INTEGRATED CIRCUITS

Product data Supersedes data of 2003 Nov 10 2004 May 11

Philips Semiconductors

PCA9504A

FEATURES

- Dual, Strapping, Selectable Feature Sets
- Audio-disable Circuit
- Mute Audio Circuit
- 5 V reference generation
- 5 V standby reference generation
- HD single color LED driver
- IDE reset signal generation/PCIRST# buffers
- PWROK (PWRGD_3V) signal generation
- Power Sequencing / BACKFEED_CUT
- Power Supply turn on circuitry
- RMSRST# generation
- Voltage translation for DDC to VGA monitor
- HSYNCH / VSYNCH voltage translation to VGA monitor
- 3-state buffers for test
- Extra GP Logic gates
- Power LED Drivers
- Flash FLUSH# / INIT# circuit
- 5 V I²C to 3.3 V SMBus conversion to 400 kHz
- Requires both 3.3 V and 5.0 V operating voltages
- 0 to +70 °C operating temperature range
- ESD protection exceeds 1000 V HBM per JESD22-A114 and 750 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
- Package offered: TSSOP56

DESCRIPTION

The PCA9504A Glue Chip 4 is a highly integrated and cost-efficient custom ASIC that reduces logic part count, overall component cost, and board space requirements for PC designers and manufacturers. The Glue Chip 4 supports the latest generation of high-volume

platforms based on Intel® processors and chipsets that require additional external circuitry in order to function properly. It is used on entry servers/workstations (840 and 860 chipsets), high-end desktops (820 and 850 chipsets), as well as mid range (815, 830 and 845 chipsets) and low-end (810 chipset) motherboards. Some of these functionalities include meeting timing specifications, buffering signals, and switching between power wells.

The PCA9504A Glue Chip 4 integrates miscellaneous motherboard logic and analog functions into a single, small footprint 56-pin TSSOP device. The Glue Chip 4 typically resides on the motherboard close to the I/O controller Hub (ICH) and is optimized for the Intel 82801BA I/O controller hub (ICH2).

PIN CONFIGURATION

VREF3IN		56 GP3_OUT
V_5P0_STBY	2	55 GP3_IN
V_3P3_STBY	3	54 STRAP
GPO_FLUSH_CACHE/GP1_IN	4	53 VCCP_VREF
A20M/GP1_INB	5	52 VSYNC_5V
INIT/GP1_INA	6	51 HSYNC_5V
FLUSH_OUT_CPU/GP1_OUT	7	50 VSYNC_3V
INIT_OUT/GP2_OUT	8	49 HSYNC_3V
CLK_IN	9	48 REF5V_STBY
SEL_33_66	10	47 AUD_SHDN
GND	11	46 MUTE_AUD
PCIRST	12	45 VREF5IN
PCRIST_OUT	13	44 REF5V
AUD_EN	14	43 GND
AUD_RST	15	42 RSMRST
IDE_RSTDRV	16	41 TEST_EN
3V_DDCSCL	17	40 GRN_LED
5V_DDCSCL	18	39 YLW_LED
3V_DDCSDA	19	38 YLW_BLNK
5V_DDCSDA	20	37 GRN_BLNK
CPU_PRESENT	21	36 SLP_S5
SLP_S3	22	35 SCK_BJT_GATE
PS_ON	23	34 PWRGD_3V
HD_LED	24	33 FPRST
PRIMARY_HD	25	32 PWRGD_PS
SCSI 🗄	26	31 FLUSH_OUT_FWH
SECONDARY_HD	27	30 LATCHED_BACKFED_CUT
BACKFEED_CUT	28	29 GND
	L	SW00578

ORDERING INFORMATION

PACKAGE	TEMPERATURE RANGE	ORDER CODE	TOPSIDE MARK	DRAWING NUMBER
56-Pin Plastic TSSOP	0 °C to +70 °C	PCA9504ADGG	PCA9504ADGG	SOT364-1

Standard packing quantities and other packaging data are available at www.philipslogic.com/packaging.

PCA9504A

PIN DESCRIPTION

PIN(S)		SYMBOL	FUNCTION		
1	31	VREF3IN	3.3 V input		
2	Р	V_5P0_STBY	5 V system standby power supply		
3	Р	V_3P3_STBY	3 V system standby power supply		
4	3IU	GPO_FLUSH_CACHE / GP2_IN	GPO from SIO / ICH2 / Buffer 2 input		
5	REF	A20M / GP1_INB	A20M signal from ICH2 / NAND 1 input B		
6	REF	INIT / GP1_INA	INIT signal from the ICH2 / Buffer 1 input A		
7	5V OD	FLUSH_OUT_CPU / GP1_OUT	Open drain signal, goes to the CPU / NAND 1 output		
8	5V OD	 INIT_OUT / GP2_OUT	Delayed INIT signal into the CPU / Buffer 2 output		
9	31	 CLK_IN	Either 33MHz or 66MHz clock, based on SEL_33_66 pin		
10	3IU	 SEL_33_66	Strapping option for 33MHz or 66MHz CLK_IN		
11, 29, 43	G	GND	Ground		
12	31	PCRIST	PCI reset signal		
13	30	PCRIST_OUT	Copy of PCRIST, increased drive-strength		
14	3IU	AUD_EN	Audio enable input (GPO from ICH2 / SIO)		
15	30	AUD_RST	Audio reset output		
16	50	IDE_RSTDRV	IDE reset output, 5 V push/pull		
17	3IOD	3V_DDCSCL	DDCSCL input/output 3.3 V side		
18	5IOD	5V_DDCSCL	DDCSCL input/output 5 V side		
19	3IOD	3V_DDCSDA	DDCSDA input/output 3.3 V side		
20	5IOD	5V_DDCSDA	DDCSDA input/output 5 V side		
21	3IU	CPU_PRESENT	CPU present signal from the processor		
22	31	SLP_S3	Signal from ICH2 for transitioning to the S3 power state		
23	5V OD	PS_ON	Power supply turn-on signal		
24	5V OD	HD_LED	Hard drive front panel LED output		
25	5IU	PRIMARY_HD	IDE primary drive active input		
26	5IU	SCSI	SCSI drive active input		
27	5IU	SECONDARY_HD	IDE secondary drive active input		
28	5V OD	BACKFEED_CUT	Signal used for STR circuitry		
30	50	LATCHED_BACKFEED_CUT	Signal used for STR circuitry		
31	5V OD	FLUSH_OUT_FWH	Open drain signal, goes to the FWH		
32	5IU	PWRGD_PS	Power good signal from power supply		
33	5IU	FPRST	Reset signal from the front panel		
34	30	PWRGD_3V	3.3 V power good output		
35	5V OD	SCK_BJT_GATE	Gate signal from the SCK BJT in suspend to RAM		
36	31	SLP_S5	Signal from the ICH2 for transitioning to the S5 power state		
37	3IU	GRN_BLNK	Power LED input, from SIO GPIO		
38	3IU	YLW_BLNK	Power LED input, from SIO GPIO		
39	5V OD	YLW_LED	Power LED output		
40	5V OD	GRN_LED	Power LED output		
41	5ID	TEST_EN	Test enable, 100K internal pull-down to GND		
42	30	RSMRST	Reset for the ICH2 resume well		
44	AO	REF5V	Highest system supply reference voltage		
45	51	VREF5IN	5V system primary supply input		
46	3IU	MUTE_AUD	Signal from SIO to mute audio on power up/down		
47	5O	AUD_SHDN	Signal to audio amp to signal shutdown		
48	AO	REF5V_STBY	Highest system standby voltage		
49	31	HSYNC_3V	HSYNCH input from chipset video		

3

PCA9504A

PIN DESCRIPTION CONTINUED

	PIN(S)	SYMBOL	FUNCTION
50	31	VSYNC_3V	VSYNCH input from chipset video
51	5O	HSYNC_5V	HSYNCH output to monitor
52	5O	VSYNC_5V	VSYNCH output to monitor
53	AI	V _{CCP} _VREF	Analog voltage reference for determining INIT/A20M input thresholds
54	3IV/3O	STRAP	Strapping option for GP or FLUSH mode (internal pull-up resistor) Note 1
55	51	GP3_IN	Generic logic gate 3 input
56	5V OD	GP3_OUT	Generic logic gate 3 output

NOTE:

1. The pin is internally pulled up to default to FLUSH mode.

TYPE	DESCRIPTION
31	3.3 V input signal
3IU	3.3 V input signal with internal pull-up
51	5 V input signal
5IU	5 V input signal with internal pull-up
5ID	5 V input signal with internal pull-down
Р	Power (input)
G	Ground (input)
30	3.3 V output signal
5O	5 V output signal
3V OD	3.3 V open-drain output signal
5V OD	5 v open-drain output signal
AO	Analog output
AI	Analog input
3IOD	3.3 V input/output open-drain
5IOD	5 V input/output open-drain
REFL	Input voltage levels referenced to V _{CCP} _VREF

FUNCTION TABLES

Strapping Selection Pin

STRAP (pin 54) ¹	MODE ¹	PIN NAME & (PIN NUMBER)
1 No connect	FLUSH	GPO_FLUSH_CACHE (4)
1 No connect	FLUSH	A20M (5)
1 No connect	FLUSH	INIT (6)
1 No connect	FLUSH	FLUSH_OUT_CPU (7)
1 No connect	FLUSH	INIT_OUT (8)
0 GND	GP	GP2_IN (4)
0 GND	GP	GP1_INB (5)
0 GND	GP	GP1_INA (6)
0 GND	GP	GP1_OUT (7)
0 GND	GP	GP2_OUT (8)

NOTE: 1. The pin is internally pulled up to default to FLUSH mode.

Product data

TYPICAL APPLICATION

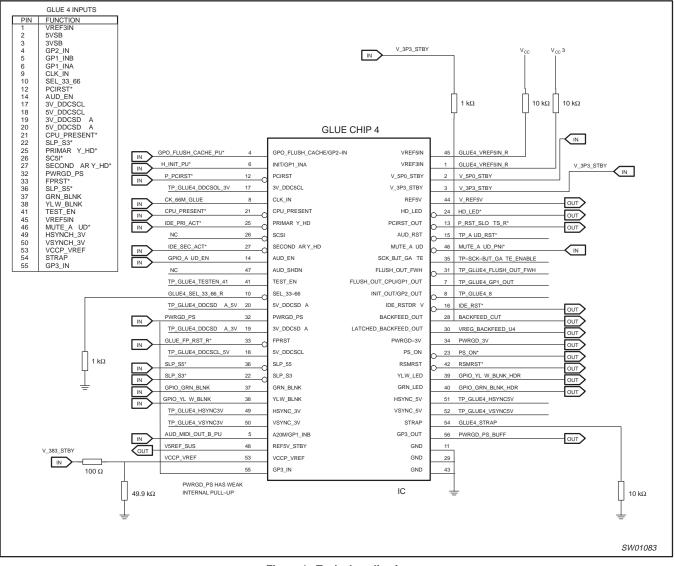


Figure 1. Typical application

Product data

PCA9504A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	CONDITION		LIMITS		
STMBOL		CONDITION	MIN	MAX	UNIT	
V_5P0_STBY	DC 5.0V supply		-0.5	+6.0	V	
V_3P3_STBY	DC 3.3V supply		-0.5	+6.0	V	
V _{I (5V)}	DC input voltage (5 V pins)	Note 2	-0.5	V_5P0_STBY+0.5	V	
V _{O (5V)}	Output voltage range (5 V pins)	Note 2	-0.5	V_5P0_STBY+0.5	V	
V _{I (3.3V)}	DC input voltage (3.3 V pins)	Note 2	-0.5	V_3P3_STBY+0.5	V	
V _{O (3.3V)}	Output voltage range (3.3 V pins)	Note 2	-0.5	V_3P3_STBY+0.5	V	
SPD	Supply power dissipation			100	MW	
ESD	Static Discharge voltage		2000		V	
T _{STG}	Storage temperature range		-55	+150	°C	
T _{OTR}	Operating Temperature Range		0	70	°C	

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated under "recommended operating condition" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage rating may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIMITS		UNIT
		CONDITIONS	MIN	MAX	
V _{DD3}	DC 3.3 V supply voltage		3.0	3.6	V
V _{DDL}	DC 2.5 V supply voltage		4.75	5.25	V
VI	DC input voltage		0	V _{DD3}	V
Vo	DC output voltage		0	V _{DDL} V _{DD3}	V
T _A	Operating ambient temperature range in free air		0	+70	°C

PCA9504A

DC CHARACTERISTICS

V_5P0_STBY = 5 V \pm 5%; V_3P3_STBY = 3.3 V \pm 10%

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} =	• 0 °C to	+70 °C	UNIT
			MIN	TYP	MAX	
STRAP						
V _{IH}	HIGH-level input voltage		2.0			V
V _{IL}	LOW-level input voltage				0.8	V
I _{IH}	Input leakage HIGH		-1		1	μA
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} = -3 mA	2.4			V
IIL	Input leakage LOW		-88		-26	μA
AUD_EN						
V _{IH}	HIGH-level input voltage		2.0			V
V _{IL}	LOW-level input voltage				0.8	V
IIL	Input leakage LOW	V _{IL} = 0 V	-88		-26	μΑ
IIH	Input leakage HIGH		-1		1	μA
PCIRST	•	•	•			
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
IL	Input leakage		-1		1	μA
Hys	Input hysteresis		400			mV
MUTE_AUC)	I	•			
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
IIH	Input leakage HIGH		-1		1	μA
IIL	Input leakage LOW	V _{IL} = 0 V	-88		-26	μA
VREF5IN		I	•		1	
V _{IH}	HIGH-level input voltage		0.85*V5P 0_STBY			V
V _{IL}	LOW-level input voltage				0.2*V5P 0_STBY	V
IL	Input leakage		-1		1	μA
VREF3IN	•	•	•	•	•	
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
IL	Input leakage		-1		1	μA
PRIMARY_	HD	•	•			
V _{IH}	HIGH-level input voltage		0.7*5VSB			V
V _{IL}	LOW-level input voltage				0.2*5VSB	V
Hys	Input hysteresis		400			mV
IIL	Input leakage LOW	V _{IL} = 0 V	-88		-26	μA
<u></u> I _{IH}	Input leakage HIGH	V _{IH} = 5VSB	-1		1	μΑ
SECONDA						
V _{IH}	HIGH-level input voltage		0.7*5VSB			V
V _{IL}	LOW-level input voltage	1	1		0.2*5VSB	V
Hys	Input hysteresis		400			mV

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITION	Tai	_{mb} = 0 °C to	+70 °C	UNIT
			MIN	TYP	MAX	
I _{IH}	Input leakage HIGH	V _{IH} = 5VSB	-1		1	μA
SCSI	•	•	•		•	
V _{IH}	HIGH-level input voltage		0.7*5VSB			V
V _{IL}	LOW-level input voltage				0.2*5VSB	V
Hys	Input hysteresis		400			mV
IIL	Input leakage LOW	V _{IL} = 0 V	-88		-26	μA
IIH	Input leakage HIGH	V _{IH} = 5VSB	-1		1	μA
FPRST	•	•	•		•	
V _{IH}	HIGH-level input voltage		0.7*5VSB			V
V _{IL}	LOW-level input voltage				0.2*5VSB	V
Hys	Input hysteresis		400			mV
IIL	Input leakage LOW	V _{IL} = 0 V	-88		-26	μA
IIH	Input leakage HIGH	V _{IH} = 5VSB	-1		1	μA
PWRGD_P	S	•	•		•	
V _{IH}	HIGH-level input voltage		0.7*5VSB			V
V _{IL}	LOW-level input voltage				0.2*5VSB	V
Hys	Input hysteresis		400			mV
IIL	Input leakage LOW	V _{IL} = 0 V	-88		-26	μA
IIH	Input leakage HIGH	V _{IH} = 5VSB	-1		1	μA
GPO_FLUS	H_CACHE/GP2_IN		•		•	I
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
۱ _L	Input leakage	V _{IL} = 0 V	-88		-26	μΑ
IIH	Input leakage	V _{IH} = 5 V	-1		1	μA
INIT / GP1_	INA (GP Mode)	•	•		•	I
V _{IH}	HIGH-level input voltage	Part is strapped for GP mode	2.4			V
V _{IL}	LOW-level input voltage	Part is strapped for GP mode			0.8	V
ΙL	Input leakage	Part is strapped for GP mode	-1		1	μΑ
VCCP_V _{ref}	Bias voltage	GP mode	1.95		2.1	V
INIT / GP1_	INA (Flush Mode)		•			
V _{IH}	HIGH-level input voltage	FLUSH mode	1.5			V
V _{IL}	LOW-level input voltage	FLUSH mode			0.4	V
IIL	Input leakage	FLUSH mode	-1		1	μA
VCCP_V _{ref}	Bias voltage	FLUSH mode	0.95		1.1	V

PCA9504A

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} = 0 °C to +70 °C			
			MIN	TYP	MAX	
A20M / GP1						
V _{IH}	HIGH-level input voltage	FLUSH mode	1.5			V
V _{IL}	LOW-level input voltage	FLUSH mode			0.4	V
IIL	Input leakage	FLUSH mode	-1		1	μΑ
VCCP_V _{ref}	Bias voltage	FLUSH mode	0.95		1.1	V
V _{IH}	HIGH-level input voltage	GP mode	2.4			V
V _{IL}	LOW-level input voltage	GP mode			0.8	V
L	Input leakage	GP mode	-1		1	μΑ
VCCP_V _{ref}	Bias voltage	GP mode	1.95		2.1	V
CLK_IN						
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
Hys	Input hysteresis		250			mV
IL	Input leakage		-1		1	μA
SEL_33_66	-		-			
V _{IH}	HIGH-level input voltage		2.0			V
VIL	LOW-level input voltage				0.8	V
Hys	Input hysteresis		400			mV
н	Input leakage		-1		1	μA
IL	Input leakage	V _{IL} = 0 V	-88		-26	μA
SLP_S3	•	•		I	•	
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
Hys	Input hysteresis		400			mV
	Input leakage		-1		1	μA
SLP_S5						
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
Hys	Input hysteresis		400			mV
 	Input leakage		-1		1	μA
_ CPU_PRES	•					
V _{IH}	HIGH-level input voltage		2.0			V
V _{IL}	LOW-level input voltage				0.8	V
Hys	Input hysteresis		400			mV
Ін	Input leakage	V _{IH} = 3VSB	-1		1	μA
	Input leakage	$V_{IL} = 0 V$	-88		-26	μA
TEST_EN		1 ¹⁶	1		1	C
V _{IH}	HIGH-level input voltage		0.7*5VSB		1	V
V _{IL}	LOW-level input voltage				0.2*5VSB	V
Hys	Input hysteresis		400			mV
н	Input leakage	V _{IL} = 0 V	-1	- 	1	μΑ
	Input leakage	V _{IH} = 5VSB	20		88	μΑ

Philips Semiconductors

PCA9504A

			LIMITS			
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} = 0 °C to +70 °C			
			MIN	TYP	MAX	
HSYNC_3V						
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
IL	Input leakage		-1		1	μΑ
VSYNC_3V	-				-	
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
IL	Input leakage		-1		1	μΑ
GRN_BLNK	<u>[</u>					
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
Ін	Input leakage		-1		1	μA
IIL	Input leakage	$V_{IL} = 0 V$	-88		-26	μΑ
YLW_BLNK						
V _{IH}	HIGH-level input voltage		2.0			V
V _{IL}	LOW-level input voltage				0.8	V
Ін	Input leakage		-1		1	μΑ
IIL	Input leakage	$V_{IL} = 0 V$	-88		-26	μΑ
GP3_IN		•	•		•	-
V _{IH}	HIGH-level input voltage		2.2			V
V _{IL}	LOW-level input voltage				0.8	V
IL	Input leakage		-1		1	μA
AUD_RST	•	•	•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} = -3 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
AUD_SHDN	I	•	•			
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} =6 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
REF5V	•				•	
V _{OUT5}	LOW-level output voltage	V _{REF5in} > 1.5 V	V _{REF5in} – 0.05		V _{REF5in} + 0.05	V
V _{OUT3}	HIGH-level output voltage	V _{REF3in} > 1.5 V	V _{REF3in} – 0.05		V _{REF3in} + 0.05	V
IOUTL	Off state output current		-20		20	μA
REF5V_STI	BY	•				
V _{OUT5}	LOW-level output voltage	V_5P0_STBY > 1.5 V	V_5P0_STBY - 0.05		V_5P0_STBY + 0.05	V
V _{OUT3}	HIGH-level output voltage	V_5P0_STBY > 1.5 V	V_5P0_STBY - 0.05		V_5P0_STBY + 0.05	V
IOUTL	Off state output current		-20		20	μA
HD_LED					•	
V _{OL}	LOW-level output voltage	I _{OL} = 12 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
<u></u>		I	1			

Downloaded from Arrow.com.

2004 May 11

Glue chip 4

Philips Semiconductors

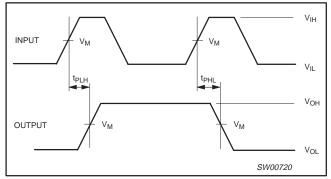
P	C	A	95	0	44	ł
					.,	•

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} = 0 °C to +70 °C			
			MIN	TYP	MAX	
IDE_RSTDF	RV		-		-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} =6 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
PCIRST_O	JT		•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} = -3 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
PRWGD_3	l I				-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} = –3 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
INIT_OUT /	GP2_OUT		•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 12 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
FLUSH_OU	T_CPU / GP1_OUT	•	•		•	•
V _{OL}	LOW-level output voltage	I _{OL} = 12 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
BACKFEED	D_CUT		•			
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
FLUSH_OU	T_FWH	•	•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
LATCHED_	BACKFEED_CUT					
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} =6 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
PS_ON	•	•	•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
RSMRST	•		•			
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} = -3 mA	2.4			V
I _{OZ}	Off state output current		-1		1	μA
VTRIP	5VSB LOW trip voltage		1.8		3.5	V
SCK_BJT_	GATE	•		-		•
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA

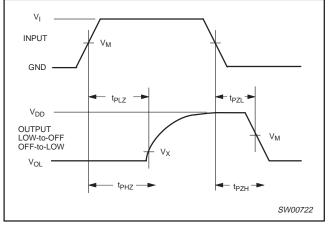
PCA9504A

		TEST CONDITION		UNIT		
SYMBOL	PARAMETER		T _{amb} = 0 °C to +70 °C			
			MIN	TYP	MAX	
3V_DDCSD	A		-		-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
I _H	Input leakage	$5V_DDCSDA = V_{DD}$	-1		2.5	μA
I _{OZ}	Off state output current		-1		1	μA
5V_DDCSD	A		-		-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
Ι _Η	Input leakage	3V_DDCSDA = V _{DD}	-1		2.5	μA
I _{OZ}	Off state output current		-1		1	μA
3V_DDCSC	L		-		-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
I _H	Input leakage	5V_DDCSCL = V _{DD}	-1		2.5	μA
I _{OZ}	Off state output current		-1		1	μA
5V_DDCSC	L		•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
Ι _Η	Input leakage	3V_DDCSCL = V _{DD}	-1		2.5	μA
I _{OZ}	Off state output current		-1		1	μA
HSYNC_5V			-		-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} =6 mA	3.8			V
I _{OZ}	Off state output current		-1		1	μA
VSYNC_5V			-		-	
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA			0.4	V
V _{OH}	HIGH-level output voltage	I _{OH} =6 mA	3.8			V
I _{OZ}	Off state output current		-1		1	μA
GRN_LED	YLW_LED		•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 24 mA			0.4	V
I _{OZ}	Off state output current		-1		1	μA
GP3_OUT						
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA				
I _{OZ}	Off state output current		-1		1	μA

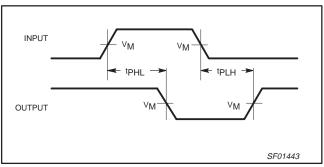
PCA9504A

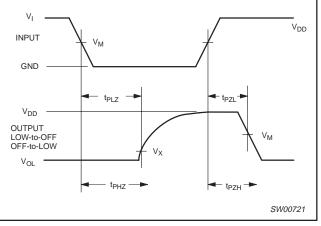

AC CHARACTERISTICS

 $V_{CC1} = 3.3 \text{ V}; V_{CC} = 5.0 \text{ V}$


SYMBOL	PARAMETER	T _{amb}	UNITS	NOTES		
		MIN	TYP	MAX		
t _{RESET}	RSMRST	4.0		100	ms	
tRESET_FALL	RSMRST			100	ns	
t _{PHL} ∕t _{PLH}	Propagation Delay AUD_EN to AUD_RST PCIRST to AUD_RST PCIRST to IDE_RSTDRV PCIRST to PCIRST_OUT	1.0		11.0	ns	
t _{PLH} /t _{PHL}	Propagation Delay MUTE_AUD to MUTE_SHDN	2.5		6.0	ns	
t _{PLH} /t _{PHL}	Propagation Delay PWRGD_PS to PWRGD_3V FPRST to PWRGD_3V	4.5		11.0	ns	
t _{PLH} /t _{PHL}	Propagation Delay HSYNC_3V to HSYNC_5V VSYNC_3V to VSYNC_5V	2.0		5.0	ns	
t _{PLH} /t _{PHL}	Propagation Delay PWRGD_PS to SCK_BJT_GATE FPRST to SCK_BJT_GATE	1.0		6.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay PRIMARY_HD to HD_LED PRIMARY_HD to HD_LED PRIMARY_HD to HD_LED	1.0		5.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay GP1_INA to GP1_OUT 3 GP2_INA to GP1_OUT			25.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay GP2_IN to GP2_OUT	3.0		7.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay GP3_IN to GP3_OUT	1.0		4.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay SLP_S3 to BACKFEED_OUT PRWGD_PS to BACKFEED_OUT	1.0		6.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay CPU_PRESENT to PS_ON	2.0		10.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay SLP_S3 to PS_ON	2.0		10.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay BACKFEED_OUT to LATCHED_BACKFEED_OUT	2.0		11.0	ns	
tpLZ/tpZL	Open Drain Prop Delay SLP_S5 to YLW_LED SLP_S5 to GRN_LED YLW_BLNK to YLW_LED GRN_BLNK to GRN_LED			5.0	ns	
t _{PLZ} /t _{PZL}	Open Drain Prop Delay 3V_DDOSDA to 5V_DDOSDA 3V_DDOSDA to 5V_DDOSDA	1.0		5.0	ns	
t _r , t _f	Rise and Fall Times HSYNC_5V VSYNC_5V	3.5			ns	
t _r , t _f	Rise and Fall Times LATCHED_BACKFEED_OUT			1.0	μs	

PCA9504A


WAVEFORMS



Waveform 2.

Waveform 3.

Waveform 4.

5V REFERENCE GENERATION

Supply	REF5V
VREF5IN < VREF3IN	VREF3IN
VREF5IN > VREF3IN	VREF5IN

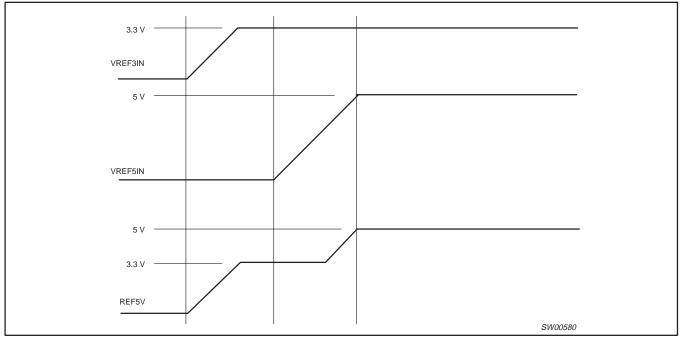


Figure 1. REF5V when VREF3IN ramps before VREF5IN

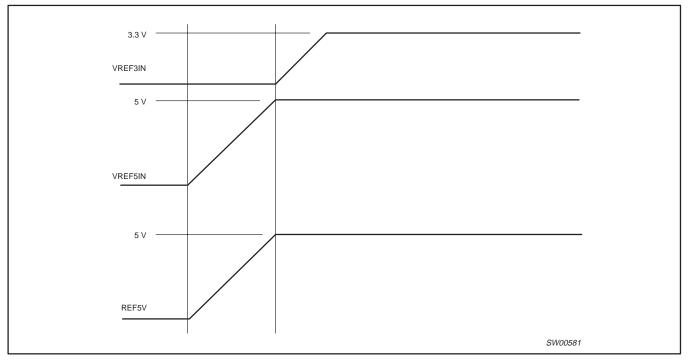


Figure 2. REF5V when VREF5IN ramps before VREF3IN

5V STANDBY REFERENCE GENERATION

Standby Supply	REF5V_STBY
V_5PO_STBY < V_3P3_STBY	V_3P3_STBY
V_5PO_STBY > V_3P3_STBY	V_5PO_STBY

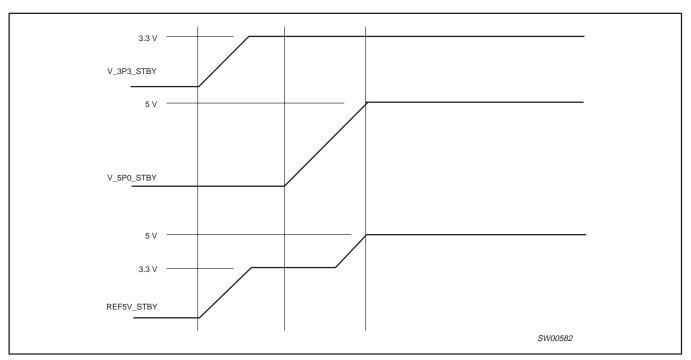


Figure 3. REF5V_STBY when V_3P3_STBY ramps before V_5PO_STBY

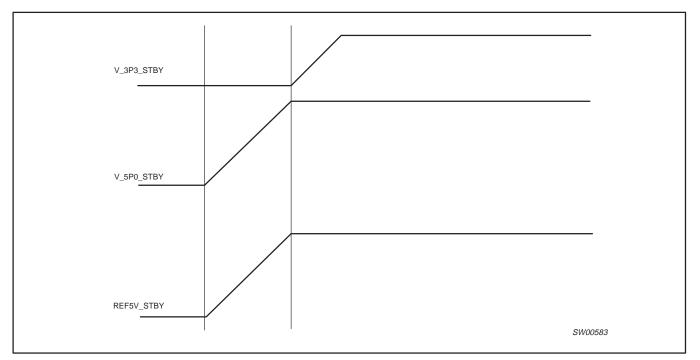
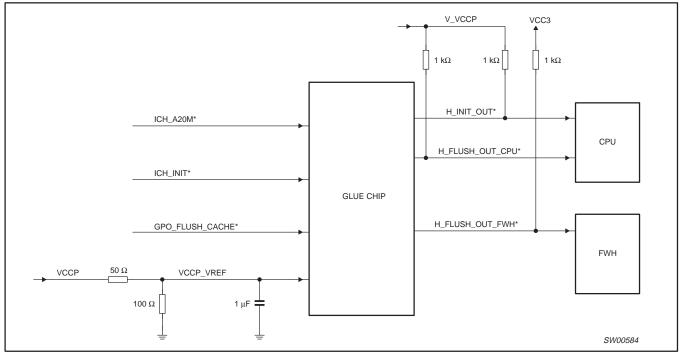
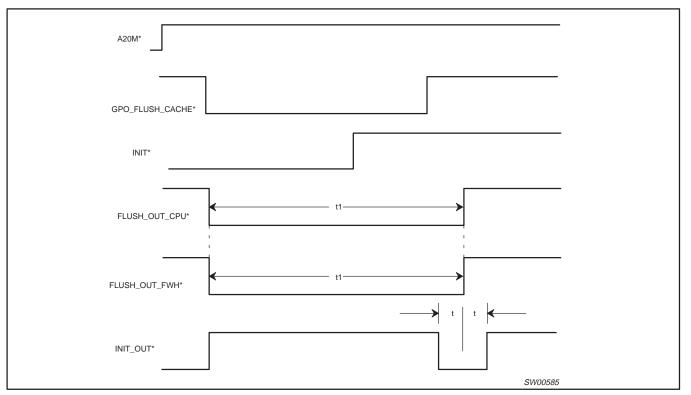


Figure 4. REF5V_STBY when V_5PO_STBY ramps before V_3P3_STBY

FLUSH OUT* / INIT OUT* CIRCUIT




Figure 5. Block diagram for FLUSH_OUT*/INIT_OUT* circuit

Case	A20M*	GPO FLUSH CACHE*	INIT*	FLUSH OUT CPU*	FLUSH OUT FWH*	INIT OUT*
1	1	falling edge	0	0 (for t1)	0 (for t1)	0, Hi-Z, then 0 (delayed by t1-t, then active for 2*t)
2	1	falling edge	1	0 (for t1)	0 (for t1)	Hi-Z, 0 (delayed by t1-t, then active for 2*t)
3	Х	1	0	Hi-Z	Hi-Z	0
4	Х	1	1	Hi-Z	Hi-Z	Hi-Z
5	0	falling edge	1	Hi-Z	Hi-Z	Hi-Z
6	0	falling edge	0	Hi-Z	Hi-Z	0

NOTE:

1. Nominal value timings with tolerances are listed in the DC Characteristics table for t and t1. All Hi-Z outputs are shown as 1's or HIGH in the following diagrams.

PCA9504A

Figure 6. Waveforms for Case 1

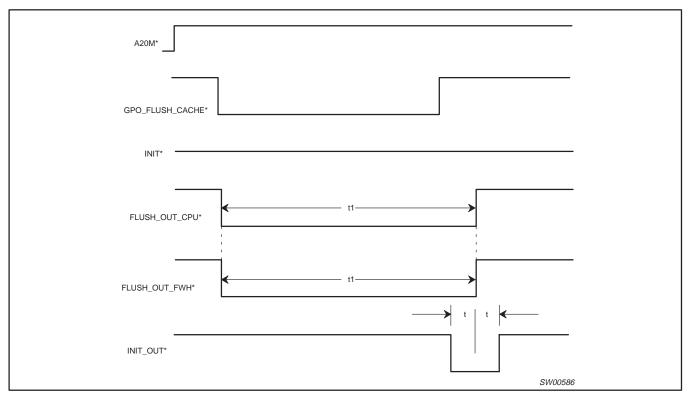


Figure 7. Waveforms for Case 2

PCA9504A

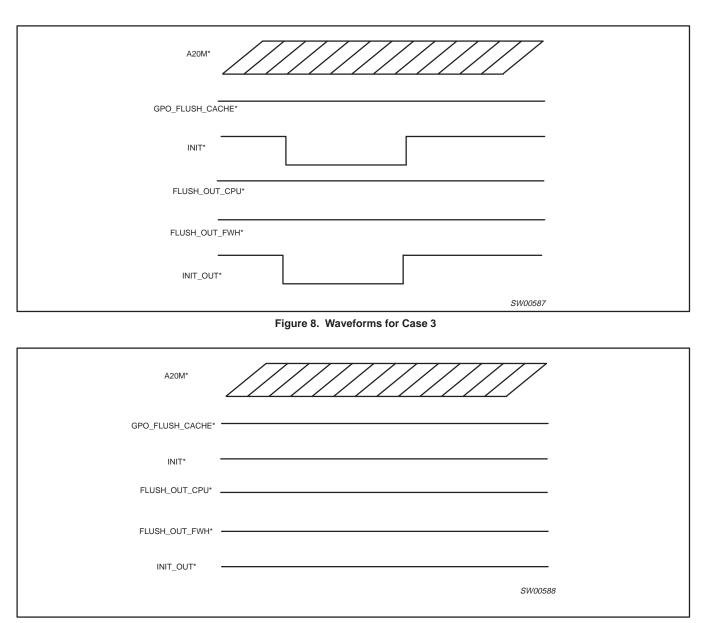


Figure 9. Waveforms for Case 4

PCA9504A

A20M*		
GPO_FLUSH_CACHE*		
INIT*		
FLUSH_OUT_CPU*		
FLUSH_OUT_FWH*		
INIT_OUT*		
	SW00589	

Figure 10. Waveforms for Case 5

A20M*	
GPO_FLUSH_CACHE*	
INIT*	
FLUSH_OUT_CPU*	
FLUSH_OUT_FWH*	
INIT_OUT*	
	SW00590

Figure 11. Waveforms for Case 6

PCA9504A

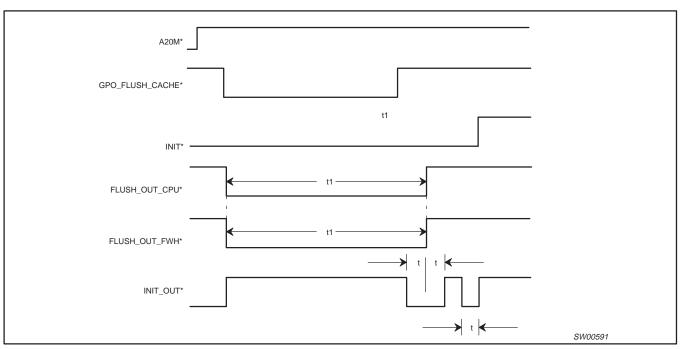


Figure 12. Waveforms for Case 7

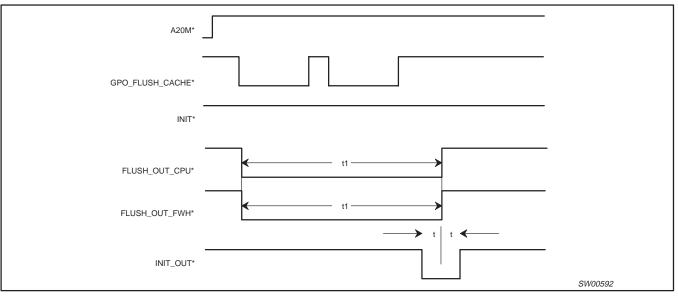


Figure 13. Waveforms for boundary GPO_FLUSH_CACHE* Case

- Timings should remain the same for both a 66 MHz or 33 MHz CLK_IN input.
- The boundary condition for INIT listed above, is a special case where immediately following the FLUSH_OUT*, INIT_OUT* cycle, the ICH2 asserts INIT* into the Glue Chip.
- The boundary condition for GPO_FLUSH_CACHE* listed above, is a special case where immediately following the first assertion of GPO_FLUSH_CACHE*, the GPO is de-asserted, then re-asserted again before the timings have had a chance to complete.

NOTE:

1. Nominal timing values with tolerances are listed in the DC Characteristics table.

GPO_FLUSH_CACHE* – input to logic, GPO from the ICH2, programmed active LOW.

INIT* – input to logic, INIT* signal from the ICH2.

A20M* - input to logic, A20M* signal from the ICH2.

FLUSH_OUT_CPU* - output of logic, route to CPU FLUSH* pin.

FLUSH_OUT_CPU* - output of logic, routed to FWH INIT* pin.

INIT_OUT* – output of logic, routed to CPU INIT* pin.

PCA9504A

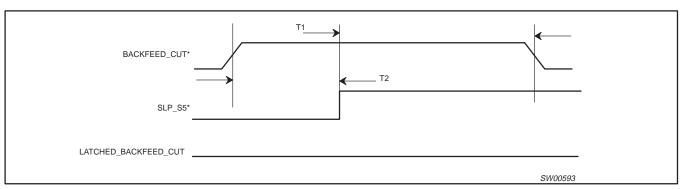


Figure 14. Power up signal sequencing

Power up signal sequencing is shown in Figure 14. BACKFEED_CUT* is following the power rail up to its final value. LATCHED_BACKFEED_CUT should stay LOW, never turning on. SLP_S5* goes to its HIGH value when the power rails have stabilized, ~25 msec after power on. BACKFEED_CUT* is pulled LOW a period T1 after SLP_S5* goes HIGH. T1 can be as short as 1msec. Typical measured values are ~200 msec. T1 and T2 are guaranteed by the inherent design of the system and are not controlled by Glue Chip.

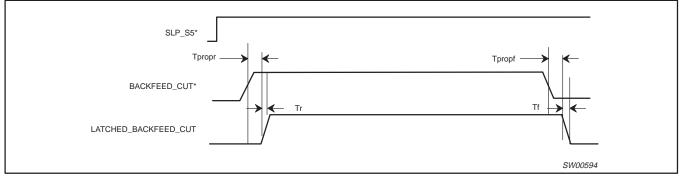
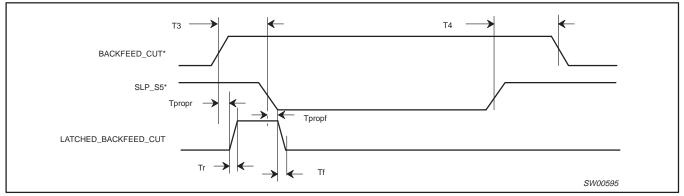
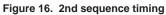




Figure 15. 1st sequence timing

The first possible sequence is with SLP_S5*staying HIGH and BACKFEED_CUT* transitioning from LOW to HIGH, remaining HIGH for an undetermined period and then going back to LOW and the system is back at the end of the power-up sequence. The power-up sequence is shown in Figure 15. During these BACKFEED_CUT* transitions, the propagation delays, rise and fall times, and going into regulation times LATCHED_BACKFEED_CUT are as described in Figure 16. The first sequence starts can start at the end of the power-up sequence at any time.

Signal sequencing for the second possible sequence is shown in Figure 16. BACKFEED_CUT* goes from LOW to HIGH and SLP_S5* goes from HIGH to LOW, 30 µsec to 65 µsec (T3) later. LATCHED_BACKFEED_CUT goes HIGH when BACKFEED_CUT* goes HIGH and then LATCHED_BACKFEED_CUT returns to LOW when SLP_S5* goes LOW. BACKFEED_CUT* stays HIGH and SLP_S5* stays LOW for an indeterminate time and then SLP_S5* will go HIGH. A minimum of 1msec (T4) later, BACKFEED_CUT* will go LOW and the system is back at the end of the power-up sequence. Typical measured values of T4 are ~250 msec. During all transitions, the propagation delays, rise and fall times, and going into regulation times for LATCHED_BACKFEED_CUT are as described in Figure 16. The first sequence starts can start at the end of the power-up sequence at any time.

RSMRST* GENERATION

RSMRST* is a delayed 3.3 V hysteresis copy of V_5PO_STBY. RSMRST* is delayed going inactive from the rising edge of V_5PO_STBY by 32 ms, nominal. This delay starts when V_5PO_STBY hits the trip point. There is minimal delay on the falling edge.

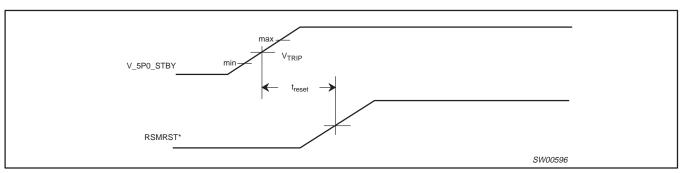


Figure 17. Resume reset functionality

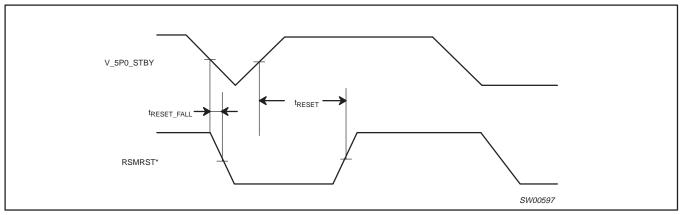


Figure 18. Resume reset functionality during brown out

AUDIO-DISABLE

AUD_EN	PCIRST	AUD_RST
0	0	0
0	1	0
1	0	0
1	1	1

MUTE AUDIO CIRCUIT

MUTE_AUD	AUD_SHDN
0	1
1	0

HD SINGLE COLOR LED DRIVER

PRIMARY_HD	SECONDARY_HD	SCSI	HD_LED
0	0	0	0
0	Х	Х	0
Х	0	Х	0
Х	Х	0	0
1	1	1	HI–Z

IDE RESET SIGNAL GENERATION AND PCRIST DRIVE STRENGTH

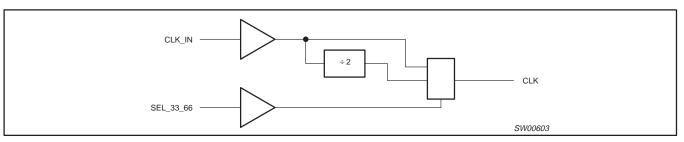
PCIRST	IDE_RSTDRV ¹	PCIRST_OUT
0	0	0
1	1	1

NOTE:

1. IDE_RSTDRV is a 5 V copy of PCIRST. PCIRST_OUT is a 3.3 V copy of PCIRST.

PWRGD SIGNAL GENERATION

FPRST	PWRGD_PS	PWRGD_3V
0	0	0
0	1	0
1	0	0
1	1	1


FLUSH_OUT / INIT_OUT CIRCUIT

CASE	A20M	GPO_FLUSH_CACHE	INIT	FLUSH_OUT_CPU	FLUSH_OUT_FWH	INIT_OUT
1	1	Falling edge	0	0(for t1)	0(for t1)	0, Hi-Z, then 0 (delayed by t1-t, then active for 2*t)
2	1	Falling edge	1	0(for t1)	0(for t1)	Hi-Z, 0 (delayed by t1-t, then active for 2*t)
3	Х	1	0	Hi-Z	Hi-Z	0
4	Х	1	1	Hi-Z	Hi-Z	Hi-Z
5	0	Falling edge	1	Hi-Z	Hi-Z	Hi-Z
6	0	Falling edge	0	Hi-Z	Hi-Z	0

CLK_IN AND SEL_33_66

SEL_33_66	CLK_IN RATE	
0	66 MHz	
1	33 MHz	

PCA9504A

Figure 19.

GP_IN/GP_OUT GENERAL PURPOSE GATES

GP1_INA	GP1_INB	GP1_OUT
0	0	1
0	1	1
1	0	1
1	1	0

GP_IN/GP_OUT GENERAL PURPOSE GATES (continued)

GP2_IN	GP2_OUT
0	1
1	0

GP_IN/GP_OUT GENERAL PURPOSE GATES (continued)

GP3_IN	GP3_OUT	
0	0	
1	1	

POWER SEQUENCING / BACKFEED_CUT

PWRGD_PS	SLP_S3	BACKFEED_CUT
0	0	HI-Z
0	1	HI-Z
1	0	HI-Z
1	1	0

POWER SUPPLY TURN-ON CIRCUIT

SLOTOCC	SLP_S3	SLP_S3A
0	0	Hi-Z
0	1	0
1	0	Hi-Z
1	1	Hi-Z

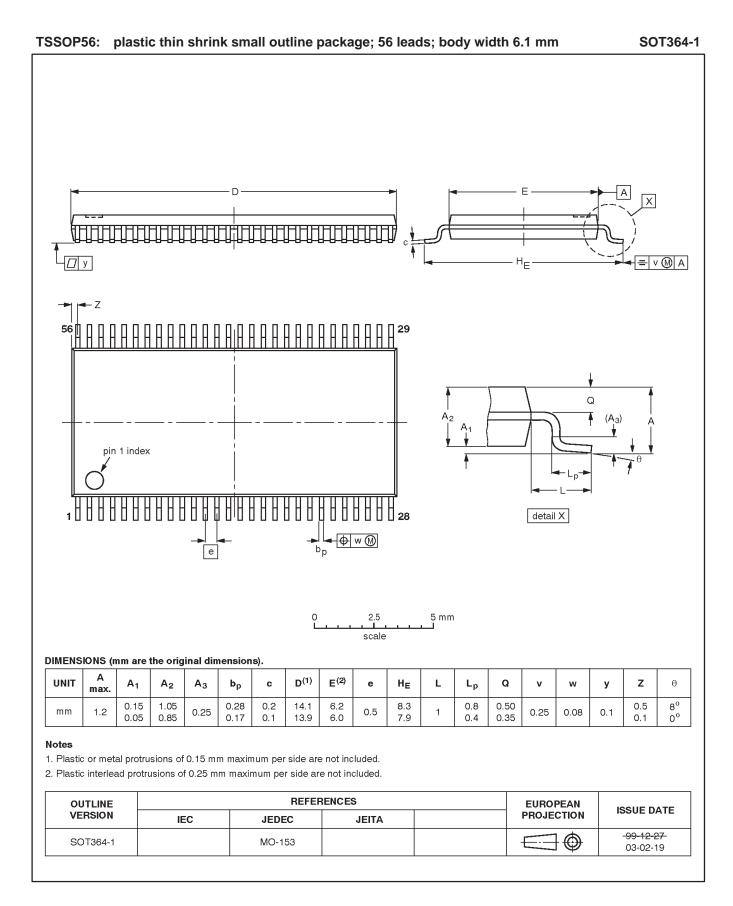
RAMBUS_SCK_BJT

PWRGD_3V	SCK_BJT_GATE
0	Hi-Z
1	0

PCA9504A

VGA DCC VOLTAGE TRANSLATION

3V_DDCSDA	3V_DDCSCL	5V_DDCSDA	5V_DDCSCL
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1


HSYNC / VSYNC VOLTAGE TRANSLATION

HSYNC_3V	HSYNC_5V	VSYNC_3V	VSYNC_5V	
0	0	0	0	
1	1	1	1	

POWER LED DRIVER

YLW_BLNK	SLP_S5	YLW_LED	GRN_BLNK	SLP_S5	GRN_LED
0	0	0	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	HI-Z	1	1	Hi-Z

Product data

Product data

PCA9504A

REVISION HISTORY

Rev	Date	Description
_5	20040511	 Product data (9397 750 13279). Supersedes data of 2003 Nov 10 (9397 750 12288). Modifications: Page 24, Audio-disable table: AUD_EN column (reading veritcally) changed from '0000' to '0011'.
_4	20031110	Product data (9397 750 12288); ECN 853-2206 30409 dated 10 October 2003. Supersedes data of 28 March 2003 (9397 750 09602).
_3	20030328	Product data (9397 750 09602); ECN: 853–2206 27930 (2003 Mar 28)

PCA9504A

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specifications defined by Philips. This specification can be ordered using the code 9398 393 40011.

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fa

Fax: +31 40 27 24825

All rights reserved. Printed in U.S.A.

© Koninklijke Philips Electronics N.V. 2004

Date of release: 05-04

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com Document order number:

9397 750 13279

Let's make things better.

Philips

Semiconductors