=$ sum of current from all $\mathrm{V}_{\mathrm{DD}(3 \mathrm{~V} 3)}$ supply pins, excluding current from HDMI source.

Fig 4. Typical current consumption

a. Jitter measurement test bench

b. Typical jitter measurement in 480p60 24-bit deep color video format

d. Typical jitter measurement in 1080p60 24-bit deep color video format

Fig 5. Typical jitter measurement

c. Typical jitter measurement in 720p60 24-bit deep color video format

e. Typical jitter measurement in 1080p60 36-bit deep color video format

a. Typical eye diagram in 480p60 24-bit deep color video format

c. Typical eye diagram in 1080p60 24-bit deep color video format

b. Typical eye diagram in 720p60 24-bit deep color video format

d. Typical eye diagram in 1080p60 36-bit deep color video format

Fig 6. Typical eye diagram measurement with Tx compliancy mask

## 13. Application information



Fig 7. Application diagram

## 14. Package outline



DIMENSIONS ( mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> $\mathbf{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(\mathbf{1})}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{D}}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}_{\mathbf{D}}{ }^{(\mathbf{1})}$ | $\mathbf{Z}_{\mathbf{E}} \mathbf{( 1 )}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.6 | 0.15 | 1.45 | 0.25 | 0.27 | 0.20 | 14.1 | 14.1 | 0.5 | 16.25 | 16.25 |  | 0.75 | 0.2 | 0.0 | 0.08 | 1.15 | 1.15 | $7^{0}$ |
| 0.05 | 1.35 | 0.25 | 0.17 | 0.09 | 13.9 | 13.9 | 0.5 | 15.75 | 15.75 | 1 | 0.45 |  | 0.0 | 0.08 | 0.85 | 0.85 | $0^{\circ}$ |  |  |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT407-1 | 136E20 | MS-026 |  | $\square$ (-) | $\begin{aligned} & 00-02-01 \\ & 03-02-20 \end{aligned}$ |

Fig 8. Package outline SOT407-1 (LQFP100)

## 15. Abbreviations

Table 9. Abbreviations

| Acronym | Description |
| :--- | :--- |
| ATC | Authorized Test Center |
| AVR | Audio/Video Receiver |
| AWG | American Wire Gauge |
| CDM | Charged Device Model |
| DDC | Display Data Channel |
| DVI | Digital Video Input |
| EDID | Extended Display Identification Data |
| ESD | ElectroStatic Discharge |
| EQ | EQualizer |
| HBM | Human Body Model |
| HDCP | High-bandwidth Digital Content Protection |
| HDMI | High-Definition Multimedia Interface |
| HDTV | High-Definition TeleVision |
| HPD | Hot Plug Detect |
| I C $^{\text {Inter-Integrated Circuit }}$ |  |
| LCD | Liquid Crystal Display |
| MM | Machine Model |
| MTP | Multi-Time Programmable |
| POR | Power-On Reset |
| RGB | Red/Green/Blue |
| RT | Resistor Termination |
| SoC | System on a Chip |
| TMDS | Transition Minimized Differential Signaling |
| VGA | Video Graphic Array |
| YCbCr | Y = Luminance, Cb $=$ Chroma blue, Cr = Chroma red |

## 16. References

[1] HDMI 1.4 - High-Definition Multimedia Interface; Specification Version 1.4; 5 June 2009.
[2] CEA-861D - A DTV profile for Uncompressed High-Speed Digital Interfaces; CEA-861rDv18; 5 August 2006.
[3] IEC-60958 - Digital audio interface - Part 1: General; Second edition; March 2004. Digital audio interface - Part 3: Consumer applications; Second edition; January 2003.
[4] IEC-61937 - Digital audio interface - Interface for non-linear PCM encode audio bit stream applying IEC-60958-Part 1: General; First edition; May 2003.
[5] HDCP 1.3 — High-bandwidth Digital Content Protection; Revision 1.3; 21 December 2006.
[6] E-DDC 1.1 — VESA Enhanced Display Data Channel Standard; Version 1.1; 24 March 2004.
[7] DVI 1.0 — DVI Digital Video Interface; Revision 1.0; 2 April 1999.

## 17. Revision history

Table 10. Revision history

| Document ID | Release date | Data sheet status | Change notice | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TDA19997HL_2 | 20091222 | Product data sheet | - | TDA19997_1 |
| Modifications: | - Section 2 "Features": updated ESD part |  |  |  |
|  | - Table 1 "Quick reference data": updated ESD part |  |  |  |
| Table 6 "Limiting values": updated ESD part |  |  |  |  |
| TDA19997_1 | 20090819 | Objective data sheet | - | - |

## 18. Legal information

### 18.1 Data sheet status

| Document status $\underline{[1][2]}$ | Product status $\underline{[3]}$ | Definition |
| :--- | :--- | :--- |
| Objective [short] data sheet | Development | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. |
| Product [short] data sheet | Production | This document contains the product specification. |

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

### 18.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

### 18.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

### 18.4 Licenses

## Purchase of NXP ICs with HDMI technology

Use of an NXP IC with HDMI technology in equipment that complies with the HDMI standard requires a license from HDMI Licensing LLC, 1060 E . Arques Avenue Suite 100, Sunnyvale CA 94085, USA, e-mail:
admin@hdmi.org.

### 18.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
$I^{2} \mathrm{C}$-bus - logo is a trademark of NXP B.V.

## 19. Contact information

For more information, please visit: http://wwww.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

## 20. Tables

Table 1. Quick reference data .....  3
Table 2. Ordering information ..... 3
Table 3. Pin description ..... 5
Table 4. Power management ..... 10
Table 5. Default slave address ..... 11
Table 6. Limiting values ..... 12
Table 7. Thermal characteristics ..... 13
Table 8. Characteristics ..... 13
Table 9. Abbreviations ..... 21
Table 10. Revision history ..... 22

## 21. Figures

Fig 1. Block diagram4

Fig 2. Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Fig 3. $I^{2} \mathrm{C}$-bus access. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Fig 4. Typical current consumption . . . . . . . . . . . . . . . . . 16
Fig 5. Typical jitter measurement. . . . . . . . . . . . . . . . . . . 17
Fig 6. Typical eye diagram measurement with
Tx compliancy mask . . . . . . . . . . . . . . . . . . . . . . 18
Fig 7. Application diagram . . . . . . . . . . . . . . . . . . . . . . 19
Fig 8. Package outline SOT407-1 (LQFP100) . . . . . . . . 20

## 22. Contents

1 General description ..... 1
2 Features ..... 1
3 Applications ..... 2
4 Quick reference data ..... 3
5 Ordering information ..... 3
6 Block diagram ..... 4
7 Pinning information ..... 5
7.1 Pinning ..... 5
7.2 Pin description ..... 5
8 Functional description ..... 8
8.1 HDMI input ..... 8
8.2 Equalizer ..... 8
8.3 Activity detection. ..... 8
8.4 Embedded EDID memory. ..... 8
8.5 Display Data Channel (DDC) ..... 9
8.6 HDMI features ..... 9
$8.7 \quad+5 \mathrm{~V}$ signal detection ..... 9
8.8 AUX_5V pin ..... 9
8.9 HDMI output ..... 10
8.10 Power management ..... 10
8.11 Power supplies ..... 11
$8.12 \quad \mathrm{I}^{2} \mathrm{C}$-bus ..... 11
8.12.1 $\quad \mathrm{I}^{2} \mathrm{C}$-bus protocol ..... 11
8.12.2 Memory page management ..... 12
9 Limiting values ..... 12
10 Thermal characteristics ..... 13
11 Characteristics ..... 13
12 Typical operating characteristics ..... 16
13 Application information ..... 19
14 Package outline ..... 20
15 Abbreviations ..... 21
16 References ..... 21
17 Revision history ..... 22
18 Legal information ..... 23
18.1 Data sheet status ..... 23
18.2 Definitions ..... 23
18.3 Disclaimers ..... 23
18.4 Licenses ..... 23
18.5 Trademarks. ..... 23
19 Contact information. ..... 23
20 Tables ..... 24
21 Figures ..... 25
22 Contents ..... 26

## PHILIPS


[^0]:    [1] Nonvolatile memory.
    [2] $x=A, B, C$ or $D$.

[^1]:    [1] Typical values: add 40 mA by connected link for regulator dimensioning.
    [2] Maximum values: add 48 mA by connected link for regulator dimensioning.
    [3] Maximum values: add 167 mW by connected link for regulator dimensioning ( $12 \mathrm{~mA} \times 3.47 \mathrm{~V}=167 \mathrm{~mW}$ ).

