74LV164 8-bit serial-in/parallel-out shift register Rev. 03 — 4 February 2005

Product data sheet

1. General description

The 74LV164 is a low-voltage, Si-gate CMOS device and is pin and function compatible with the 74HC164 and 74HC164.

The 74LV164 is an 8-bit edge-triggered shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (DSA or DSB) and either input can be used as an active HIGH enable for data entry through the other input. Both inputs must be connected together or an unused input must be tied HIGH.

Data shifts one place to the right on each LOW-to-HIGH transition of the clock input (CP) and enters into Q0, which is the logical AND-function of the two data inputs (DSA and DSB) that existed one set-up time prior to the rising clock edge.

A LOW on the master reset input (MR) overrides all other inputs and clears the register asynchronously, forcing all outputs LOW.

2. Features

- Wide operating voltage: 1.0 V to 5.5 V
- Optimized for low-voltage applications: 1.0 V to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce): < 0.8 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- Typical V_{OHV} (output V_{OH} undershoot): > 2 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- Gated serial data inputs
- Asynchronous master reset
- **ESD** protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +80 °C and from -40 °C to +125 °C.

3. Quick reference data

Table 1:Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL} ,	propagation delay	$V_{CC} = 3.3 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$				
t _{PLH}	CP to Qn		-	12	-	ns
	MR to Qn		-	12	-	ns

8-bit serial-in/parallel-out shift register

Table 1:	Quick	reference	data	continued

 $GND = 0 V; T_{amb} = 25 \circ C; t_f = t_f \le 2.5 \text{ ns.}$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{max}	maximum clock frequency	$V_{CC} = 3.3 \text{ V}; C_{L} = 15 \text{ pF}$		-	78	-	MHz
CI	input capacitance			-	3.5	-	pF
C_{PD}	power dissipation capacitance per gate	$V_{CC} = 3.3 V$	[1][2]	-	40	-	pF

- [1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz;
 - $f_o = output frequency in MHz;$
 - C_L = output load capacitance in pF;
 - V_{CC} = supply voltage in V;
 - N = number of inputs switching;
 - $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.
- [2] The condition is $V_I = GND$ to V_{CC} .

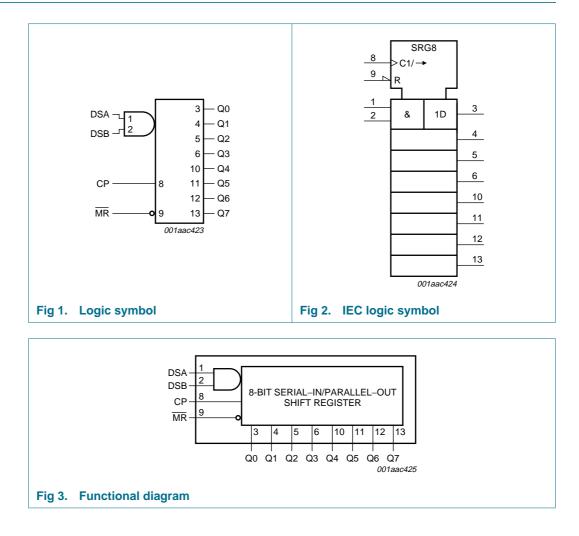
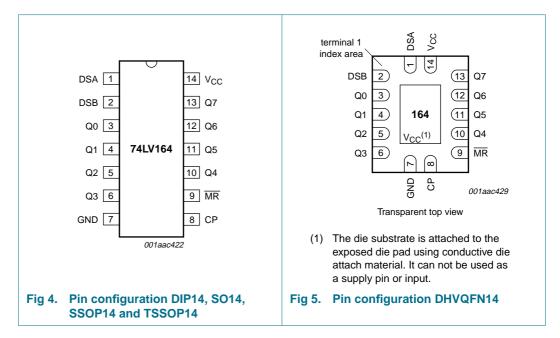

4. Ordering information

Table 2:Ordering information

Type number	Type number Package						
	Temperature range	rature range Name Description					
74LV164N	–40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1			
74LV164D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1			
74LV164DB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1			
74LV164PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1			
74LV164BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1			

8-bit serial-in/parallel-out shift register

5. Functional diagram



74LV164

8-bit serial-in/parallel-out shift register

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:	Pin des	Pin description				
Symbol	Pin	Description				
DSA	1	data input SA				
DSB	2	data input SB				
Q0	3	output 0				
Q1	4	output 1				
Q2	5	output 2				
Q3	6	output 3				
GND	7	ground (0 V)				
СР	8	clock input (edge triggered LOW-to-HIGH)				
MR	9	master reset input (active LOW)				
Q4	10	output 4				
Q5	11	output 5				
Q6	12	output 6				
Q7	13	output 7				
V _{CC}	14	supply voltage				

7. Functional description

7.1 Function table

Table 4: Function table [1]

Operating	Input					Output		
mode	MR	СР	DSA	DSB	Q0	Q1 to Q7		
Reset (clear)	L	Х	X	Х	L	L to L		
Shift	Н	\uparrow	I	I	L	q0 to q6		
	Н	\uparrow	I	h	L	q0 to q6		
	Н	\uparrow	h	I	L	q0 to q6		
	Н	\uparrow	h	h	Н	q0 to q6		

[1] H = HIGH voltage level;

L = LOW voltage level;

 \uparrow = LOW-to-HIGH clock transition;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;

 ${\sf q}$ = lower case letter indicates the state of referenced input one set-up time prior to the LOW-to-HIGH CP transition.

8. Limiting values

Table 5:Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input diode current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V		-	±20	mA
I _{OK}	output diode current	$V_{\rm O}$ < –0.5 V or $~V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V		-	±50	mA
I _O	output source or sink current	$V_{O} = -0.5 \text{ V} \text{ to } (V_{CC} + 0.5 \text{ V})$	<u>[1]</u>	-	±25	mA
I _{CC} , I _{GND}	V _{CC} or GND current			-	±50	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$				
	DIP14 package		[2]	-	750	mW
	SO14, (T)SSOP14 and DHVQFN14 packages		[3]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] DIP14 package: P_{tot} derates linearly with 12 mW/K above 70 °C.

[3] SO14 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

(T)SSOP14 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C. DHVQFN14 package: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

8-bit serial-in/parallel-out shift register

9. Recommended operating conditions

Table 6:	Recommended operating conditions							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{CC}	supply voltage		[1]	1.0	3.3	5.5	V	
VI	input voltage			0	-	V_{CC}	V	
Vo	output voltage			0	-	V_{CC}	V	
T _{amb}	ambient temperature	in free air		-40	-	+125	°C	
t _r , t _f	input rise and fall times	V_{CC} = 1.0 V to 2.0 V		-	-	500	ns/V	
		V_{CC} = 2.0 V to 2.7 V		-	-	200	ns/V	
		V_{CC} = 2.7 V to 3.6 V		-	-	100	ns/V	
		V_{CC} = 3.6 V to 5.5 V		-	-	50	ns/V	

[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = –	40 °C to +85 °C <u>[1]</u>					
VIH	HIGH-level input voltage	$V_{CC} = 1.2 V$	0.9	-	-	V
		$V_{CC} = 2.0 V$	1.4	-	-	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0	-	-	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$0.7 imes V_{CO}$	c -	-	V
VIL	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	V
		$V_{CC} = 2.0 V$	-	-	0.6	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	-	-	0.8	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	$0.3 imes V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 1.2 \ V$	-	1.2	-	V
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 2.0 \ V$	1.8	2.0	-	V
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 2.7 \ \text{V}$	2.5	2.7	-	V
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 3.0 \ V$	2.8	3.0	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	2.82	-	V
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	4.3	4.5	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.60	4.20	-	V

74LV164

8-bit serial-in/parallel-out shift register

Table 7: Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 100 \ \mu\text{A}; \ V_{CC} = 1.2 \ \text{V}$	-	0	-	V
		$I_{O} = 100 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	0	0.2	V
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 2.7 \ \text{V}$	-	0	0.2	V
		$I_{O} = 100 \ \mu\text{A}; \ V_{CC} = 3.0 \ \text{V}$	-	0	0.2	V
		$I_{O} = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.25	0.40	V
		$I_{O} = 100 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	-	0	0.2	V
		$I_0 = 12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.35	0.55	V
LI	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	1.0	μΑ
l _{cc}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	20.0	μΑ
∆l _{CC}	additional quiescent supply current per input	$V_{I} = V_{CC} - 0.6 \text{ V}; V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	500	μΑ
Cı	input capacitance		-	3.5	-	pF
T _{amb} = -	40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	V
		V _{CC} = 2.0 V	1.4	-	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	$0.7 \times V_{CC}$	-	-	V
VIL	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V
		V_{CC} = 4.5 V to 5.5 V	-	-	$0.3 imes V_{CC}$	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = -100 \ \mu\text{A}; \ V_{CC} = 1.2 \ \text{V}$	-	-	-	V
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.8	-	-	V
		$I_0 = -100 \ \mu A; \ V_{CC} = 2.7 \ V$	2.5	-	-	V
		$I_{O} = -100 \ \mu A; \ V_{CC} = 3.0 \ V$	2.8	-	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.20	-	-	V
		$I_{O} = -100 \ \mu A; \ V_{CC} = 4.5 \ V$	4.3	-	-	V
		$I_0 = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.50	-	-	V
√ _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 1.2 \ V$	-	-	-	V
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	-	0.2	V
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 2.7 \ V$	-	-	0.2	V
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 3.0 \ V$	-	-	0.2	V
		$I_0 = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
		$I_{O} = 100 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	-	-	0.2	V
		$I_0 = 12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.65	V

9397 750 14501

Product data sheet

8-bit serial-in/parallel-out shift register

Table 7: Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{LI}	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	160	μΑ
ΔI_{CC}	additional quiescent supply current per input	$V_{I} = V_{CC} - 0.6 \text{ V}; V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	850	μA

[1] All typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8: Dynamic characteristics

GND = 0 V; $t_r = t_f \le 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 1 \text{ k}\Omega$; for test circuit see Figure 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C [1]					
t _{PHL} , t _{PLH}	propagation delay CP to Qn	see <u>Figure 6</u>				
		V _{CC} = 1.2 V	-	75	-	ns
		$V_{CC} = 2.0 V$	-	26	39	ns
		$V_{CC} = 2.7 V$	-	19	29	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	14	23	ns
		V_{CC} = 4.5 V to 5.5 V	-	12	19	ns
		$V_{CC} = 3.3 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	12	-	ns
t _{PHL}	propagation delay MR to Qn	see Figure 7				
		V _{CC} = 1.2 V	-	75	-	ns
		$V_{CC} = 2.0 V$	-	26	39	ns
		$V_{CC} = 2.7 V$	-	19	29	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	14	23	ns
		V_{CC} = 4.5 V to 5.5 V	-	12	19	ns
		$V_{CC} = 3.3 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	12	-	ns
t _W	pulse width CP	see <u>Figure 6</u>				
		$V_{CC} = 2.0 V$	34	9	-	ns
		$V_{CC} = 2.7 V$	25	6	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	20	5	-	ns
		V_{CC} = 4.5 V to 5.5 V	13	4	-	ns
t _W	pulse width MR	see Figure 7				
		$V_{CC} = 2.0 V$	34	10	-	ns
		$V_{CC} = 2.7 V$	25	8	-	ns
		V_{CC} = 3.0 V to 3.6 V	20	6	-	ns
		V_{CC} = 4.5 V to 5.5 V	13	5	-	ns

Product data sheet

8-bit serial-in/parallel-out shift register

Symbol	Parameter	Conditions	N	Min	Тур	Max	Unit
t _{rem}	removal time MR to CP	see Figure 7					
		$V_{CC} = 1.2 V$	-		30	-	ns
		$V_{CC} = 2.0 V$	1	19	10	-	ns
		$V_{CC} = 2.7 V$	1	14	8	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1	11	6	-	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	8	3	5	-	ns
t _{su}	set-up time Dn to CP	see Figure 8					
		V _{CC} = 1.2 V	-		15	-	ns
		$V_{CC} = 2.0 V$	2	22	5	-	ns
		$V_{CC} = 2.7 V$	1	16	4	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1	13	3	-	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	ç	Э	2	-	ns
t _h	hold time Dn to CP	see Figure 8					
		V _{CC} = 1.2 V	-	•	-10	-	ns
		$V_{CC} = 2.0 V$	5	5	-3	-	ns
		$V_{CC} = 2.7 V$	5	5	-2	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	5	5	-2	-	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	5	5	-1	-	ns
f _{max}	maximum clock frequency	see Figure 6					
		$V_{CC} = 2.0 V$	1	14	40	-	MHz
		$V_{CC} = 2.7 V$	1	19	58	-	MHz
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2	24	70	-	MHz
		V_{CC} = 4.5 V to 5.5 V	3	36	100	-	MHz
		$V_{CC} = 3.3 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-		78	-	MHz
C _{PD}	power dissipation capacitance per gate	V _{CC} = 3.3 V	<u>[2] [3]</u> _		40	-	pF
T _{amb} = –	40 °C to +125 °C						
t _{PHL} ,	propagation delay CP to Qn	see Figure 6					
t _{PLH}		V _{CC} = 1.2 V	-	•	-	-	ns
		$V_{CC} = 2.0 V$	-	•	-	49	ns
		$V_{CC} = 2.7 V$	-		-	36	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-		-	29	ns
		V_{CC} = 4.5 V to 5.5 V	-		-	24	ns
^t PHL	propagation delay MR to Qn	see Figure 7					
		$V_{CC} = 1.2 V$	-		-	-	ns
		$V_{CC} = 2.0 V$	-		-	49	ns
		$V_{CC} = 2.7 V$	-		-	36	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-		-	29	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-		-	24	ns

Dynamic characteristics ... continued Table 8:

9397 750 14501

Product data sheet

8-bit serial-in/parallel-out shift register

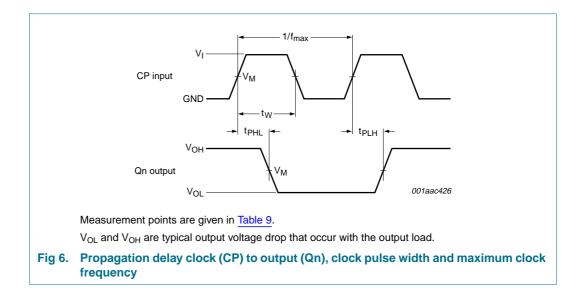
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _W	pulse width CP	see <u>Figure 6</u>				
		$V_{CC} = 2.0 V$	41	-	-	ns
		$V_{CC} = 2.7 V$	30	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	24	-	-	ns
		$V_{CC} = 4.5 \text{ V}$ to 5.5 V	16	-	-	ns
t _W	pulse width MR	see Figure 7				
		$V_{CC} = 2.0 V$	41	-	-	ns
		$V_{CC} = 2.7 V$	30	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	24	-	-	ns
		V_{CC} = 4.5 V to 5.5 V	16	-	-	ns
rem	removal time $\overline{\text{MR}}$ to CP	see Figure 7				
		V _{CC} = 1.2 V	-	-	-	ns
		$V_{CC} = 2.0 V$	24	-	-	ns
		$V_{CC} = 2.7 V$	18	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	14	-	-	ns
		V_{CC} = 4.5 V to 5.5 V	10	-	-	ns
t _{su}	set-up time Dn to CP	see Figure 8				
		V _{CC} = 1.2 V	-	-	-	ns
		$V_{CC} = 2.0 V$	26	-	-	ns
		$V_{CC} = 2.7 V$	19	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	15	-	-	ns
		V_{CC} = 4.5 V to 5.5 V	10	-	-	ns
h	hold time Dn to CP	see Figure 8				
		V _{CC} = 1.2 V	-	-	-	ns
		$V_{CC} = 2.0 V$	5	-	-	ns
		$V_{CC} = 2.7 V$	5	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	5	-	-	ns
		V_{CC} = 4.5 V to 5.5 V	5	-	-	ns
max	maximum clock frequency	see Figure 6				
		$V_{CC} = 2.0 V$	12	-	-	MHz
		$V_{CC} = 2.7 V$	16	-	-	MHz
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	20	-	-	MHz
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	30	-	-	MHz

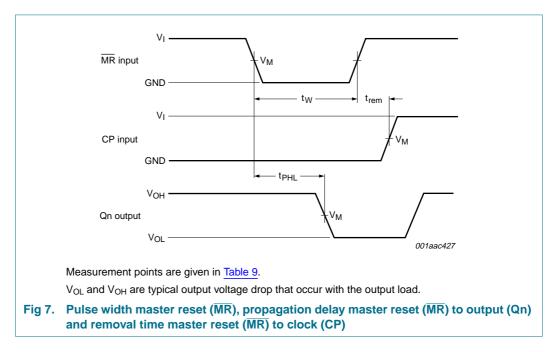
Table 8: Dynamic characteristics ... continued GND = 0.1/t = t < 2.5 ns; C = 50 ns; R = 1 kO; ft

at air -

[1] Typical values are measured at nominal V_{CC} and T_{amb} = 25 °C.

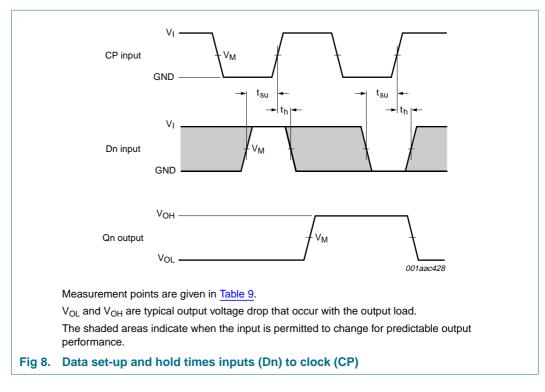
74LV164


8-bit serial-in/parallel-out shift register


 $\begin{array}{ll} \mbox{[2]} & C_{PD} \mbox{ is used to determine the dynamic power dissipation (P_D in μW). } \\ & P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \mbox{ where:} \\ & f_i = \mbox{ input frequency in MHz;} \\ & f_o = \mbox{ output frequency in MHz;} \\ & C_L = \mbox{ output load capacitance in pF;} \\ & V_{CC} = \mbox{ supply voltage in V;} \end{array}$

$$\begin{split} N &= number \mbox{ of inputs switching;} \\ \Sigma(C_L \times V_{CC}{}^2 \times f_o) &= sum \mbox{ of the outputs.} \end{split}$$

[3] The condition is $V_I = GND$ to V_{CC} .


12. Waveforms

9397 750 14501 Product data sheet

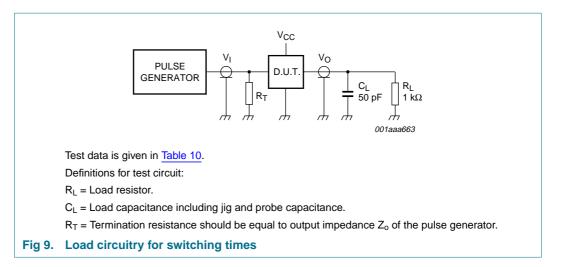
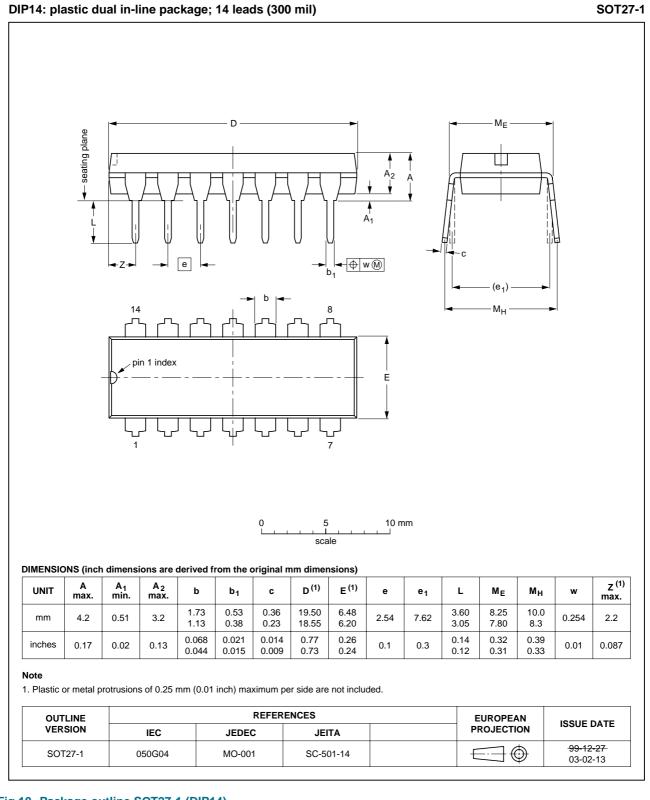

8-bit serial-in/parallel-out shift register

Table 9: Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
1.2 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$
2.0 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$

8-bit serial-in/parallel-out shift register


Table 10: Test data

Supply voltage	Input		Load	Load	
V _{CC}	VI	t _r , t _f	CL	RL	
1.2 V	V _{CC}	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}
2.0 V	V _{CC}	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}
2.7 V	2.7 V	\leq 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF, 15 pF	1 kΩ	t _{PHL} , t _{PLH}
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	1 kΩ	t _{PHL} , t _{PLH}

74LV164

8-bit serial-in/parallel-out shift register

13. Package outline

Fig 10. Package outline SOT27-1 (DIP14)

9397 750 14501

8-bit serial-in/parallel-out shift register

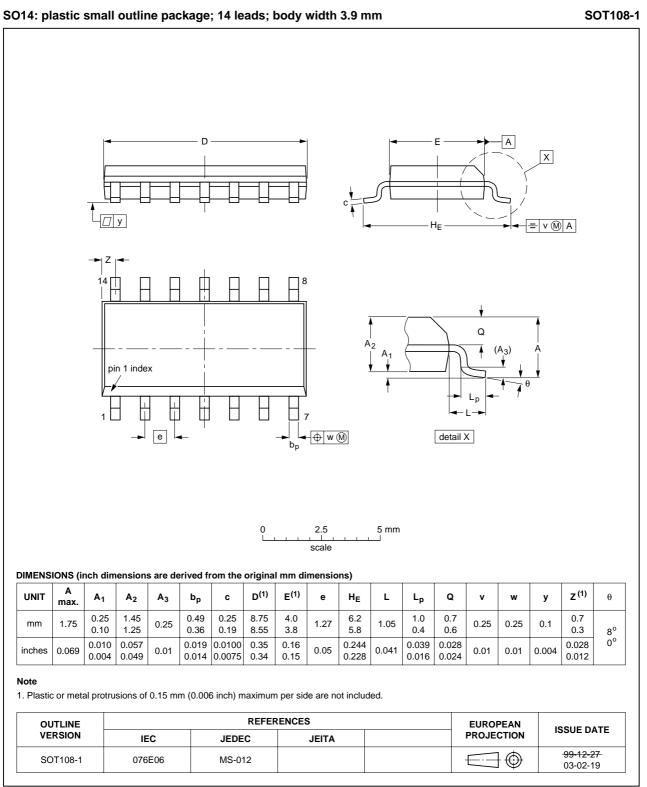
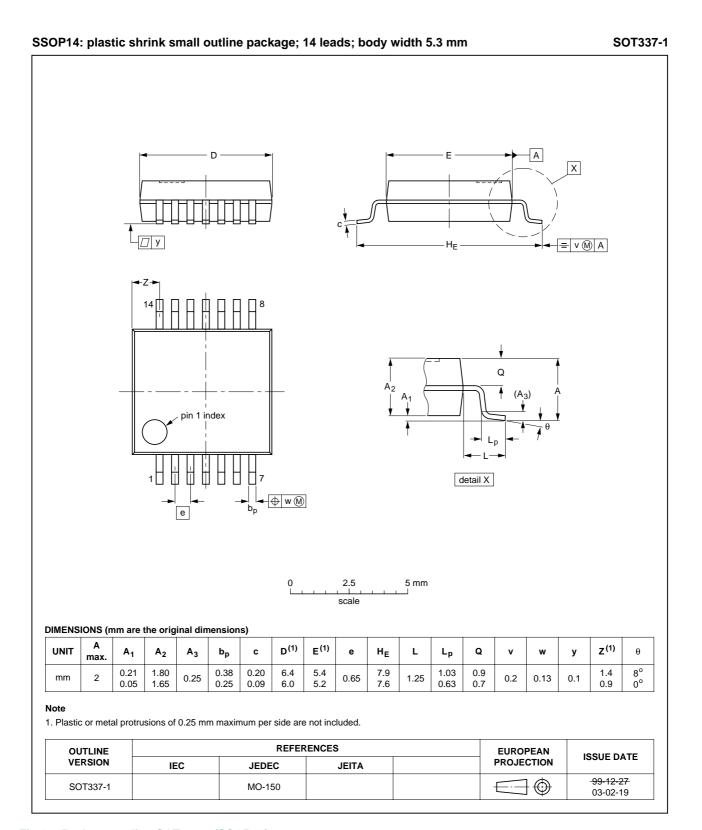



Fig 11. Package outline SOT108-1 (SO14)

9397 750 14501

Product data sheet

8-bit serial-in/parallel-out shift register

Fig 12. Package outline SOT337-1 (SSOP14)

9397 750 14501 Product data sheet

8-bit serial-in/parallel-out shift register

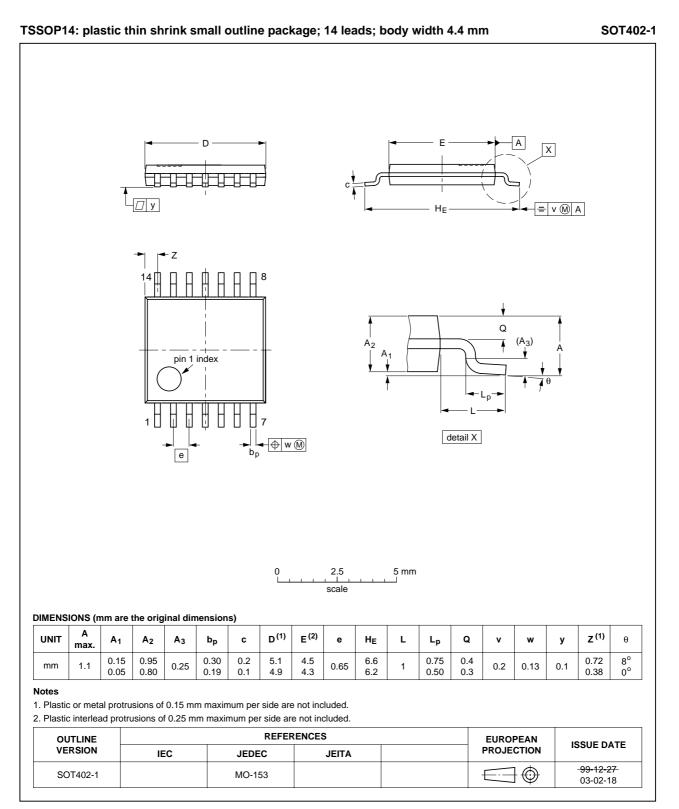
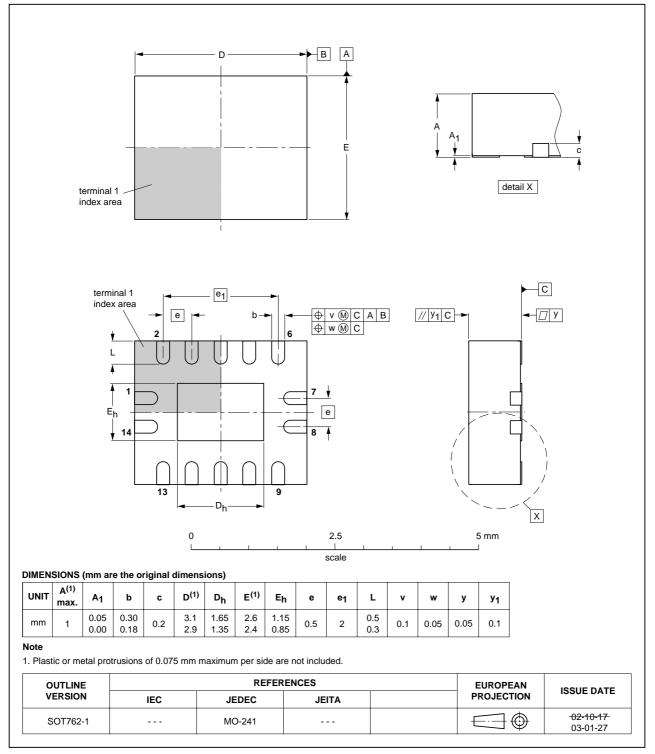



Fig 13. Package outline SOT402-1 (TSSOP14)

9397 750 14501

Product data sheet

8-bit serial-in/parallel-out shift register

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 14. Package outline SOT762-1 (DHVQFN14)

9397 750 14501

Product data sheet

8-bit serial-in/parallel-out shift register

14. Revision history

Table 11: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74LV164_3	20050204	Product data sheet	-	9397 750 14501	74LV164_2
Modifications:	information	t of this data sheet has be n standard of Philips Sem be number 74LV164BQ ([niconductors		rent presentation and
74LV164_2	19980507	Product specification	-	9397 750 04431	74LV164_1
74LV164_1	19970328	Product specification		-	-

8-bit serial-in/parallel-out shift register

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74LV164

8-bit serial-in/parallel-out shift register

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 1
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
7.1	Function table 5
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 8
12	Waveforms 11
13	Package outline 14
14	Revision history 19
15	Data sheet status 20
16	Definitions
17	Disclaimers
18	Contact information 20
	-

Downloaded from Arrow.com.

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 4 February 2005 Document number: 9397 750 14501

Published in The Netherlands