74LVC2952A

Octal registered transceiver with 5 V tolerant inputs/outputs; 3-state

Rev. 02 — 29 June 2004

Product data sheet

1. General description

The 74LVC2952A is a high-performance, low power, low voltage, Si-gate CMOS device superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3 V or 5 V devices. In 3-state operation, outputs can handle 5 V. These features allow the use of these devices as translators in a mixed 3.3 V and 5 V environment.

The 74LVC2952A is an octal non-inverting registered transceiver. Two 8-bit back-to-back registers store data flowing in both directions between two bidirectional buses. Data applied to the inputs is entered and stored on the rising edge of the clock (CPAB, CPBA) provided that the clock enable (CEAB, CEBA) input is LOW. The data is then present at the 3-state output buffers, but is only accessible when the output enable (OEAB, OEBA) input is LOW. Data flow from A inputs to B outputs is the same as for B inputs to A outputs.

2. Features

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Supply voltage range from 1.2 V to 3.6 V
- CMOS low-power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- Flow-through pin-out architecture
- Complies with JEDEC standard JESD8-B/JESD36
- ESD protection:
 - ◆ HBM EIA/JESD22-A114-B exceeds 2000 V
 - ◆ MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C.

3. Quick reference data

Table 1: Quick reference data $GND = 0 \ V; \ T_{amb} = 25 \ ^{\circ}C; \ t_r = t_f \le 2.5 \ ns.$

Symbol	Parameter	Conditions	М	in	Тур	Max	Unit
t _{PHL} , t _{PLH}	propagation delay CPAB, CPBA to An, Bn	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	-		3.6	-	ns
f _{max}	maximum clock frequency	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	-		250	-	MHz
Cı	input capacitance		-		5.0	-	pF
C _{I/O}	input/output capacitance		-		10.0	-	pF
C _{PD}	power dissipation capacitance per latch	outputs enabled; V _{CC} = 3.3 V	[1][2] _		15.0	-	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

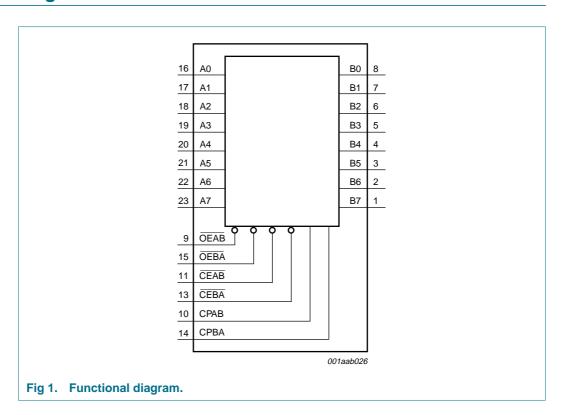
fo = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.


[2] The condition is $V_I = GND$ to V_{CC} .

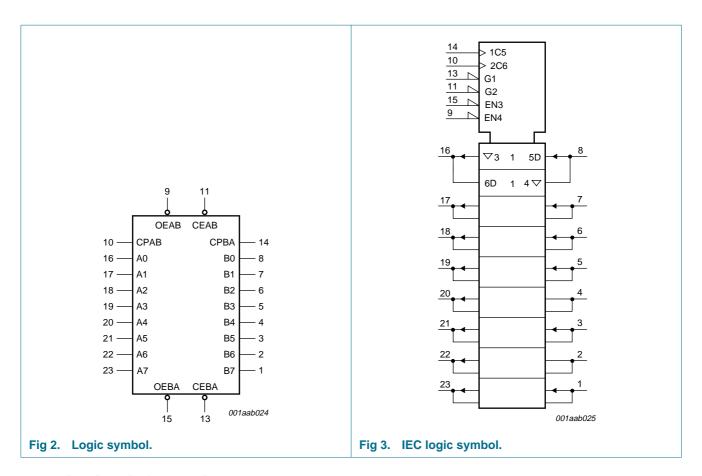
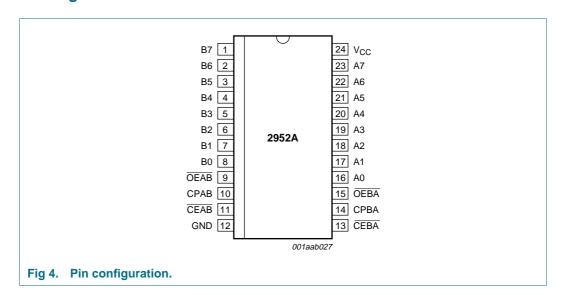

4. Ordering information

Table 2: Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74LVC2952AD	–40 °C to +125 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1					
74LVC2952ADB	–40 °C to +125 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1					
74LVC2952APW	–40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1					


5. Functional diagram

6. Pinning information

6.1 Pinning

9397 750 13251

6.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
B7	1	B data input/output
B6	2	B data input/output
B5	3	B data input/output
B4	4	B data input/output
B3	5	B data input/output
B2	6	B data input/output
B1	7	B data input/output
B0	8	B data input/output
OEAB	9	A to B output enable input (active LOW)
CPAB	10	A to B clock input (LOW-to-HIGH, edge-triggered)
CEAB	11	A to B clock enable input (active LOW)
GND	12	ground (0 V)
CEBA	13	B to A clock enable input (active LOW)
СРВА	14	B to A clock input (LOW-to-HIGH, edge-triggered)
OEBA	15	B to A output enable input (active LOW)
A0	16	A data input/output
A1	17	A data input/output
A2	18	A data input/output
A3	19	A data input/output
A4	20	A data input/output
A5	21	A data input/output
A6	22	A data input/output
A7	23	A data input/output
V _{CC}	24	supply voltage

7. Functional description

7.1 Function table

Table 4: Function table for register An or Bn [1]

Operating mode	Input	Input I				
	An or Bn	СРхх	CExx			
Hold data	X	X	Н	NC		
Load data	L	\uparrow	L	L		
Load data	Н	1	L	Н		

Table 5: Function table for output enable [1]

Operating mode	Input OExx	Internal latch	Output An or Bn
Disable outputs	Н	X	Z
Enable outputs	L	L	L
Enable outputs	L	Н	Н

^[1] H = HIGH voltage level;

8. Limiting values

Table 6: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	1	Min	Max	Unit
V_{CC}	supply voltage			-0.5	+6.5	V
I_{IK}	input diode current	V _I < 0 V		-	-50	mΑ
V_{I}	input voltage		<u>[1]</u>	-0.5	+6.5	V
I_{OK}	output diode current	$V_O > V_{CC}$ or $V_O < 0 V$		-	±50	mA
Vo	output voltage	output HIGH or LOW state	<u>[1]</u> .	-0.5	$V_{CC} + 0.5$	V
		output 3-state	<u>[1]</u> .	-0.5	+6.5	V
I _O	output source or sink current	$V_O = 0 V \text{ to } V_{CC}$		-	±50	mΑ
I_{CC} , I_{GND}	V _{CC} or GND current			-	±100	mΑ
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	power dissipation	T_{amb} = -40 °C to +125 °C	<u>[2]</u>	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

L = LOW voltage level;

Z = high-impedance OFF-state;

NC = no change;

X = don't care;

 $[\]uparrow$ = LOW-to-HIGH level transition.

^[2] For SO24 packages: above 70 °C the value of P_{tot} derates linearly with 5.5 mW/K. For T(SSOP)24 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

9. Recommended operating conditions

Table 7: Recommended operating conditions

		3				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage	for maximum speed performance	2.7	-	3.6	V
		for low-voltage applications	1.2	-	3.6	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	ge output HIGH or LOW state 0 - V_{CC}		V_{CC}	V	
		output 3-state	0	-	5.5	V
T _{amb}	operating ambient temperature	in free air	-40	-	+125	°C
t _r , t _f	input rise and fall	V _{CC} = 1.2 V to 2.7 V	0	-	20	ns/V
	times	V _{CC} = 2.7 V to 3.6 V	0	-	10	ns/V

10. Static characteristics

Table 8: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C [1]					
V_{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	V_{CC}	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	GND	V
		V _{CC} = 2.7 V to 3.6 V	-	-	8.0	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I_{O} = $-100~\mu A;~V_{CC}$ = 2.7 V to 3.6 V	$^{[2]}$ $V_{CC} - 0.2$	V _{CC}	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	$V_{CC} - 0.5$	-	-	V
		$I_O = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC} - 0.6$	· -	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC} - 0.8$	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I_O = 100 μ A; V_{CC} = 2.7 V to 3.6 V	[2]	GND	0.2	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
ILI	input leakage current	$V_I = 5.5 \text{ V or GND}$; $V_{CC} = 3.6 \text{ V}$	-	±0.1	±5	μΑ
l _{OZ}	3-state output OFF-state current	V_{I} = V_{IH} or V_{IL} ; V_{O} = 5.5 V or GND; V_{CC} = 3.6 V	[3]	0.1	±10	μΑ
l _{off}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	0.1	±10	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 3.6 \text{ V}$	-	0.1	10	μΑ
ΔI_{CC}	additional quiescent supply current per pin	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	[2] -	5	500	μΑ
Cı	input capacitance		-	5.0	-	pF
C _{I/O}	input/output capacitance		-	10.0	-	pF

9397 750 1325

 Table 8:
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	V_{CC}	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		I_{O} = $-100~\mu A;~V_{CC}$ = 2.7 V to 3.6 V	$V_{CC}-0.3$	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	$V_{CC}-0.65$	-	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC}-0.75$	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC}-1$	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		I_O = 100 μ A; V_{CC} = 2.7 V to 3.6 V	-	-	0.3	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.6	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.8	V
I _{LI}	input leakage current	$V_{I} = 5.5 \text{ V or GND}; V_{CC} = 3.6 \text{ V}$	-	-	±20	μΑ
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 5.5$ V or GND; $V_{CC} = 3.6$ V	[3] _	-	±20	μΑ
l _{off}	power-off leakage current	V_I or $V_O = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±20	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 3.6 \text{ V}$	-	-	40	μΑ
ΔI_{CC}	additional quiescent supply current per input pin	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	5000	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 9: Dynamic characteristics GND = 0 V; see <u>Figure 8</u> for test circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -4$	0 °C to +85 °C [1]					
t _{PHL} , t _{PLH}	propagation delay CPBA, CPAB to An and Bn	see <u>Figure 5</u>				
		V _{CC} = 1.2 V	-	16	-	ns
		$V_{CC} = 2.7 \text{ V}$	1.5	4.4	8.6	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	^[2] 1.5	3.6	7.6	ns
t _{PZH} , t _{PZL}	3-state output enable time	see Figure 7				
	OEBA, OEAB to An and Bn	V _{CC} = 1.2 V	-	16	-	ns
		$V_{CC} = 2.7 \text{ V}$	1.5	4.7	8.6	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2] 1.0	3.9	7.6	ns

9397 750 13251

^[2] These typical values are measured at V_{CC} = 3.3 V.

^[3] For transceivers, the parameter I_{OZ} includes the input leakage current.

 Table 9:
 Dynamic characteristics ...continued

GND = 0 V; see Figure 8 for test circuit.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{PHZ} , t _{PLZ}	3-state output disable time	see Figure 7					
	OEBA, OEAB to An and Bn	V _{CC} = 1.2 V		-	8	-	ns
		V _{CC} = 2.7 V		1.5	3.8	7.6	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	1.5	3.4	6.6	ns
t _W	clock pulse width HIGH or LOW CPAB or CPBA	see Figure 5					
		V _{CC} = 1.2 V		-	-	-	ns
		V _{CC} = 2.7 V		3.0	1.5	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	3.0	1.5	-	ns
t _{su}	set-up time HIGH or LOW	see Figure 6					
	An, Bn to CPAB, CPBA	V _{CC} = 1.2 V		-	-	-	ns
		V _{CC} = 2.7 V		1.7	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	+1.3	-0.5	-	ns
	set-up time HIGH or LOW	see Figure 6					
	CEAB, CEBA to CPAB, CPBA	V _{CC} = 1.2 V		-	-	-	ns
		V _{CC} = 2.7 V		1.3	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	+1.1	-0.5	-	ns
t _h	hold time An, Bn to CPAB, CPBA	see Figure 6					
		V _{CC} = 1.2 V		-	-	-	ns
		V _{CC} = 2.7 V		1.5	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[2]	1.5	0.6	-	ns
	hold time CEAB, CEBA to CPAB, CPBA	see Figure 6					
		V _{CC} = 1.2 V		-	-	-	ns
		V _{CC} = 2.7 V		1.4	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[2]	+1.1	-0.6	-	ns
f _{max}	maximum clock pulse frequency	see Figure 5					
	, , ,	V _{CC} = 1.2 V		-	-	-	MHz
		V _{CC} = 2.7 V		150	-	-	MHz
		V _{CC} = 3.0 V to 3.6 V	[2]	150	250	-	MHz
t _{sk(0)}	skew		[3]	-	-	1.0	ns
C _{PD}	power dissipation capacitance per latch	outputs enabled; V _{CC} = 3.3 V	[4] [5]	-	15.0	-	pF
	0 °C to +125 °C						•
	propagation delay CPBA, CPAB to An, Bn	see Figure 5					
		V _{CC} = 1.2 V		-	-	-	ns
		V _{CC} = 2.7 V		1.5	-	11	ns
		V _{CC} = 3.0 V to 3.6 V		1.5	-	9.5	ns
t _{PZH} , t _{PZL}	3-state output enable time	see Figure 7					
1 ZII7 *FZL	OEBA, OEAB to An, Bn	V _{CC} = 1.2 V		-	_	-	ns
	, 						
		V _{CC} = 2.7 V		1.5	-	11	ns

9397 750 13251

 Table 9:
 Dynamic characteristics ...continued

GND = 0 V; see Figure 8 for test circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ} , t _{PLZ}	3-state output disable time	see Figure 7				
	OEBA, OEAB to An, Bn	V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.7 V	1.5	-	9.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.5	-	8.5	ns
t _W	clock pulse width HIGH or LOW CPAB or CPBA	see Figure 5				
		V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.7 V	3.0	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	3.0	-	-	ns
t _{su}	set-up time HIGH or LOW	see Figure 6				
	An, Bn to CPAB, CPBA	V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.7 V	1.7	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.3	-	-	ns
	set-up time HIGH or LOW	see Figure 6				
	CEAB, CEBA to CPAB, CPBA	V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.7 V	1.3	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.1	-	-	ns
t _h	hold time An, Bn to CPAB, CPBA	see Figure 6				
		V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.7 V	1.5	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.5	-	-	ns
	hold time CEAB, CEBA to CPAB, CPBA	see Figure 6				
		V _{CC} = 1.2 V	-	-	-	ns
		V _{CC} = 2.7 V	1.4	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.1	-	-	ns
f _{max}	maximum clock pulse frequency	see Figure 5				
		V _{CC} = 1.2 V	-	-	-	MHz
		V _{CC} = 2.7 V	150	-	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	150	-	-	MHz
t _{sk(0)}	skew		[3]	-	1.5	ns

- [1] All typical values are measured at T_{amb} = 25 °C.
- [2] These typical values are measured at V_{CC} = 3.3 V.
- [3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

[5] The condition is $V_I = GND$ to V_{CC} .

9397 750 13251

12. Waveforms

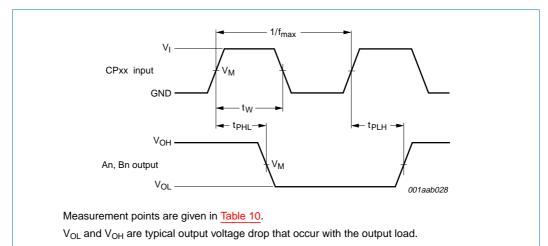


Fig 5. Clock input (CPBA, CPAB) to output (An, Bn) propagation delays, the clock pulse width and the maximum clock pulse frequency.

Table 10: Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
< 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
≥ 2.7 V	1.5 V	1.5 V

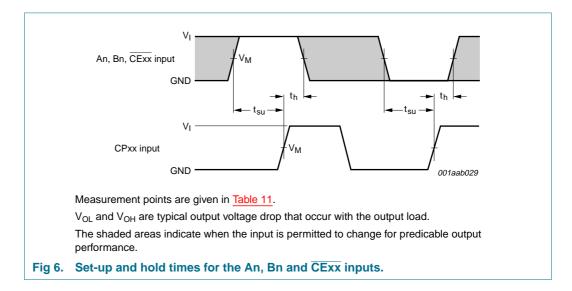
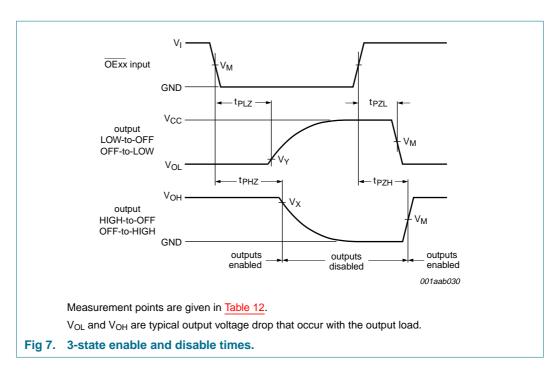



Table 11: Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
< 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
≥ 2.7 V	1.5 V	1.5 V

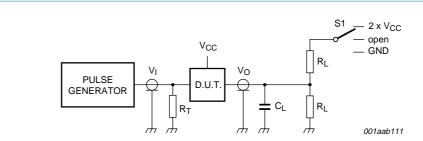

9397 750 13251

Table 12: Measurement points

Supply voltage	Input	Output							
V _{CC}	V _M	V _M	V _X	V _Y					
< 2.7 V	$0.5 \times V_{\text{CC}}$	$0.5 \times V_{\text{CC}}$	V_{OL} + 0.1 × V_{CC}	$V_{OH} - 0.1 \times V_{CC}$					
≥ 2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V					

Product data sheet

Test data is given in Table 13.

Definitions test circuit:

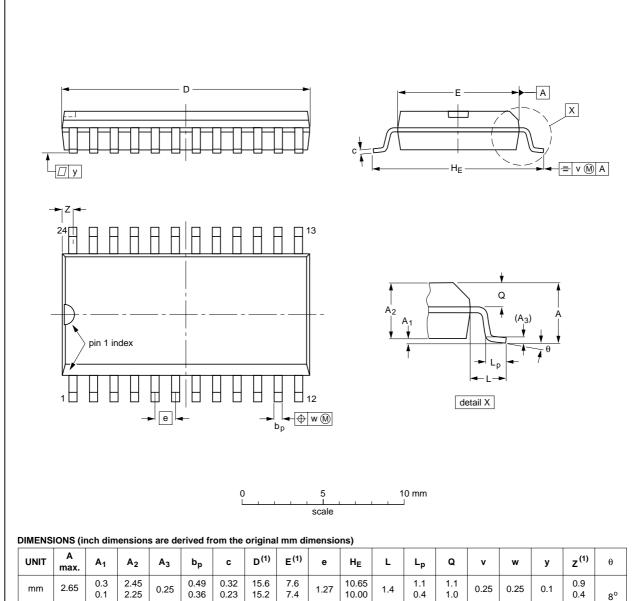
 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

Fig 8. Load circuitry for switching times.

Table 13: Test data


Supply voltage	Input		Load		S1				
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}		
1.2 V	V_{CC}	≤ 2.5 ns	50 pF	500 Ω[1]	open	GND	$2\times V_{CC}$		
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	GND	$2\times V_{CC}$		
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	$2\times V_{CC}$		

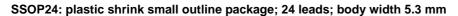
[1] The circuit performs better when R_L = 1000 Ω .

13. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	Q	>	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°


Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

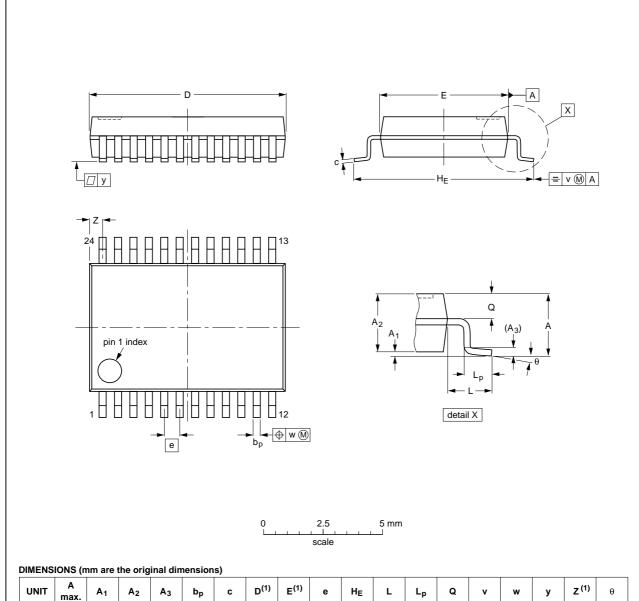

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT137-1	075E05	MS-013			99-12-27 03-02-19

Fig 9. Package outline SO24.

9397 750 13251

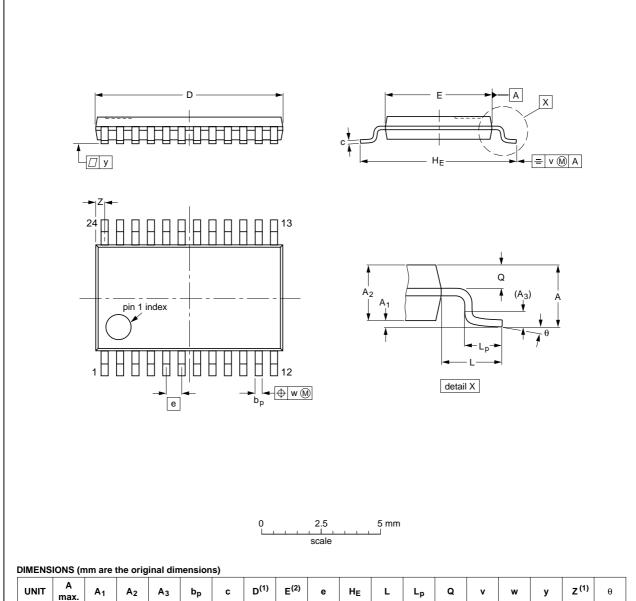
SOT340-1

-	/IIVILI40	mile to to the original differences																		
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ	
	mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	8.4 8.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.8 0.4	8° 0°	

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT340-1		MO-150			99-12-27 03-02-19


Fig 10. Package outline SSOP24.

9397 750 13251

Downloaded from Arrow.com.

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT355-1		MO-153				99-12-27 03-02-19
					'	

Fig 11. Package outline TSSOP24.

9397 750 13251

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

14. Revision history

Table 14: Revision history

Document ID	Release date	Data sheet status	Change notice	Order number	Supersedes				
74LVC2952A_2	20040629	Product data sheet	-	9397 750 13251	74LVC2952A_1				
Modifications:		t of this data sheet has b n standard of Philips Ser	•	comply with the nev	v presentation and				
	• <u>Table 1</u> : ch	Table 1: changed various values							
	• <u>Table 8</u> : ch	nanged maximum value	of I_{OZ} from $\pm 5~\mu A$ to	±10 μA					
	• <u>Table 8</u> : ad	dded values for T _{amb} = -	40 °C to +125 °C						
	• Table 9: ch	nanged various values							
	• <u>Table 9</u> : ad	dded values for T _{amb} = -	40 °C to +125 °C.						
74LVC2952A_1	19980729	Product specification	-	9397 750 04524	-				

Product data sheet

17 of 19

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

9397 750 13251

Philips Semiconductors

Octal registered transceiver

19. Contents

1	General description
2	Features 1
3	Quick reference data
4	Ordering information
5	Functional diagram 3
6	Pinning information4
6.1	Pinning
6.2	Pin description
7	Functional description 6
7.1	Function table 6
8	Limiting values 6
9	Recommended operating conditions 7
10	Static characteristics 7
11	Dynamic characteristics 8
12	Waveforms
13	Package outline
14	Revision history
15	Data sheet status
16	Definitions
17	Disclaimers
18	Contact information 18

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 29 June 2004 Document order number: 9397 750 13251

