74HC245; 74HCT245

Octal bus tranceiver; 3-state Rev. 03 — 31 January 2005

Product data sheet

1. **General description**

The 74HC245; 74HCT245 is a high-speed Si-gate CMOS device and is pin compatible with Low-Power Schottky TTL (LSTTL).

The 74HC245; 74HCT245 is an octal transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. The 74HC245; 74HCT245 features an output enable input (OE) for easy cascading and a send/receive input (DIR) for direction control. OE controls the outputs so that the buses are effectively isolated.

The 74HC245; 74HCT245 is similar to the 74HC640; 74HCT640 but has true (non-inverting) outputs.

2. Features

- Octal bidirectional bus interface
- Non-inverting 3-state outputs
- Multiple package options
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

Quick reference data 3.

Table 1: Quick reference data GND = 0 V; $T_{amb} = 25 \circ C$; $t_r = t_f = 6 ns$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Type 74H0	2245					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	C _L = 15 pF; V _{CC} = 5 V	-	7	-	ns
CI	input capacitance		-	3.5	-	pF
C _{I/O}	input/output capacitance		-	10	-	pF
C _{PD}	power dissipation capacitance per transceiver	$V_I = GND$ to V_{CC}	<u>[1]</u> -	30	-	pF
Туре 74НСТ245						
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	C _L = 15 pF; V _{CC} = 5 V	-	10	-	ns

74HC245; 74HCT245

Octal bus tranceiver; 3-state

Table 1:	Quick refe	rence data	continued
----------	------------	------------	-----------

$GND = 0 V_{i}$; T _{amb} = 25	° <i>C</i> ; $t_r = t_f = 6$ ns.
-----------------	-------------------------	----------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CI	input capacitance		-	3.5	-	pF
C _{I/O}	input/output capacitance		-	10	-	pF
C _{PD}	power dissipation capacitance per transceiver	$V_I = GND$ to $V_{CC} - 1.5$ V	<u>[1]</u> -	30	-	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma \ (C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

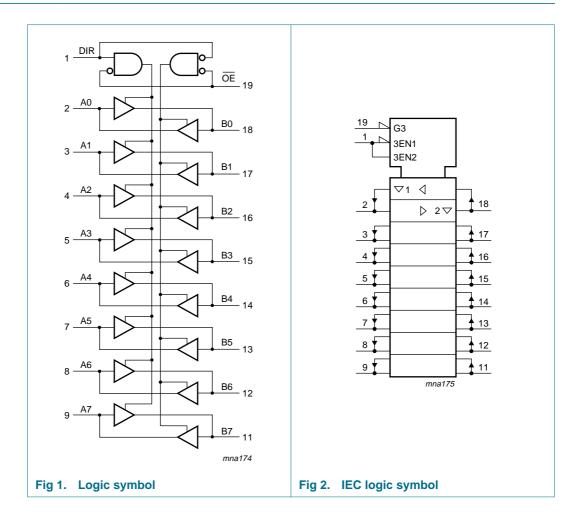
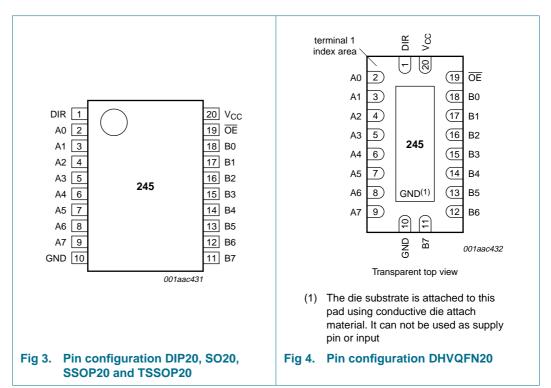

4. Ordering information

Table 2:Ordering information

Type number	Package					
	Temperature range	Name	Description	Version		
74HC245N	–40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1		
74HC245D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1		
74HC245PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1		
74HC245DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1		
74HC245BQ	–40 °C to +125 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced very thin quad flat package no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-1		
74HCT245N	–40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1		
74HCT245D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1		
74HCT245PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1		
74HCT245DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1		
74HCT245BQ	–40 °C to +125 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced very thin quad flat package no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-1		

5. Functional diagram



Octal bus tranceiver; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:Pin description

Symbol	Pin	Description
DIR	1	direction control
A0	2	data input/output
A1	3	data input/output
A2	4	data input/output
A3	5	data input/output
A4	6	data input/output
A5	7	data input/output
A6	8	data input/output
A7	9	data input/output
GND	10	ground (0 V)
B7	11	data input/output
B6	12	data input/output
B5	13	data input/output
B4	14	data input/output
B3	15	data input/output
B2	16	data input/output

9397 750 14502

Product data sheet

74HC245; 74HCT245

Octal bus tranceiver; 3-state

Table 3:	Pin description .	continued
Symbol	Pin	Description
B1	17	data input/output
B0	18	data input/output
ŌĒ	19	output enable input (active LOW)
V _{CC}	20	supply voltage

7. Functional description

7.1 Function table

Table 4:	Function table [1]					
•			Input/outpu	Input/output		
OE		DIR	An	Bn		
L		L	A = B	input		
L		Н	input	B = A		
Н		Х	Z	Z		

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input diode current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{OK}	output diode current	$V_{O} < -0.5 V \text{ or}$ $V_{O} > V_{CC} + 0.5 V$	-	±20	mA
I _O	output source or sink current	$V_{\rm O}$ = –0.5 V to $V_{\rm CC}$ + 0.5 V	-	±35	mA
I _{CC} , I _{GND}	V _{CC} or GND current		-	±70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		<u>[1]</u>		
	DIP20 package		-	750	mW
	SO20, SSOP20, TSSOP20 and DHVQFN20 packages		-	500	mW

For DIP20 packages: above 70 °C, P_{tot} derates linearly with 12 mW/K.
 For SO20 packages: above 70 °C, P_{tot} derates linearly with 8 mW/K.
 For SSOP20 and TSSOP20 packages: above 60 °C, P_{tot} derates linearly with 5.5 mW/K.
 For DHVQFN20 packages: above 60 °C, P_{tot} derates linearly with 4.5 mW/K.

9397 750 14502 Product data sheet

9. Recommended operating conditions

Table 6:	Recommended ope	erating conditions				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Type 74H	IC245					
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
t _r , t _f	input rise and fall times	$V_{CC} = 2.0 V$	-	-	1000	ns
		$V_{CC} = 4.5 V$	-	6.0	500	ns
		$V_{CC} = 6.0 V$	-	-	400	ns
T _{amb}	ambient temperatur	e	-40	-	+125	°C
Type 74H	ICT245					
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
t _r , t _f	input rise and fall times	V_{CC} = 4.5 V	-	6.0	500	ns
T _{amb}	ambient temperatur	e	-40	-	+125	°C

10. Static characteristics

Table 7: Static characteristics type 74HC245

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 25	°C					
VIH	HIGH-level input voltage	$V_{CC} = 2.0 V$	1.5	1.2	-	V
		$V_{CC} = 4.5 V$	3.15	2.4	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 2.0 V$	-	0.8	0.5	V
		$V_{CC} = 4.5 V$	-	2.1	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	V
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	V
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	5.9	6.0	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V

Table 7:	Static characteristics type 74HC24	5 continued
----------	------------------------------------	-------------

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Un
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	0	0.1	V
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	-	0	0.1	V
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	-	0	0.1	V
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
I _{LI}	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	±0.1	μA
I _{oz}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or } GND;$ $V_{CC} = 6.0 \text{ V}$	-	-	±0.5	μA
lcc	quiescent supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 6.0 \ V \end{array}$	-	-	8.0	μA
CI	input capacitance		-	3.5	-	pF
C _{I/O}	input/output capacitance		-	10	-	pF
T _{amb} = -40) °C to +85 °C					
VIH	HIGH-level input voltage	$V_{CC} = 2.0 V$	1.5	-	-	V
	-	$V_{CC} = 4.5 V$	3.15	-	-	V
		$V_{CC} = 6.0 V$	4.2	-	-	V
VIL	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
	-	V _{CC} = 4.5 V	-	-	1.35	V
		$V_{CC} = 6.0 V$	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	-	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_0 = -20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	5.9	-	-	V
		$I_0 = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V
		$I_0 = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
02		$I_0 = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	-	-	0.1	V
		$I_{\rm O} = 6.0 \text{ mA}; V_{\rm CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_0 = 7.8 \text{ mA; } V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
ILI	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	±1.0	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or } GND;$ $V_{CC} = 6.0 \text{ V}$	-	-	±5.0	μA
lcc	quiescent supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0$ V	-	-	80	μA
Γ _{amb} = -40) °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		$V_{\rm CC} = 6.0 \text{ V}$	4.2	_	-	V

Product data sheet

Downloaded from Arrow.com.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	LOW-level input voltage	$V_{CC} = 2.0 V$	-	-	0.5	V
		$V_{CC} = 4.5 V$	-	-	1.35	V
		$V_{CC} = 6.0 V$	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$		-		
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$		-		
		$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
ILI	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	±1.0	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or } GND;$ $V_{CC} = 6.0 \text{ V}$	-	-	±10.0	μA
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	160	μA

Table 7: Static characteristics type 74HC245 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Table 8: Static characteristics type 74HCT245

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
VIL	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		I _O = -20 μA	4.4	4.5	-	V
		$I_{O} = -6 \text{ mA}$	3.98	4.32	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$				
		I _O = 20 μA	-	0	0.1	V
		I _O = 6.0 mA	-	0.15	0.26	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	μA
l _{oz}	OFF-state output current	$ V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 5.5 \text{ V}; $	-	-	±0.5	μA
I _{CC}	quiescent supply current	$V_I = V_{CC} \text{ or GND}; I_O = 0 \text{ A};$ $V_{CC} = 5.5 \text{ V}$	-	-	8.0	μA

74HC245; 74HCT245

Octal bus tranceiver; 3-state

Symbol	Parameter	Conditions		Тур	Max	Uni
∆I _{CC}	additional quiescent supply current per input pin	$V_I = V_{CC} - 2.1$ V; other inputs at $V_I = V_{CC}$ or GND; $V_{CC} = 4.5$ V to 5.5 V; $I_O = 0$ A				
	An or Bn inputs		-	40	144	μΑ
	OE input		-	150	540	μΑ
	DIR input		-	90	324	μΑ
CI	input capacitance		-	3.5	-	pF
C _{I/O}	input/output capacitance	e		10	-	pF
$\Gamma_{amb} = -40$	0 °C to +85 °C					
VIH	HIGH-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2.0	-	-	V
VIL	LOW-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		I _O = -20 μA	4.4	-	-	V
		I _O = -6 mA	3.84	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$				
		I _O = 20 μA	-	-	0.1	V
		$I_0 = 6.0 \text{ mA}$	-	-	0.33	V
LI	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 5.5$ V		-	±1.0	μA
loz	OFF-state output current	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 5.5 \text{ V};$ $V_O = V_{CC} \text{ or GND per input pin};$ other inputs at $V_{CC} \text{ or GND}; I_O = 0 \text{ A}$	-	-	±5.0	μA
СС	quiescent supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5$ V	-	-	80	μΑ
VI _{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 2.1 \text{ V}; \text{ other inputs at} \\ V_{I} = V_{CC} \text{ or GND}; \\ V_{CC} = 4.5 \text{ V to 5.5 V}; I_{O} = 0 \text{ A}$				
	An or Bn inputs		-	-	180	μΑ
	OE input		-	-	675	μA
	DIR input		-	-	405	μA
Γ _{amb} = -4	0 °C to +125 °C					
VIH	HIGH-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2.0	-	-	V
VIL	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
√он	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$				
		I _O = -20 μA	4.4	-	-	V
		$I_{O} = -6 \text{ mA}$	3.7	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		$I_{O} = 20 \mu\text{A}$	-	-	0.1	V
		$I_0 = 6.0 \text{ mA}$	-	-	0.4	V
LI	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	±1.0	μA
loz	OFF-state output current	$V_{I} = V_{CC} \text{ or GND}; V_{CC} = 5.5 \text{ V}$ $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 5.5 \text{ V};$ $V_{O} = V_{CC} \text{ or GND per input pin;}$ other inputs at $V_{CC} \text{ or GND}; I_{O} = 0 \text{ A}$		-	±10	μΑ

Static characteristics type 74HCT245 ... continued Table 8:

9397 750 14502 Product data sheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	160	μA
ΔI_{CC}	additional quiescent supply current per input pin	$V_I = V_{CC} - 2.1 \text{ V}$; other inputs at $V_I = V_{CC}$ or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$				
	An or Bn inputs		-	-	196	μA
	OE input		-	-	735	μA
	DIR input		-	-	441	μA

Static characteristics type 74HCT245 ... continued Table 8:

ound 010

11. Dynamic characteristics

Dynamic characteristics type 74HC245 Table 9:

GND = 0 V; test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn	see Figure 5				
	to An	$V_{CC} = 2.0 V$	-	25	90	ns
		$V_{CC} = 4.5 V$	-	9	18	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	7	-	ns
		$V_{CC} = 6.0 V$	-	7	15	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to	see Figure 6				
	An or \overline{OE} to Bn	$V_{CC} = 2.0 V$	-	30	150	ns
		$V_{CC} = 4.5 V$	-	11	30	ns
		$V_{CC} = 6.0 V$	-	9	26	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to	see Figure 6				
	An or OE to Bn	$V_{CC} = 2.0 V$	-	41	150	ns
		$V_{CC} = 4.5 V$	-	15	30	ns
		$V_{CC} = 6.0 V$	-	12	26	ns
t _{THL} , t _{TLH}	output transition time	see Figure 5				
		$V_{CC} = 2.0 V$	-	14	60	ns
		$V_{CC} = 4.5 V$	-	5	12	ns
		$V_{CC} = 6.0 V$	-	4	10	ns
C _{PD}	power dissipation capacitance per transceiver	$V_I = GND$ to V_{CC}	<u>[1]</u> -	30	-	pF
T _{amb} = -40	°C to +85 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn	see Figure 5				
	to An	$V_{CC} = 2.0 V$	-	-	115	ns
		$V_{CC} = 4.5 V$	-	-	23	ns
		V _{CC} = 6.0 V	-	-	20	ns

9397 750 14502

Product data sheet

74HC245; 74HCT245

Octal bus tranceiver; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PZH} , t _{PZL}	3-state output enable time OE to	see Figure 6				
	An or \overline{OE} to Bn	$V_{CC} = 2.0 V$	-	-	190	ns
		$V_{CC} = 4.5 V$	-	-	38	ns
		$V_{CC} = 6.0 V$	-	-	33	ns
_{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to	see Figure 6				
	An or \overline{OE} to Bn	$V_{CC} = 2.0 V$	-	-	190	ns
		$V_{CC} = 4.5 V$	-	-	38	ns
		$V_{CC} = 6.0 V$	-	-	33	ns
t _{THL} , t _{TLH}	output transition time	see Figure 5				
		$V_{CC} = 2.0 V$	-	-	75	ns
		$V_{CC} = 4.5 V$	-	-	15	ns
		V _{CC} = 6.0 V	-	-	13	ns
T _{amb} = -40	°C to +125 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	see Figure 5				
		$V_{CC} = 2.0 V$	-	-	135	ns
		$V_{CC} = 4.5 V$	-	-	27	ns
		$V_{CC} = 6.0 V$	-	-	23	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to	see Figure 6				
	An or \overline{OE} to Bn	$V_{CC} = 2.0 V$	-	-	225	ns
		$V_{CC} = 4.5 V$	-	-	45	ns
		$V_{CC} = 6.0 V$	-	-	38	ns
PHZ, t _{PLZ}	3-state output disable time \overline{OE} to	see Figure 6				
	An or \overline{OE} to Bn	$V_{CC} = 2.0 V$	-	-	225	ns
		$V_{CC} = 4.5 V$	-	-	45	ns
		$V_{CC} = 6.0 V$	-	-	38	ns
t _{THL} , t _{TLH}	output transition time	see Figure 5				
		V _{CC} = 2.0 V	-	-	90	ns
		$V_{CC} = 4.5 V$	-	-	18	ns
		V _{CC} = 6.0 V	-	-	15	ns

Table 9: Dynamic characteristics type 74HC245 ...continued

 $f_i = input frequency in MHz;$

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma \ (C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

Table 10: Dynamic characteristics type 74HCT245

GND = 0 V; test circuit see <u>Figure 7</u>.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25 °	°C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn	see Figure 5				
	to An	$V_{CC} = 4.5 V$	-	12	22	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	10	-	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to An or \overline{OE} to Bn	V_{CC} = 4.5 V; see Figure 6	-	16	30	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to An or \overline{OE} to Bn	V_{CC} = 4.5 V; see Figure 6	-	16	30	ns
t _{THL} , t _{TLH}	output transition time	V _{CC} = 4.5 V; see Figure 5	-	5	12	ns
C _{PD}	power dissipation capacitance per transceiver	V_{I} = GND to V_{CC} – 1.5 V	<u>[1]</u> -	30	-	pF
T _{amb} = -40	°C to +85 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	V_{CC} = 4.5 V; see <u>Figure 5</u>	-	-	28	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to An or \overline{OE} to Bn	V_{CC} = 4.5 V; see Figure 6	-	-	38	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to An or \overline{OE} to Bn	V_{CC} = 4.5 V; see Figure 6	-	-	38	ns
t _{THL} , t _{TLH}	output transition time	V _{CC} = 4.5 V; see <u>Figure 5</u>	-	-	15	ns
T _{amb} = -40	°C to +125 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	V_{CC} = 4.5 V; see <u>Figure 5</u>	-	-	33	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to An or \overline{OE} to Bn	V_{CC} = 4.5 V; see Figure 6	-	-	45	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to An or \overline{OE} to Bn	V_{CC} = 4.5 V; see Figure 6	-	-	45	ns
t _{THL} , t _{TLH}	output transition time	$V_{CC} = 4.5 V$; see Figure 5	-	-	18	ns

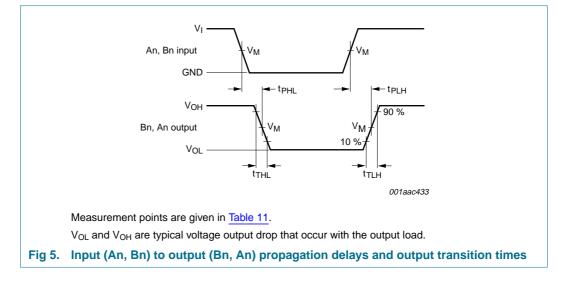
[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

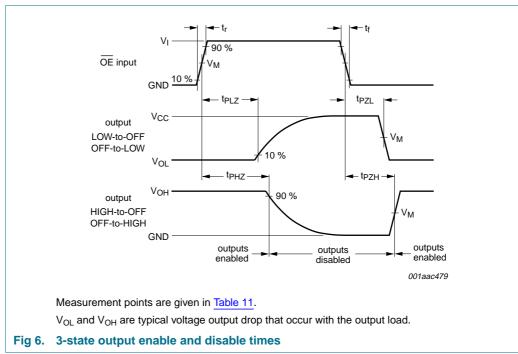
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 $f_i = input frequency in MHz;$

 f_0 = output frequency in MHz;

 C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

12. Waveforms

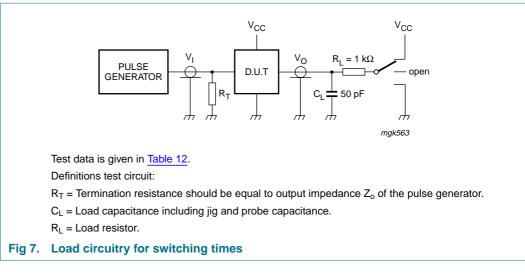
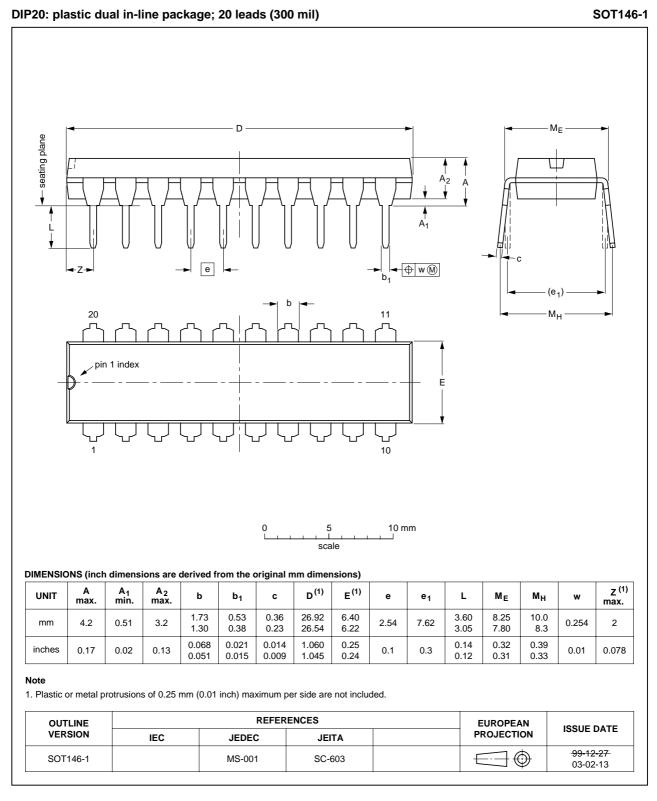


Table 11: Measurement points

Туре	Input	Output
	V _M	V _M
74HC245	0.5V _{CC}	0.5V _{CC}
74HCT245	1.3 V	1.3 V

74HC245; 74HCT245

Octal bus tranceiver; 3-state


Table 12: Test data

Туре	Input Test				
	VI	t _r , t _f	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC245	V _{CC}	6 ns	open	GND	V _{CC}
74HCT245	3 V	6 ns	open	GND	V _{CC}

74HC245; 74HCT245

Octal bus tranceiver; 3-state

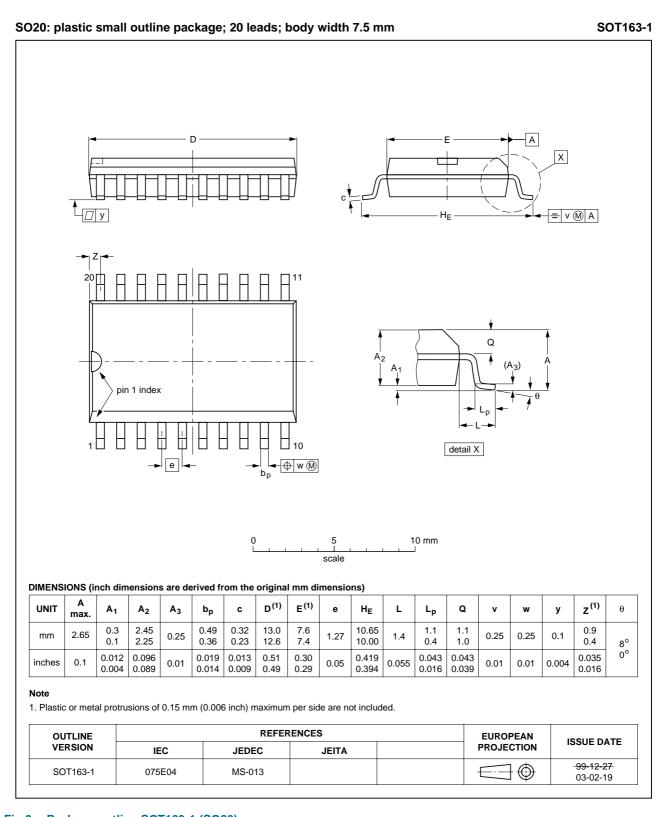

13. Package outline

Fig 8. Package outline SOT146-1 (DIP20)

9397 750 14502

Product data sheet

Fig 9. Package outline SOT163-1 (SO20)

9397 750 14502

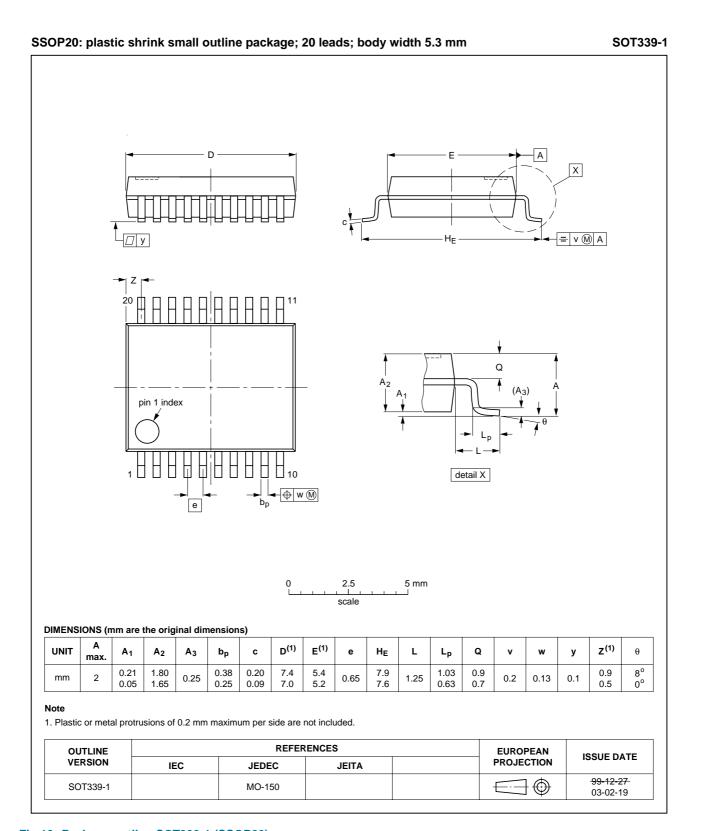


Fig 10. Package outline SOT339-1 (SSOP20)

9397 750 14502 Product data sheet

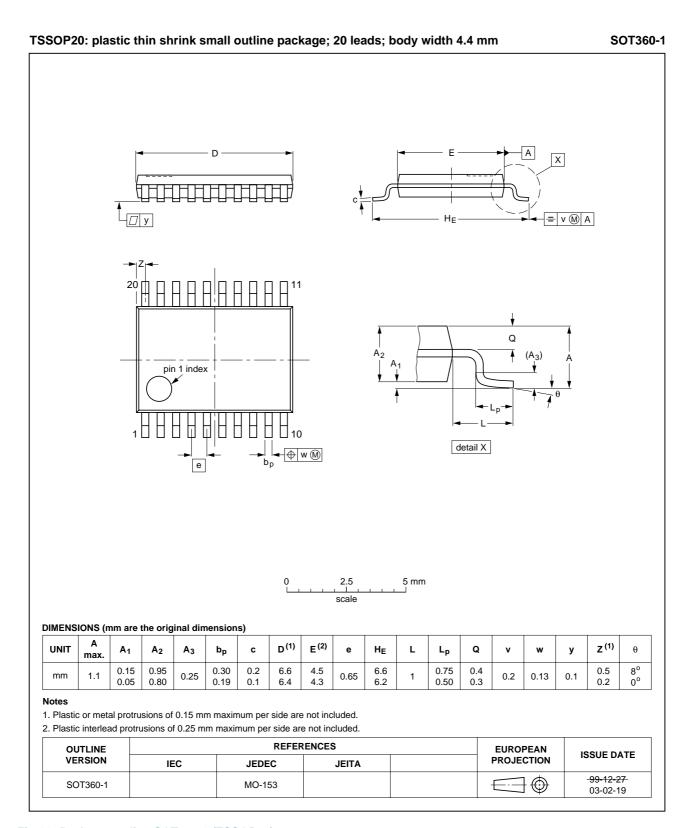
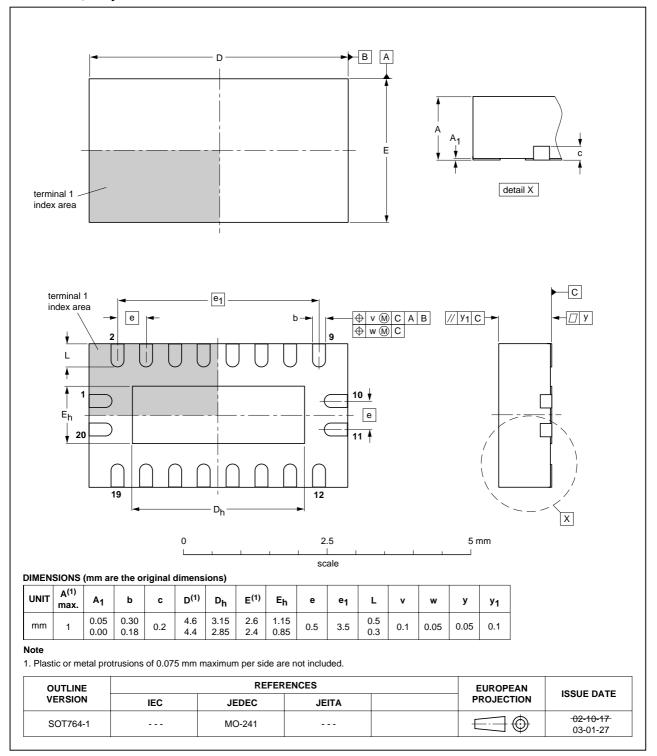



Fig 11. Package outline SOT360-1 (TSSOP20)

9397 750 14502

Product data sheet

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 12. Package outline SOT764-1 (DHVQFN20)

9397 750 14502

14. Revision history

ory				
Release date	Data sheet status	Change notice	Doc. number	Supersedes
20050131	Product data sheet	-	9397 750 14502	74HC_HCT245_CNV_2
		•		v presentation and
				and <u>Section 13 "Package</u>
19930930	Product specification	-	-	-
	Release date 20050131 • The form informati • <u>Section 4</u> outline" a	Release date Data sheet status 20050131 Product data sheet • The format of this data sheet is information standard of Philips 3 • Section 4 "Ordering information outline" are modified to include	Release date Data sheet status notice Change notice 20050131 Product data sheet - • The format of this data sheet is redesigned to information standard of Philips Semiconductor - • Section 4 "Ordering information", Section 6 "For outline" are modified to include the DHVQFN:	Release date Data sheet status notice Change notice Doc. number 20050131 Product data sheet - 9397 750 14502 • The format of this data sheet is redesigned to comply with the new information standard of Philips Semiconductors • 9397 750 14502 • Section 4 "Ordering information", Section 6 "Pinning information" a outline" are modified to include the DHVQFN20 package. •

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74HC245; 74HCT245

Octal bus tranceiver; 3-state

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 1
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description 4
7	Functional description 5
7.1	Function table 5
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 10
12	Waveforms 13
13	Package outline 15
14	Revision history 20
15	Data sheet status 21
16	Definitions 21
17	Disclaimers 21
18	Contact information 21

Downloaded from Arrow.com.

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 31 January 2005 Document number: 9397 750 14502

Published in The Netherlands