RF LDMOS Wideband Integrated Power Amplifiers

The MD8IC925N wideband integrated circuit is designed with on-chip matching that makes it usable from 728 to 960 MHz. This multi-stage structure is rated for 24 to 32 V operation and covers all typical cellular base station modulation formats.

Driver Application — 900 MHz

• Typical single-carrier W-CDMA performance: $V_{DD} = 28$ Vdc, $I_{DQ1(A+B)} = 58$ mA, $I_{DQ2(A+B)} = 222$ mA, $P_{out} = 2.5$ W Avg., IQ magnitude clipping, channel bandwidth = 3.84 MHz, input signal PAR = 7.5 dB @ 0.01% probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
920 MHz	36.2	17.5	-48.9
940 MHz	36.2	17.4	-49.5
960 MHz	36.1	17.3	-49.1

 Capable of handling 10:1 VSWR, @ 32 Vdc, 940 MHz, 25 W CW output power (3 dB input overdrive from rated Pout)

Driver Application — 700 MHz

• Typical single-carrier W-CDMA performance: $V_{DD} = 28 \text{ Vdc}$, $I_{DQ1(A+B)} = 58 \text{ mA}$, $I_{DQ2(A+B)} = 222 \text{ mA}$, $P_{out} = 2.5 \text{ W Avg.}$, IQ magnitude clipping, channel bandwidth = 3.84 MHz, input signal PAR = 7.5 dB @ 0.01% probability on CCDF.

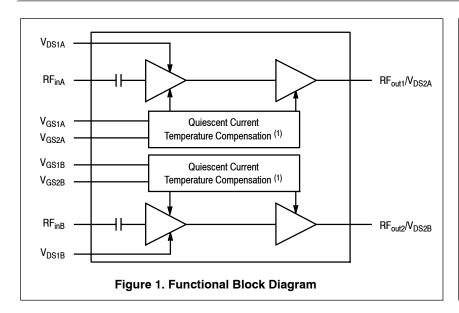
Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
728 MHz	36.4	17.2	-48.9
748 MHz	36.4	17.6	-49.7
768 MHz	36.4	17.9	-50.5

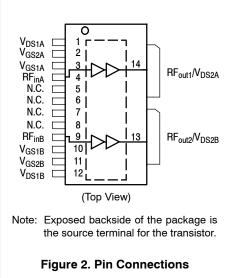
Features

- Characterized with series equivalent large-signal impedance parameters and common source S-parameters
- On-chip matching (50 Ohm input, DC blocked)
- Integrated quiescent current temperature compensation with Enable/Disable function (1)
- · Integrated ESD protection
- · Designed for digital predistortion error correction systems
- · Optimized for Doherty applications
- 225°C capable plastic package

MD8IC925NR1 MD8IC925GNR1

728-960 MHz, 2.5 W AVG., 28 V SINGLE W-CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS


TO-270WB-14 PLASTIC MD8IC925NR1



TO-270WBG-14 PLASTIC MD8IC925GNR1

^{1.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (2,3)	T _J	225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (3,4)	Unit
Thermal Resistance, Junction to Case Case Temperature 77°C, 2.5 W CW, 940 MHz	$R_{ heta JC}$		°C/W
Stage 1, 28 Vdc, I _{DQ1(A+B)} = 58 mA, 940 MHz Stage 2, 28 Vdc, I _{DQ2(A+B)} = 222 mA, 940 MHz		5.4 1.8	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	1

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Rating Package Peak Temperature			
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C		

- 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.nxp.com/RF and search for AN1977 or AN1987.
- 2. Continuous use at maximum temperature will affect MTTF.
- 3. MTTF calculator available at http://www.nxp.com/RF/calculators.
- 4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics (1)					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 - On Characteristics ⁽¹⁾					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 4 μ Adc)	V _{GS(th)}	1.2	2.0	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1(A+B)} = 58 mA)	V _{GS(Q)}	_	2.8	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ1(A+B)} = 58 mA, Measured in Functional Test)	$V_{GG(Q)}$	4.1	4.8	5.6	Vdc
Stage 2 - Off Characteristics (1)					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 - On Characteristics (1)			•	•	•
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 19 μ Adc)	V _{GS(th)}	1.2	2.0	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2(A+B)} = 222 mA)	V _{GS(Q)}		2.75	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ2(A+B)} = 222 mA, Measured in Functional Test)	V _{GG(Q)}	3.5	4.3	5.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 190 Adc)	V _{DS(on)}	0.1	0.21	1.2	Vdc

Functional Tests (2,3) (In NXP Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ1(A+B)} = 58$ mA, $I_{DQ2(A+B)} = 222$ mA, $P_{out} = 2.5$ W Avg., f = 940 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	34.5	36.2	39.5	dB
Power Added Efficiency	PAE	15.5	17.4	_	%
Adjacent Channel Power Ratio	ACPR	_	-49.5	-47.0	dBc
Input Return Loss	IRL		-27	-10	dB

Typical Performance over Frequency (In NXP Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ1(A+B)} = 58$ mA, $I_{DQ2(A+B)} = 222$ mA, $P_{out} = 2.5$ W Avg, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)	IRL (dB)
920 MHz	36.2	17.5	-48.9	-27
940 MHz	36.2	17.4	-49.5	-27
960 MHz	36.1	17.3	-49.1	-28

- 1. Each side of device measured separately.
- 2. Part internally matched both on input and output.
- Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performance (In NXP Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ1(A+B)} = 58 mA, I _{DQ2(A+B)} = 222 mA, 920-960 MHz					2

Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	_	26	_	W
Pout @ 3 dB Compression Point, CW	P3dB	_	31	_	W
IMD Symmetry @ 28 W PEP, P _{out} where IMD Third Order Intermodulation ≅ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)	IMD _{sym}	_	20	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	75	_	MHz
Quiescent Current Accuracy over Temperature $^{(1,2)}$ with 18 k Ω Gate Feed Resistors (-30 to 85°C) Stage 1 with 20 k Ω Gate Feed Resistors (-30 to 85°C) Stage 2	Δl _{QT}		1.1 1.9		%
Gain Flatness in 40 MHz Bandwidth @ P _{out} = 2.5 W Avg.	G _F	_	0.2	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.043	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.004	_	dB/°C

 $\textbf{Typical Performance over Frequency} \ \, (\text{In NXP 700 MHz Test Fixture, 50 ohm system}) \ \, V_{DD} = 28 \ \, \text{Vdc}, \ \, I_{DQ1(A+B)} = 58 \ \, \text{mA}, \ \, I_{DQ2(A+B)} = 222 \ \, \text{mA, P}_{out} = 2.5 \ \, \text{W Avg., Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR} = 7.5 \ \, \text{dB} \ \, \textcircled{0.01\% Probability on CCDF. ACPR}$ measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

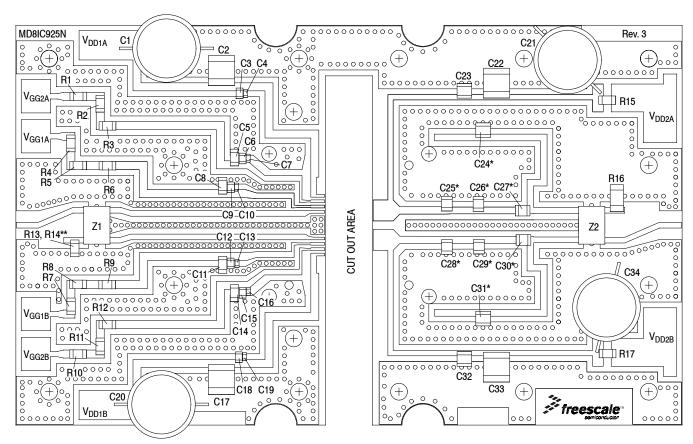

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)	IRL (dB)
728 MHz	36.4	17.2	-48.9	-17
748 MHz	36.4	17.6	-49.7	-17
768 MHz	36.4	17.9	-50.5	-18

Table 6. Ordering Information

Device	Tape and Reel Information	Package	
MD8IC925NR1	D4 Cuffin 500 Units 44 years Tay a Widdle 40 Smale David	TO-270WB-14	
MD8IC925GNR1	R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel	TO-270WBG-14	

^{1.} Each side of device measured separately.

^{2.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.

^{*}C24, C25, C26, C27, C28, C29, C30 and C31 are mounted vertically.

Figure 3. MD8IC925NR1 Test Circuit Component Layout

Table 7. MD8IC925NR1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C20, C21, C34	220 μF, 100 V Electrolytic Capacitors	EEV-FK2A221M	Panasonic-ECG
C2, C17, C22, C33	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C3, C6, C9, C12, C15, C18	0.01 μF Chip Capacitors	C0805C103K5RAC	Kemet
C4, C7, C10, C13, C16, C19	47 pF Chip Capacitors	ATC600F470JT250XT	ATC
C5, C8, C11, C14	1 μF Chip Capacitors	C3225X7R2A105KT	TDK
C23, C24, C31, C32	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C25, C28	6.8 pF Chip Capacitors	ATC100B6R8CT500XT	ATC
C26, C29	2.2 pF Chip Capacitors	ATC100B2R2JT500XT	ATC
C27, C30	4.3 pF Chip Capacitors	ATC100B4R3CT500XT	ATC
R1, R4, R7, R10	0 Ω, 3 A Chip Jumpers	CRCW12060000Z0EA	Vishay
R2, R3, R5, R6, R8, R9, R11, R12	1 kΩ, 1/4 W Chip Resistors	CRCW12061K00FKEA	Vishay
R13, R14	100 Ω, 1/4 W Chip Resistors	CRCW1206100RFKEA	Vishay
R15, R17	0 Ω, 2 A Chip Jumpers	WCR1206-R005J	Welwyn
R16	50 Ω, 10 W Chip Resistor	81A7031-50-5F	Florida RF Labs
Z1, Z2	815-960 MHz Band, 90°, 3 dB Chip Hybrid Couplers	GSC362-HYB0900	Soshin
PCB	$0.020''$, $\varepsilon_r = 3.55$	RF35	Taconic

^{**}R13 and R14 are stacked.

TYPICAL CHARACTERISTICS

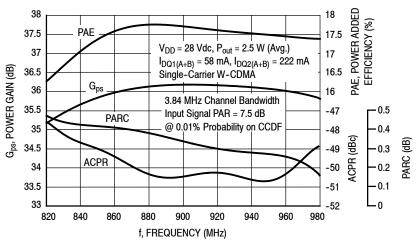


Figure 4. Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 2.5 Watts Avg.

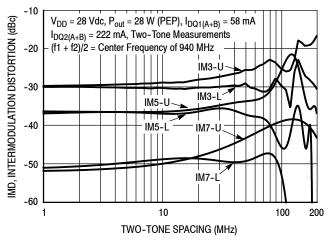


Figure 5. Intermodulation Distortion Products versus Two-Tone Spacing

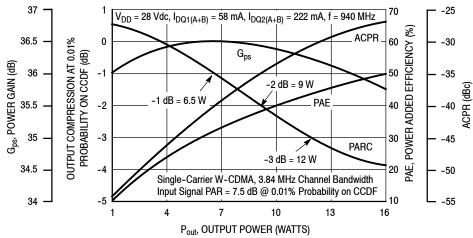


Figure 6. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS

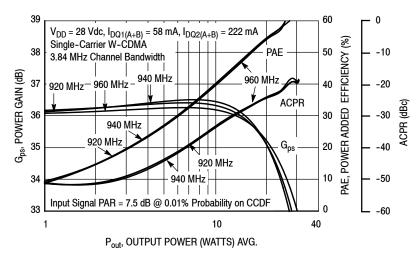


Figure 7. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power

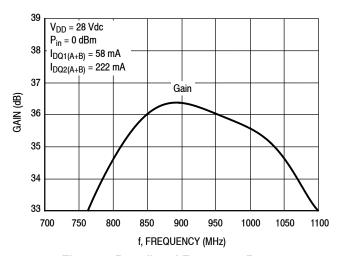


Figure 8. Broadband Frequency Response

W-CDMA TEST SIGNAL



Figure 9. CCDF W-CDMA IQ Magnitude Clipping, Single-Carrier Test Signal

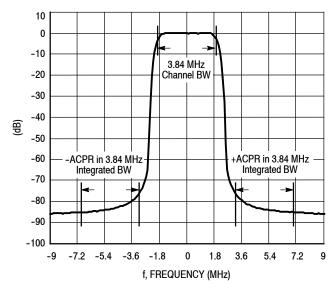


Figure 10. Single-Carrier W-CDMA Spectrum

 V_{DD} = 28 Vdc, $I_{DQ1(A+B)}$ = 58 mA, $I_{DQ2(A+B)}$ = 222 mA, P_{out} = 2.5 W Avg.

f MHz	Z _{in} Ω	Z _{load} Ω
820	47.9 + j2.34	7.51 + j5.45
840	47.9 + j2.47	7.62 + j5.42
860	47.8 + j2.61	7.60 + j5.41
880	47.8 + j2.75	7.48 + j5.44
900	47.7 + j2.89	7.27 + j5.55
920	47.7 + j3.04	7.00 + j5.74
940	47.7 + j3.19	6.71 + j6.01
960	47.6 + j3.34	6.40 + j6.37
980	47.6 + j3.49	6.10 + j6.79

 $Z_{in} \quad = \quad \text{Device input impedance as measured from} \\ \quad \text{gate to ground.}$

 Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 11. Series Equivalent Input and Load Impedance

 V_{DD} = 28 Vdc, I_{DQ1A} = 21 mA, I_{DQ2A} = 101 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power					
P1dB								
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)
920	59.9 - j18.3	56.8 + j19.1	10.9 + j2.37	32.4	43.0	20	57.8	-4.9
940	60.7 - j18.5	61.2 + j14.3	12.4 + j1.56	32.2	42.9	20	54.9	-5.2
960	62.9 - j10.5	64.5 + j8.82	14.8 + j0.656	31.9	42.9	20	55.1	-5.2

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)		
920	59.9 - j18.3	56.9 + j16.9	10.7 + j1.54	30.1	43.8	24	57.2	-5.4		
940	60.7 - j18.5	60.8 + j12.3	11.7 + j1.11	30.0	43.7	24	55.6	-5.6		
960	62.9 - j10.5	63.5 + j7.10	13.7 + j0.12	29.7	43.7	24	55.5	-5.49		

⁽¹⁾ Load impedance for optimum P1dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Note: Measurement made on a per side basis.

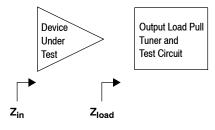
Figure 12. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ1A} = 21 mA, I_{DQ2A} = 101 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Power Added Efficiency						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)	
920	59.9 - j18.3	60.9 + j20.8	11.1 + j10.9	34.2	41.3	13	66.4	-6.7	
940	60.7 - j18.5	66.5 + j16.0	10.0 + j11.8	34.4	40.7	12	63.5	-7.8	
960	62.9 - j10.5	69.0 + j9.28	11.6 + j11.5	33.9	40.9	12	63.3	-6.8	

			Max Power Added Efficiency						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)	
920	59.9 - j18.3	59.7 + j19.9	9.03 + j9.12	32.3	42.2	17	65.3	-9.9	
940	60.7 - j18.5	64.3 + j14.2	10.5 + j9.80	32.1	42.0	16	62.3	-7.6	
960	62.9 - j10.5	66.9 + j7.74	12.5 + j11.3	31.8	41.8	15	62.4	-3.44	

⁽¹⁾ Load impedance for optimum P1dB efficiency.


 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

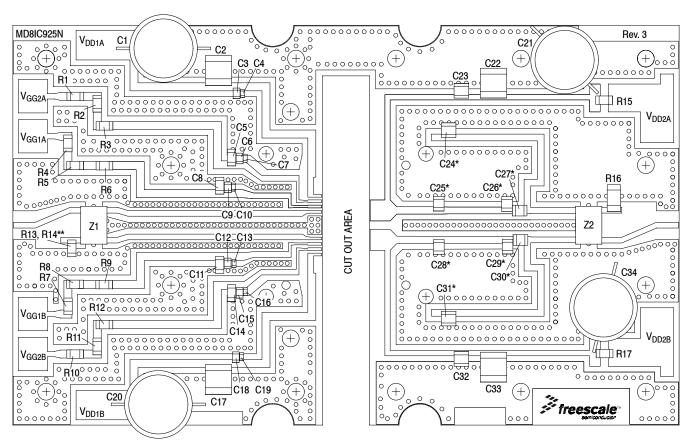

Note: Measurement made on a per side basis.

Figure 13. Load Pull Performance — Maximum Power Added Efficiency Tuning

⁽²⁾ Load impedance for optimum P3dB power.

⁽²⁾ Load impedance for optimum P3dB efficiency.

^{*}C24, C25, C26, C27, C28, C29, C30 and C31 are mounted vertically.

Figure 14. MD8IC925NR1 Test Circuit Component Layout — 728-768 MHz

Table 8. MD8IC925NR1 Test Circuit Component Designations and Values — 728-768 MHz

Part	Description	Part Number	Manufacturer
C1, C20, C21, C34	220 μF, 100 V Electrolytic Capacitors	EEV-FK2A221M	Panasonic-ECG
C2, C17, C22, C33	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C3, C6, C9, C12, C15, C18	0.01 μF Chip Capacitors	C0805C103K5RAC	Kemet
C4, C7, C10, C13, C16, C19	47 pF Chip Capacitors	ATC600F470JT250XT	ATC
C5, C8, C11, C14	1 μF Chip Capacitors	C3225X7R2A105KT	TDK
C23, C24, C31, C32	68 pF Chip Capacitors	ATC100B680JT500XT	ATC
C25, C28	2.2 pF Chip Capacitors	ATC100B2R2JT500XT	ATC
C26, C27, C29, C30	5.6 pF Chip Capacitors	ATC100B5R6CT500XT	ATC
R1, R4, R7, R10	0 Ω, 3 A Chip Jumpers	CRCW12060000Z0EA	Vishay
R2, R3, R5, R6, R8, R9, R11, R12	1 kΩ, 1/4 W Chip Resistors	CRCW12061K00FKEA	Vishay
R13, R14	100 Ω, 1/4 W Chip Resistors	CRCW1206100RFKEA	Vishay
R15, R17	0 Ω, 2 A Chip Jumpers	WCR1206-R005J	Welwyn
R16	50 Ω, 10 W Chip Resistor	81A7031-50-5F	Florida RF Labs
Z1, Z2	815-960 MHz Band, 90°, 3 dB Chip Hybrid Couplers	GSC362-HYB0900	Soshin
PCB	$0.020'', \epsilon_r = 3.55$	RF35	Taconic

^{**}R13 and R14 are stacked.

TYPICAL CHARACTERISTICS — 728-768 MHz

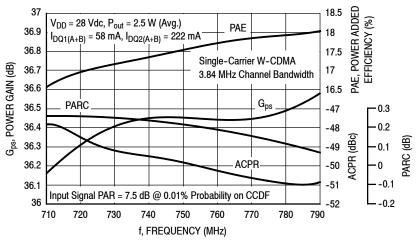


Figure 15. Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 2.5 Watts Avg.

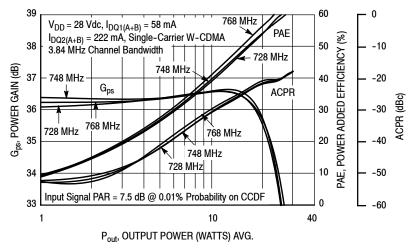


Figure 16. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power

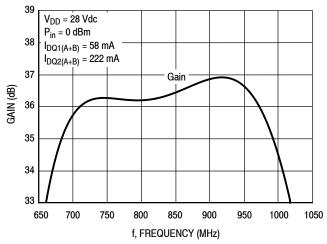


Figure 17. Broadband Frequency Response

 V_{DD} = 28 Vdc, $I_{DQ1(A+B)}$ = 58 mA, $I_{DQ2(A+B)}$ = 222 mA, P_{out} = 2.5 W Avg.

f MHz	Z _{in} Ω	Z _{load} Ω
710	48.2 + j1.65	8.02 + j6.72
720	48.2 + j1.71	8.43 + j6.89
730	48.2 + j1.77	8.64 + j7.04
740	48.1 + j1.83	8.84 + j7.17
750	48.0 + j1.89	9.01 + j7.29
760	48.1 + j1.95	9.16 + j7.39
770	48.0 + j2.01	9.28 + j7.49
780	48.0 + j2.08	9.38 + j7.59
790	48.0 + j2.14	9.45 + j7.68

 $Z_{in} \quad = \quad \text{Device input impedance as measured from} \\ \quad \text{gate to ground.}$

 Z_{load} = Test circuit impedance as measured from drain to ground.

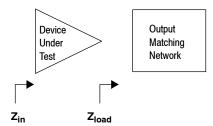


Figure 18. Series Equivalent Input and Load Impedance — 728-768 MHz

 V_{DD} = 28 Vdc, I_{DQ1A} = 21 mA, I_{DQ2A} = 101 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

Max Output Power									
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)	
730	25.7 - j5.86	24.7 + j3.12	8.35 + j5.97	34.0	42.7	19	58.9	-3.6	
750	24.8 - j8.46	24.8 + j6.48	8.50 + j5.61	33.9	42.8	19	57.8	-2.6	
770	27.5 - j12.2	26.5 + j10.4	10.0 + j4.28	33.7	43.1	20	60.0	-3.0	

			Max Output Power						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)	
730	25.7 - j5.86	25.7 + j3.64	8.59 + j4.89	31.6	43.5	23	60.0	-6.0	
750	24.8 - j8.46	26.0 + j6.61	8.40 + j4.59	31.5	43.6	23	58.2	-4.4	
770	27.5 - j12.2	27.6 + j10.4	9.89 + j3.68	31.5	43.8	24	61.9	-5.56	

⁽¹⁾ Load impedance for optimum P1dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Note: Measurement made on a per side basis.

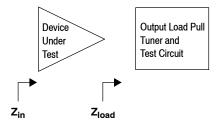
Figure 19. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ1A} = 21 mA, I_{DQ2A} = 101 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Power Added Efficiency						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)	
730	25.7 - j5.86	23.9 + j6.61	14.0 + j13.4	36.2	40.7	12	68.0	-6.4	
750	24.8 - j8.46	24.2 + j10.2	12.4 + j13.8	36.5	40.5	11	66.0	-6.1	
770	27.5 - j12.2	25.7 + j14.3	11.4 + j13.5	36.3	41.0	13	70.5	-8.2	

			Max Power Added Efficiency						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)	
730	25.7 - j5.86	24.1 + j6.09	11.2 + j12.4	34.4	41.6	14	69.4	-11	
750	24.8 - j8.46	25.3 + j9.02	12.0 + j11.3	34.0	42.0	16	67.8	-6.3	
770	27.5 - j12.2	26.9 + j13.8	11.4 + j13.3	34.3	41.7	15	72.4	-10.60	

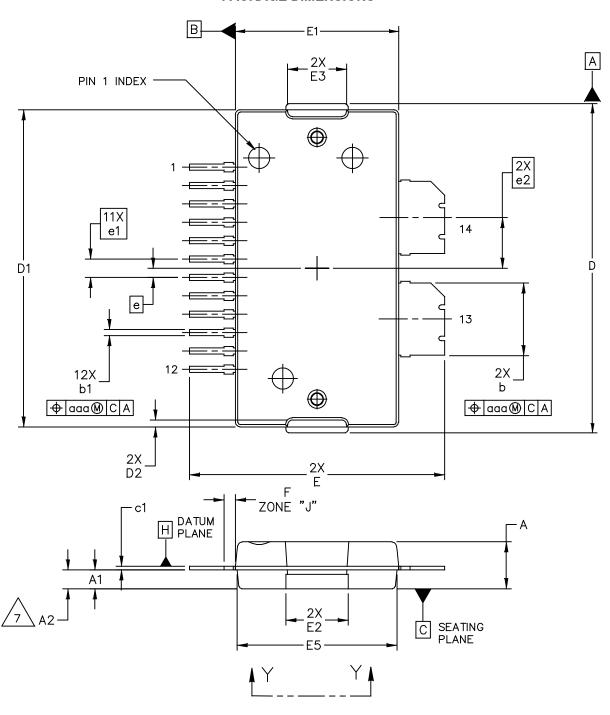
⁽¹⁾ Load impedance for optimum P1dB efficiency.

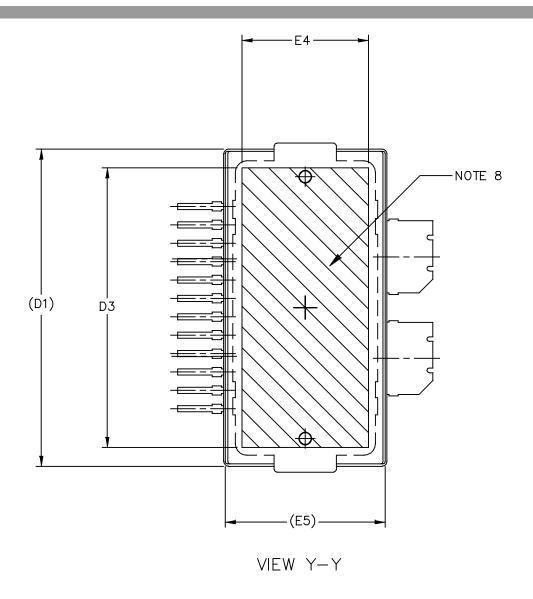

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Note: Measurement made on a per side basis.

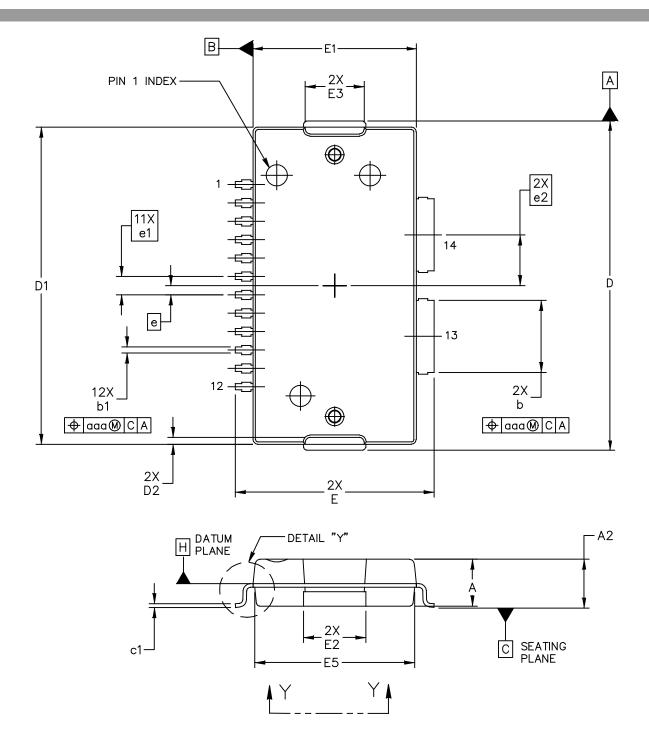

Figure 20. Load Pull Performance — Maximum Power Added Efficiency Tuning


⁽²⁾ Load impedance for optimum P3dB power.

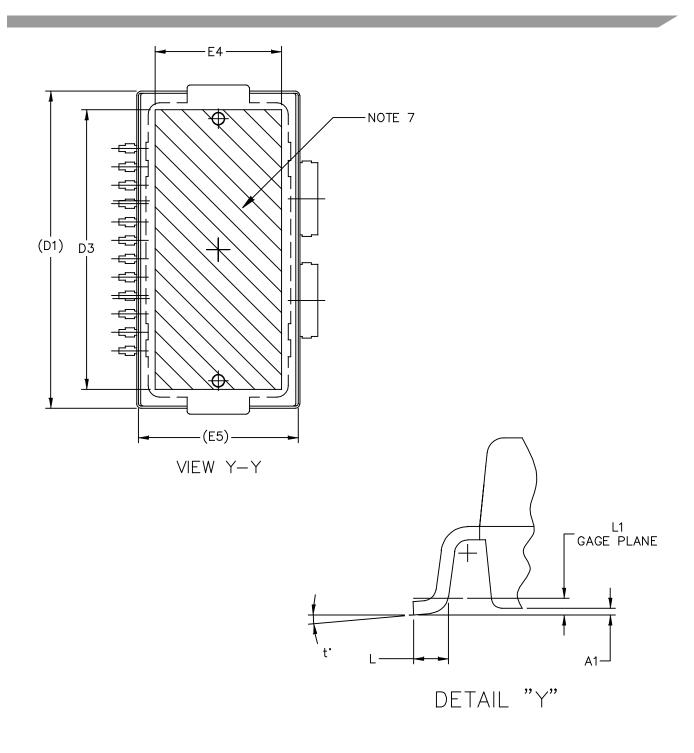
⁽²⁾ Load impedance for optimum P3dB efficiency.

PACKAGE DIMENSIONS

©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:	TO 070 WIDE DOE		DOCUME	NT NO: 98ASA10650D	REV: B
	TO-270 WIDE BOD	γ	STANDAF	RD: NON-JEDEC	
			S0T1720	-2	20 JAN 2016



	SEMICONDUCTORS N.V. L RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	Γ TO SCALE
TITLE:	TO 070 WIDE DOE		DOCUMEN	NT NO: 98ASA10650D	REV: B
	TO-270 WIDE BOD 14 LEAD) Y	STANDAR	RD: NON-JEDEC	
TH LLAD			S0T1720	-2	20 JAN 2016


NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	CH	MIL	LIMETER		INCH		MILLI	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.100	.104	2.54	2.64	F)	25 BSC	0.64 BSC	
A1	.039	.043	0.99	1.09	ь	.154	.160	3.91	4.06
A2	.040	.042	1.02	1.07	b1	.010	.016	0.25	0.41
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28
D1	.688	.692	17.48	17.58	е	.0)20 BSC	0.5	1 BSC
D2	.011	.019	0.28	0.48	e1).	040 BSC	1.02	2 BSC
D3	.600		15.24		e2	.1	.1105 BSC		7 BSC
E	.551	.559	14	14.2					
E1	.353	.357	8.97	9.07	aaa		.004		10
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35					
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
(© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL				L OU	ΓLINE	PRINT VERS	SION NOT	TO SCALE
TITLE:	TITLE:					DOCUME	NT NO: 98ASA1	0650D	REV: B
	TO-270 WIDE BODY 14 LEAD					STANDAR	RD: NON-JEDEC		
						SOT1720-2 20 JAN 20			JAN 2016

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE: TO-270 WIDE BOD)Υ	DOCUME	NT NO: 98ASA10653D	REV: B
14 LEAD		STANDAF	RD: NON-JEDEC	
GULL WING		SOT1720	-3	29 JAN 2016

NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NOT TO	SCALE
TITLE: TO-270 WIDE BOD	Υ	DOCUMEN	NT NO: 98ASA10653D	REV: B
14 LEAD		STANDAR	RD: NON-JEDEC	
GULL WING		S0T1720	-3 29	JAN 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	INCH		MIL	LIMETER		INCH		MILLI	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	.0	010 BSC	0.25 BSC		
A2	.099	.110	2.51	2.79	Ь	.154	.160	3.91	4.06	
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	0.41	
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28	
D2	.011	.019	0.28	0.48	e	.020 BSC		0.51	0.51 BSC	
D3	.600		15.24		e1	.0	.040 BSC		1.02 BSC	
E	.429	.437	10.9	11.1	e2	.1	105 BSC	2.807 BSC		
E1	.353	.357	8.97	9.07	t	2*	8.	2.	8*	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35	aaa		.004		10	
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHAN			MECHANICA	L OUT	LINE	PRINT VERS	SION NOT T	O SCALE		
TITLE:	TITLE: TO-270 WIDE BODY					DOCUME	NT NO: 98ASA1	0653D	REV: B	
	14 LEAD					STANDAR	PD: NON_JEDEC			

14 LEAD **GULL WING**

STANDARD: NON-JEDEC SOT1720-3 29 JAN 2016

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

Engineering Bulletins

· EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2013	Initial Release of Data Sheet
1	Sept. 2016	 Table 5, Stage 1 and Stage 2, On Characteristics V_{GS(Q)} Typ values: updated to reflect correct statistical values, p. 3
		Figure 12, 960 MHz, P3dB Load Pull Performance – Maximum Power Tuning: updated Z _{in} through AM/PM values to reflect actual data, p. 10
		Figure 13, 960 MHz, P3dB Load Pull Performance – Maximum Power Added Efficiency Tuning: updated Z _{in} through AM/PM values to reflect actual data, p. 10
		Figure 19, 770 MHz, P3dB Load Pull Performance – Maximum Power Tuning: updated Z _{in} through AM/PM values to reflect actual data, p. 14
		Figure 20, 770 MHz, P3dB Load Pull Performance – Maximum Power Added Efficiency Tuning: updated Z _{in} through AM/PM values to reflect actual data, p. 14

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.

Document Number: MD8IC925N

Rev. 1, 9/2016