

. :eescale Semiconductor

Technical Data

Document Number: MD7IC1812N Rev. 0, 5/2015

√RoHS

RF LDMOS Wideband Integrated Power Amplifiers

The MD7IC1812N wideband integrated circuit is designed with on-chip matching that makes it usable from 1805 to 2170 MHz. This multi-stage structure is rated for 24 to 32 V operation and covers all typical cellular base station modulation formats.

Driver Application — 1800 MHz

• Typical Single-Carrier W-CDMA Performance: $V_{DD} = 28 \text{ Vdc}$, $I_{DQ1A} = I_{DQ1B} = 20 \text{ mA}$, $I_{DQ2A} = I_{DQ2B} = 70 \text{ mA}$, $P_{out} = 1.3 \text{ W Avg.}$, IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

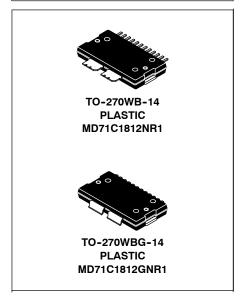
Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
1805 MHz	31.9	13.0	-50.3
1840 MHz	31.6	13.4	-50.2
1880 MHz	31.5	14.0	-49.8

 Capable of Handling 5:1 VSWR, @ 32 Vdc, 1840 MHz, 19 W CW Output Power (3 dB Input Overdrive from Rated P_{out})

Driver Application — 1900 MHz

• Typical Single-Carrier W-CDMA Performance: $V_{DD} = 28 \text{ Vdc}$, $I_{DQ1A} = I_{DQ1B} = 20 \text{ mA}$, $I_{DQ2A} = I_{DQ2B} = 70 \text{ mA}$, $P_{out} = 1.3 \text{ W Avg.}$, IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
1930 MHz	32.2	15.2	-51.6
1960 MHz	32.1	15.1	-52.3
1995 MHz	32.0	15.1	-52.6

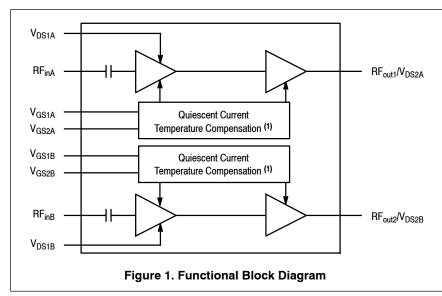

Driver Application — 2100 MHz

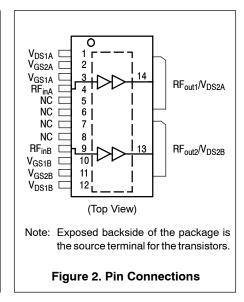
 Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ1A} = I_{DQ1B} = 20 mA, I_{DQ2A} = I_{DQ2B} = 70 mA, P_{out} = 1.3 W Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
2110 MHz	32.2	14.8	-52.8
2140 MHz	32.3	14.6	-52.6
2170 MHz	32.5	14.4	-49.4

MD7IC1812NR1 MD7IC1812GNR1

1805–2170 MHz, 1.3 W AVG., 28 V SINGLE W-CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS


Features


- · Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source S-Parameters
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)
- Designed for Digital Predistortion Error Correction Systems
- Optimized for Doherty Applications

^{1.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (2,3)	TJ	225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(3,4)	Unit
Thermal Resistance, Junction to Case Case Temperature 73°C, 1.3 W CW	$R_{ hetaJC}$		°C/W
Stage 1, 28 Vdc, I _{DQ1A} = I _{DQ1B} = 40 mA, 1840 MHz Stage 2, 28 Vdc, I _{DQ2A} = I _{DQ2B} = 180 mA, 1840 MHz		6.5 2.9	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1C
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	III

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

- 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.freescale.com/rf and search for AN1977 or AN1987.
- 2. Continuous use at maximum temperature will affect MTTF.
- 3. MTTF calculator available at http://www.freescale.com/rf/calculators.
- 4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics (1)					
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 - On Characteristics (1)					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 5 \mu\text{Adc})$	V _{GS(th)}	1.2	2.0	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mAdc)	V _{GS(Q)}	_	2.7	_	Vdc
Fixture Gate Quiescent Voltage $(V_{DD} = 28 \text{ Vdc}, I_{DQ1A} = I_{DQ1B} = 20 \text{ mAdc}, Measured in Functional Test})$	$V_{GG(Q)}$	4.2	5.0	5.7	Vdc
Stage 2 - Off Characteristics (1)					
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 - On Characteristics (1)	•		•	•	
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 24 μ Adc)	V _{GS(th)}	1.2	2.0	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2A} = I _{DQ2B} = 70 mAdc)	V _{GS(Q)}	—	2.0	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ2A} = I _{DQ2B} = 70 mAdc, Measured in Functional Test)	$V_{GG(Q)}$	3.2	4.0	4.7	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 240 mAdc)	V _{DS(on)}	0.1	0.24	1.5	Vdc

Functional Tests (2.3) (In Freescale Wideband 1805–1880 Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ1A} = I_{DQ1B} = 20 \text{ mA}$, $I_{DQ2B} = 70 \text{ mA}$, $P_{out} = 1.3 \text{ W Avg.}$

Power Gain	G _{ps}	31.0	31.5	35.0	dB
Power Added Efficiency	PAE	13.0	14.0	_	%
Adjacent Channel Power Ratio	ACPR	_	-49.8	−47.5	dBc

^{1.} Each side of device measured separately.

(continued)

^{2.} Part internally matched both on input and output.

^{3.} Measurement made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

Table 5. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performance (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mA, I _{DQ2A} = I _{DQ2B} = 70 mA,					

1805-1880 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	_	12	_	W
Pout @ 3 dB Compression Point, CW	P3dB	_	13	_	W
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	140	_	MHz
Quiescent Current Accuracy over Temperature (1) with 2 k Ω Gate Feed Resistors (–30 to 85°C) Stage 1 with 2 k Ω Gate Feed Resistors (–30 to 85°C) Stage 2	Δl _{QT}	<u> </u>	2.5 1.7		%
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 1.3 W Avg.	G _F	=	0.3	_	dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG	_	0.03	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.014	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
MD7IC1812NR1	D4 O (f) = 500 Heite 44 and Teach Middle 40 inch Dark	TO-270WB-14
MD7IC1812GNR1	R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel	TO-270WBG-14

^{1.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1977 or AN1987.

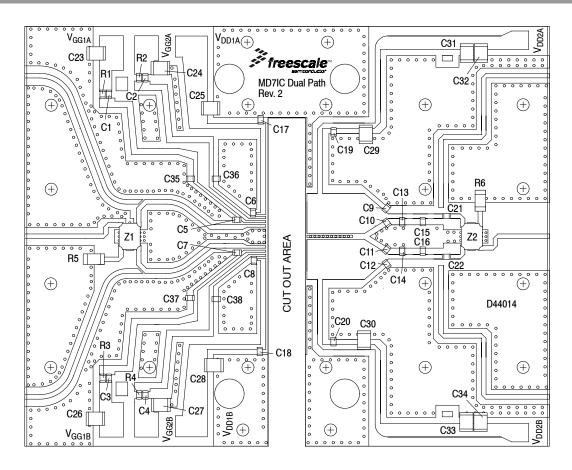


Figure 3. MD7IC1812NR1 Test Circuit Component Layout

Table 7. MD7IC1812NR1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	3.9 pF Chip Capacitors	ATC600F3R9BT250XT	ATC
C5, C6, C7, C8	1.0 pF Chip Capacitors	ATC600F1R0BT250XT	ATC
C9, C10, C11, C12	0.6 pF Chip Capacitors	ATC600F0R6BT250XT	ATC
C13, C14	0.8 pF Chip Capacitors	ATC600F0R8BT250XT	ATC
C15, C16	1.2 pF Chip Capacitors	ATC600F1R2BT250XT	ATC
C17, C18, C19, C20	10 pF Chip Capacitors	ATC600F10RBT250XT	ATC
C21, C22	5.6 pF Chip Capacitors	ATC600F5R6BT250XT	ATC
C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C35, C36, C37, C38	22 nF Chip Capacitors	GRM31MR72A223KA01L	Murata
R1, R2, R3, R4	2 KΩ, 1/4 W Chip Resistors	CRCW12062K00FKEA	Vishay
R5, R6	50 Ω, 20 W Termination	375375-6X50-2	Anaren
Z1, Z2	1800–2300 MHz Band, 90°, 3 dB Hybrid Couplers	X3C21P1-03S	Anaren
PCB	Rogers RO4350B, 0.020", ε _r = 3.66	D44014	MTL

TYPICAL CHARACTERISTICS — 1805-1880 MHz

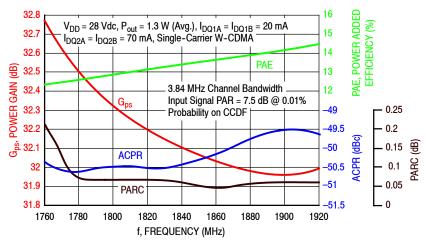


Figure 4. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 1.3 Watts Avg.

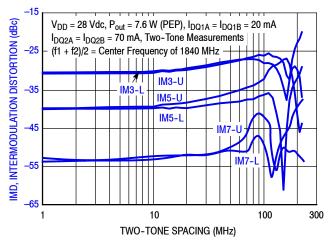


Figure 5. Intermodulation Distortion Products versus Two-Tone Spacing

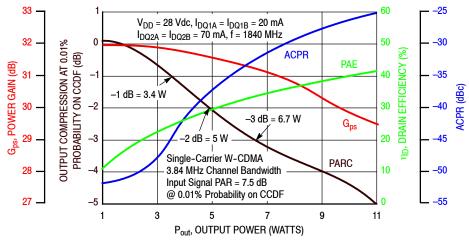


Figure 6. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS — 1805–1880 MHz

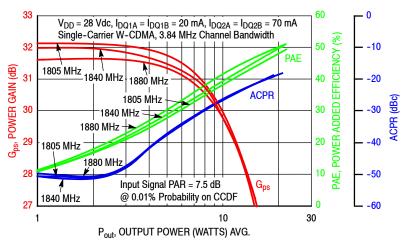


Figure 7. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power

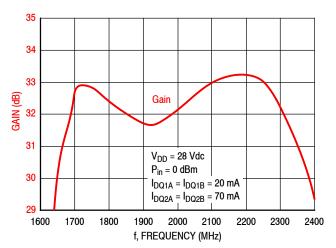


Figure 8. Broadband Frequency Response

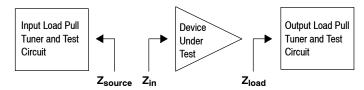
Table 8. Load Pull Performance — Maximum Power Tuning

 $V_{DD} = 28 \; \text{Vdc}, \; I_{DQ1A} = I_{DQ1B} = 12 \; \text{mA}, \; I_{DQ2A} = I_{DQ2B} = 80 \; \text{mA}, \; Pulsed \; CW, \; 10 \; \mu sec(on), \; 10\% \; Duty \; Cycle$

			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
1800	18.6 + j0.84	21.6 – j14.9	9.75 – j4.18	26.4	40.8	12	59.9	- 5	
1840	18.9 – j2.06	22.0 – j13.4	9.94 – j4.69	25.5	40.8	12	59.8	-4	
1880	19.9 – j5.86	22.3 – j11.4	9.53 – j5.22	24.7	40.8	12	59.6	-3	
1930	21.2 – j6.08	21.2 – j8.50	9.13 – j5.50	24.3	40.9	12	59.5	-3	
1960	21.3 – j7.19	20.7 – j7.35	9.42 – j5.43	23.9	40.8	12	58.5	-3	
1995	23.3 – j9.53	19.9 – j6.74	9.23 – j5.43	23.8	40.8	12	58.1	-3	
2110	16.2 + j0.01	16.6 + j0.14	9.12 – j5.48	24.5	40.8	12	57.6	-4	
2140	16.2 – j1.24	16.9 + j2.33	9.27 – j5.44	24.6	40.8	12	57.5	-4	
2170	16.1 – j2.79	17.2 + j4.75	9.44 – j5.76	24.9	40.8	12	56.8	-4	

			Max Output Power						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
1800	18.6 + j0.84	22.8 – j15.9	10.8 – j4.58	24.1	41.5	14	60.9	-6	
1840	18.9 – j2.06	22.7 – j14.6	10.9 – j5.19	23.2	41.6	14	60.6	-5	
1880	19.9 – j5.86	22.6 – j12.7	10.4 – j5.78	22.4	41.6	14	60.2	- 5	
1930	21.2 – j6.08	21.2 – j8.50	9.13 – j5.50	24.3	40.9	12	59.5	-3	
1960	21.3 – j7.19	20.7 – j7.35	9.42 – j5.43	23.9	40.8	12	58.5	-3	
1995	23.3 – j9.53	19.9 – j6.74	9.23 – j5.43	23.8	40.8	12	58.1	-3	
2110	16.2 + j0.01	16.6 + j0.14	9.12 – j5.48	24.5	40.8	12	57.6	-4	
2140	16.2 – j1.24	16.9 + j2.33	9.27 – j5.44	24.6	40.8	12	57.5	-4	
2170	16.1 – j2.79	17.2 + j4.75	9.44 – j5.76	24.9	40.8	12	56.8	-4	

⁽¹⁾ Load impedance for optimum P1dB power.


(2) Load impedance for optimum P3dB power.

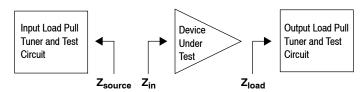
Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

= Impedance as measured from gate contact to ground.

= Measured impedance presented to the output of the device at the package reference plane.

Note: Measurement made on a per side basis.

Table 9. Load Pull Performance — Maximum Drain Efficiency Tuning


 $V_{DD} = 28 \text{ Vdc}, \ I_{DQ1A} = I_{DQ1B} = 12 \text{ mA}, \ I_{DQ2A} = I_{DQ2B} = 80 \text{ mA}, \ Pulsed CW}, \ 10 \ \mu sec(on), \ 10\% \ Duty \ Cycle$

			Max Drain Efficiency						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
1800	18.6 + j0.84	21.8 – j10.1	5.59 – j0.05	27.8	39.2	8	68.3	-9	
1840	18.9 – j2.06	22.5 – j9.13	5.29 – j1.05	26.9	39.2	8	67.6	-9	
1880	19.9 – j5.86	23.1 – j7.30	5.08 – j1.75	26.1	39.3	8	67.4	-9	
1930	21.2 – j6.08	22.4 – j5.16	4.95 – j2.29	25.7	39.4	9	67.0	-9	
1960	21.3 – j7.19	22.0 – j4.53	5.22 – j2.57	25.3	39.6	9	66.5	-8	
1995	23.3 – j9.53	21.7 – j3.81	5.26 – j2.76	25.1	39.6	9	65.4	-8	
2110	16.2 + j0.01	18.8 + j2.28	4.73 – j3.36	25.8	39.5	9	64.3	-9	
2140	16.2 – j1.24	18.1 + j3.56	4.67 – j3.68	26.1	39.5	9	64.2	-10	
2170	16.1 – j2.79	18.9 + j6.77	5.18 – j3.92	26.4	39.7	9	63.3	-10	

			Max Drain Efficiency						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
1800	18.6 + j0.84	22.7 – j12.6	6.21 – j0.66	25.6	40.2	11	69.5	-10	
1840	18.9 – j2.06	23.1 – j11.5	5.87 – j1.57	24.8	40.2	11	68.7	-10	
1880	19.9 – j5.86	23.6 – j9.16	5.27 – j1.95	24.1	40.0	10	68.0	-11	
1930	21.2 – j6.08	22.4 – j5.16	4.95 – j2.29	25.7	39.4	9	67.0	-9	
1960	21.3 – j7.19	22.0 – j4.53	5.22 – j2.57	25.3	39.6	9	66.5	-8	
1995	23.3 – j9.53	21.7 – j3.81	5.26 – j2.76	25.1	39.6	9	65.4	-8	
2110	16.2 + j0.01	18.8 + j2.28	4.73 – j3.36	25.8	39.5	9	64.3	– 9	
2140	16.2 – j1.24	18.1 + j3.56	4.67 – j3.68	26.1	39.5	9	64.2	-10	
2170	16.1 – j2.79	18.9 + j6.77	5.18 – j3.92	26.4	39.7	9	63.3	-10	

⁽¹⁾ Load impedance for optimum P1dB efficiency.

Note: Measurement made on a per side basis.

⁽²⁾ Load impedance for optimum P3dB efficiency.

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

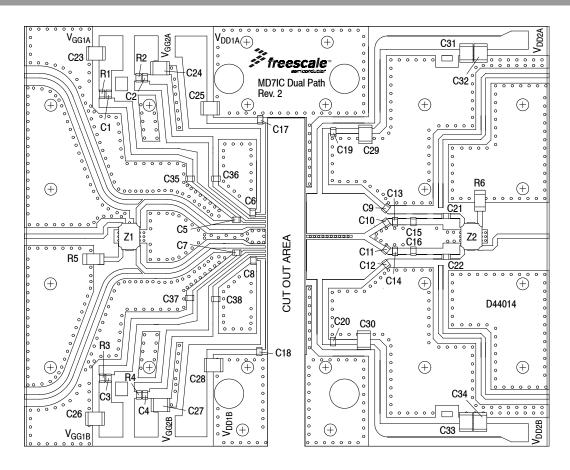


Figure 9. MD7IC1812NR1 Test Circuit Component Layout — 1930–2170 MHz

Table 10. MD7IC1812NR1 Test Circuit Component Designations and Values — 1930–2170 MHz

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	3.3 pF Chip Capacitors	ATC600F3R3BT250XT	ATC
C5, C7	2.0 pF Chip Capacitors	ATC600F2R0BT250XT	ATC
C6, C8	1.5 pF Chip Capacitors	ATC600F1R5BT250XT	ATC
C9, C10, C11, C12	0.6 pF Chip Capacitors	ATC600F0R6BT250XT	ATC
C13, C14	0.8 pF Chip Capacitors	ATC600F0R8BT250XT	ATC
C15, C16	1.2 pF Chip Capacitors	ATC600F1R2BT250XT	ATC
C17, C18, C19, C20	10 pF Chip Capacitors	ATC600F10RBT250XT	ATC
C21, C22	5.6 pF Chip Capacitors	ATC600F5R6BT250XT	ATC
C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C35, C36, C37, C38	22 nF Chip Capacitors	GRM31BR72E223KW01L	Murata
R1, R2, R3, R4	2 KΩ, 1/4 W Chip Resistors	CRCW12062K00FKEA	Vishay
R5, R6	50 Ω, 20 W Termination	375375-6X50-2	Anaren
Z1, Z2	1800–2300 MHz Band, 90°, 3 dB Hybrid Couplers	X3C21P1-03S	Anaren
PCB	Rogers RO4350B, 0.020", ε _r = 3.66	D44014	MTL

TYPICAL CHARACTERISTICS — 1930–2170 MHz

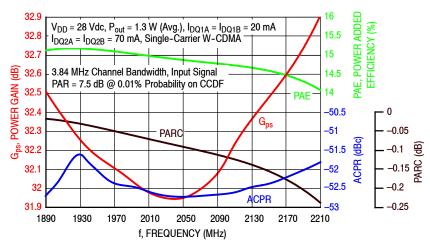


Figure 10. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 1.3 Watts Avg.

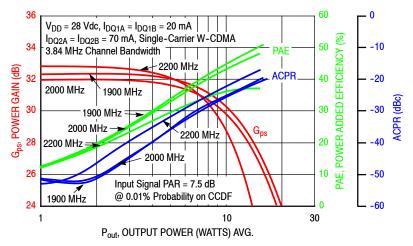


Figure 11. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power

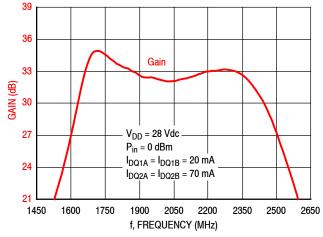
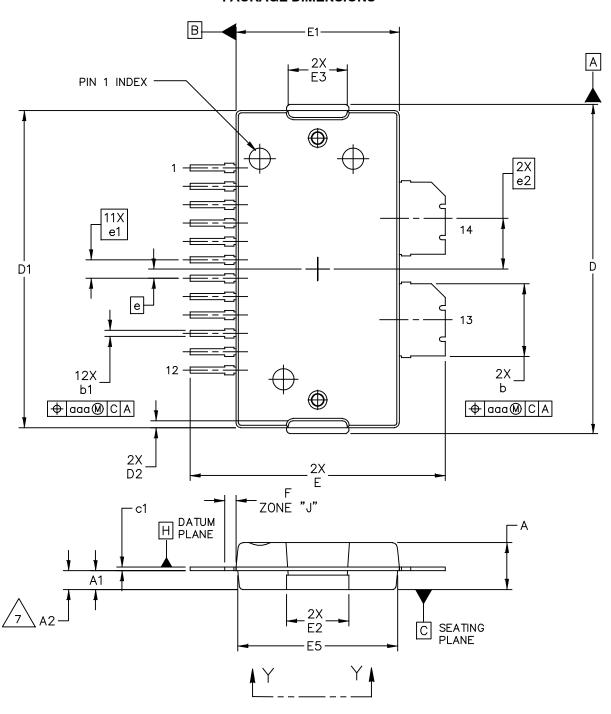
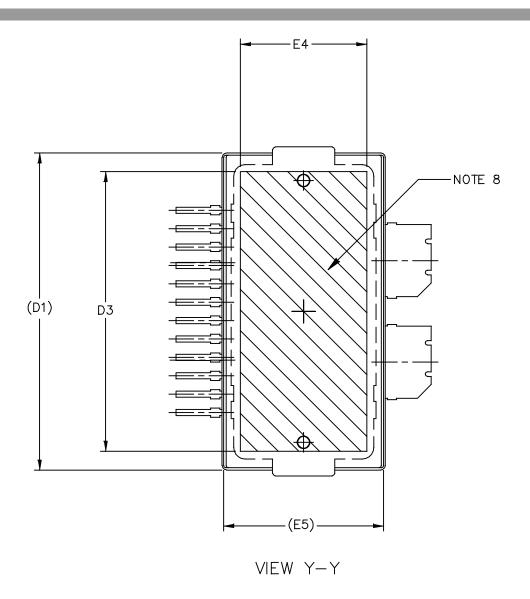



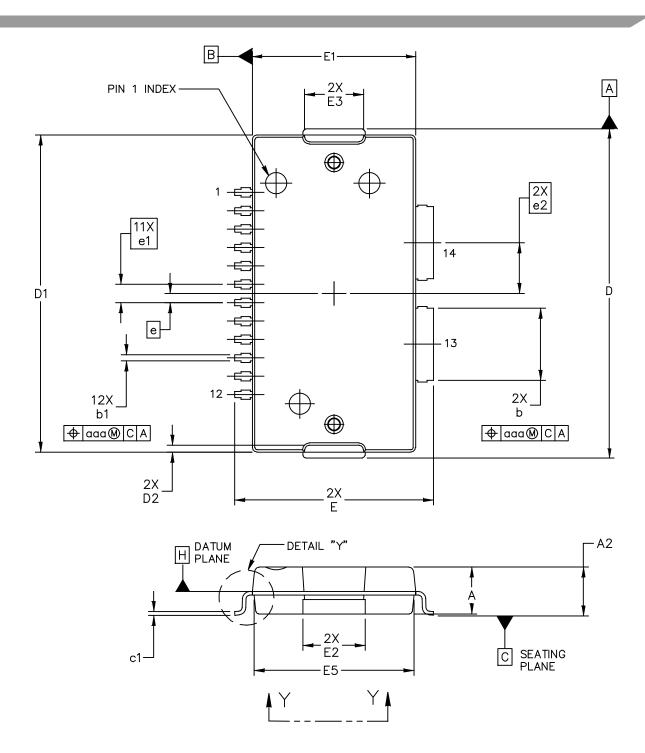
Figure 12. Broadband Frequency Response



PACKAGE DIMENSIONS

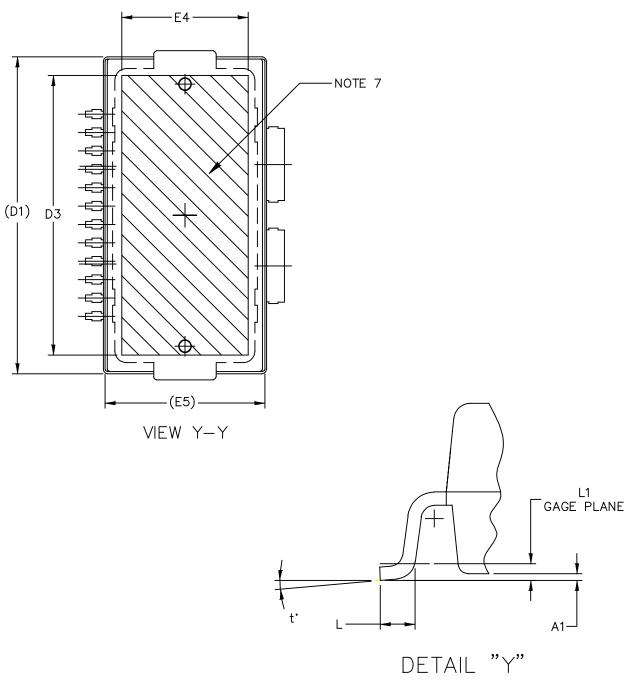
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:	DOCUMENT NO: 98ASA10650D REV: A				
TO-270 WIDE BOD	CASE NUMBER: 1618-02 19 JUN 200				
	STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO	REV: A		
TO-270 WIDE BOD	CASE NUMBER	R: 1618–02	19 JUN 2007	
I THE LEAD	STANDARD: NO	N-JEDEC		


NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	CH	MII	LIMETER			INCH	М	IILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64	F	.c	25 BSC	(0.64 BSC
A1	.039	.043	0.99	1.09	b	.154	.160	3.9	1 4.06
A2	.040	.042	1.02	1.07	b1	.010	.016	0.25	5 0.41
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28
D1	.688	.692	17.48	17.58	е	.0	20 BSC	(0.51 BSC
D2	.011	.019	0.28	0.48	e1		40 BSC	-	1.02 BSC
D3	.600		15.24		e2	.1	105 BSC	BSC 2.807 BSC	
Ε	.551	.559	14	14.2					
E1	.353	.357	8.97	9.07	aaa		.004	.10	
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35					
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
© 1		MICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE
TITLE:		070 14/15			DOCU	MENT NO): 98ASA10650I	D	REV: A
	10-	270 WID 14 LE	E BOD) Υ	CASE NUMBER: 1618-02 19 JUN 200				19 JUN 2007
			טר		STANDARD: NON-JEDEC				


MD7IC1812NR1 MD7IC1812GNR1

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: TO-270 WIDE BOD	DOCUMENT NO): 98ASA10653D	REV: A	
14 LEAD	CASE NUMBER: 1621-02 19 JUN 20			
GULL WING	STANDARD: NON-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BOD	DOCUMENT NO): 98ASA10653D	REV: A	
14 LEAD	CASE NUMBER: 1621-02 19 JUN 200			
GULL WING	STANDARD: NON-JEDEC			

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	CH	MI	_LIMETER			INCH	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	. (010 BSC	(0.25 BSC	
A2	.099	.110	2.51	2.79	b	.154	.160	3.9	1 4.06	
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	0.41	
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28	
D2	.011	.019	0.28	0.48	е)20 BSC	(0.51 BSC	
D3	.600		15.24		e1	.040 BSC		1.02 BSC		
E	.429	.437	10.9	11.1	e2	.1	105 BSC	2	2.807 BSC	
E1	.353	.357	8.97	9.07	t	2.	8.	2.	8.	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35	aaa		.004		.10	
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© 1	FREESCALE SEN	ICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NO	ION NOT TO SCALE	
TITLE:	TITLE: TO-270 WIDE BODY					DOCUMENT NO: 98ASA10653D			REV: A	
	14 LEAD					CASE NUMBER: 1621-02 19 JUN 200				
		GULL W	ING		STANDARD: NON-JEDEC					

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2015	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number: MD7IC1812N Rev. 0, 5/2015