INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT166 8-bit parallel-in/serial-out shift register

Product specification
File under Integrated Circuits, IC06

December 1990

Philips Semiconductors

74HC/HCT166

FEATURES

- · Synchronous parallel-to-serial applications
- Synchronous serial data input for easy expansion
- · Clock enable for "do nothing" mode
- · Asynchronous master reset
- For asynchronous parallel data load see "165"
- · Output capability: standard
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT166 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT166 are 8-bit shift registers which have a fully synchronous serial or parallel data entry selected by

an active LOW parallel enable (\overline{PE}) input. When \overline{PE} is LOW one set-up time prior to the LOW-to-HIGH clock transition, parallel data is entered into the register. When \overline{PE} is HIGH, data is entered into the internal bit position Q_0 from serial data input (D_s) , and the remaining bits are shifted one place to the right $(Q_0 \to Q_1 \to Q_2,$ etc.) with each positive-going clock transition.

This feature allows parallel-to-serial converter expansion by tying the Q_7 output to the D_s input of the succeeding stage.

The clock input is a gated-OR structure which allows one input to be used as an active LOW clock enable (\overline{CE}) input. The pin assignment for the CP and \overline{CE} inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of input \overline{CE} should only take place while CP is HIGH for predictable operation. A LOW on the master reset (\overline{MR}) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a LOW state.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIBUL	PARAMETER	CONDITIONS	нс	нст	ONII	
t _{PHL} / t _{PLH}	propagation delay <u>CP</u> to Q ₇ MR to Q ₇	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	15 14	20 19	ns ns	
f _{max}	maximum clock frequency		63	50	MHz	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	41	41	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

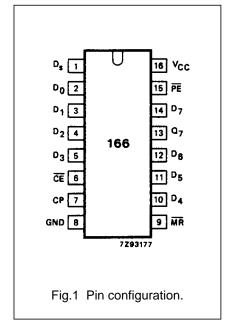
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

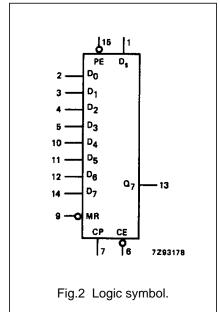
C_L = output load capacitance in pF

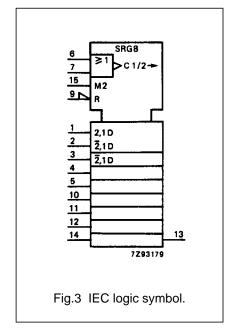
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

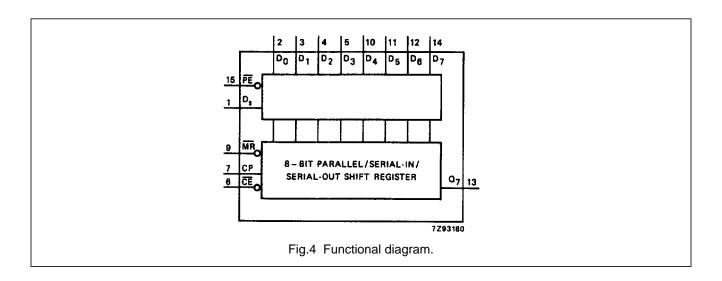

See "74HC/HCT/HCU/HCMOS Logic Package Information".


8-bit parallel-in/serial-out shift register


74HC/HCT166

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	Ds	serial data input
2, 3, 4, 5, 10, 11, 12, 14	D ₀ to D ₇	parallel data inputs
6	CE	clock enable input (active LOW)
7	СР	clock input (LOW-to-HIGH edge-triggered)
8	GND	ground (0 V)
9	MR	asynchronous master reset (active LOW)
13	Q ₇	serial output from the last stage
15	PE	parallel enable input (active LOW)
16	V _{CC}	positive supply voltage



8-bit parallel-in/serial-out shift register

74HC/HCT166

FUNCTION TABLE

OPERATING MODES			INPU	TS		Q _n R	REGISTER	OUTPUT	
OPERATING MODES	PE	CE	СР	Ds	D ₀ -D ₇	Q_0	Q ₁ -Q ₆	Q ₇	
parallel load	l I	I I	↑	X X	l - l h - h	L H	L - L H - H	L H	
serial shift	h h	l I	↑	l h	X - X X - X	L H	q ₀ - q ₅ q ₀ - q ₅	9 ₆	
hold "do nothing"	Х	h	Х	Х	X - X	q_0	q ₁ - q ₆	q ₇	

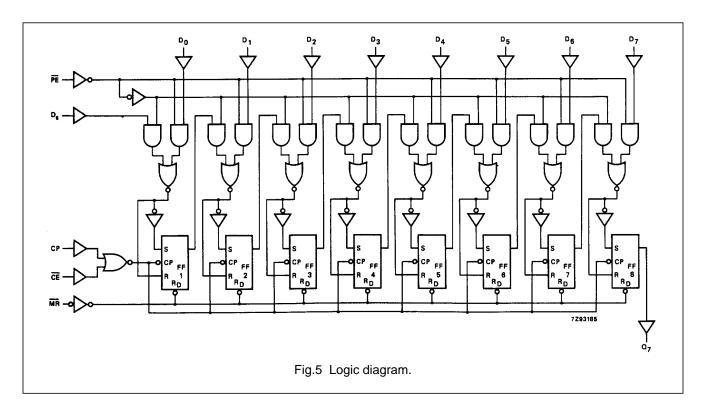
Notes

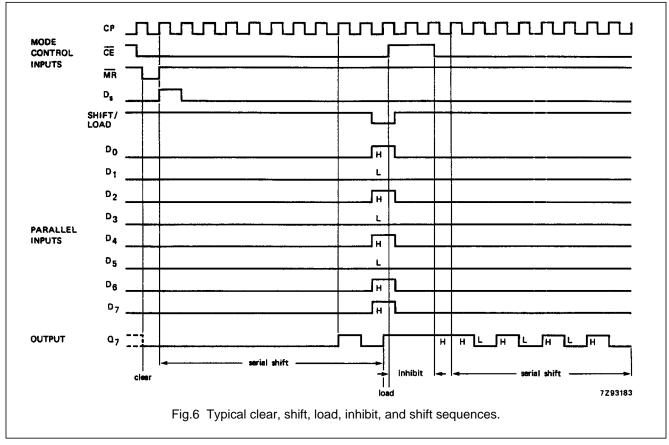
1. H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition


 ${\bf q}$ = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition


X = don't care

↑ = LOW-to-HIGH CP transition

8-bit parallel-in/serial-out shift register

74HC/HCT166

74HC/HCT166

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS	
SYMBOL	PARAMETER				74HC	UNIT		WAVEFORMS			
STIVIBUL		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(1)	
t _{PHL} / t _{PLH}	propagation delay CP to Q ₇		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHL}	propagation delay MR to Q ₇		47 17 14	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.7
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _W	master reset pulse width LOW	100 20 17	25 9 7		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.8
t _{rem}	removal time MR to CP	0 0 0	-19 -7 -6		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time D _n , CE to CP	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.9
t _{su}	set-up time PE to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.8
t _h	hold time D _n , CE to CP	2 2 2	-8 -3 -2		2 2 2		2 2 2		ns	2.0 4.5 6.0	Fig.8
t _h	hold time PE to CP	0 0 0	-28 -10 -8		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.9
f _{max}	maximum clock pulse frequency	6.0 30 35	19 57 68		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.7

December 1990

8-bit parallel-in/serial-out shift register

74HC/HCT166

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D ₀ to D ₇	0.35
Ds	0.35
CP	0.80
CP CE	0.80
MR	0.40
PE	0.60

8-bit parallel-in/serial-out shift register

74HC/HCT166

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS	
SYMBOL	PARAMETER	74HCT									WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay CP to Q ₇		23	40		50		60	ns	4.5	Fig.7
t _{PHL}	propagation delay MR to Q ₇		22	40		50		60	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.7
t _W	clock pulse width HIGH or LOW	20	9		25		30		ns	4.5	Fig.7
t _W	master reset pulse width LOW	25	11		31		38		ns	4.5	Fig.8
t _{rem}	removal time MR to CP	0	-7		0		0		ns	4.5	Fig.8
t _{su}	set-up time D _n , CE to CP	16	8		20		24		ns	4.5	Fig.9
t _{su}	set-up time PE to CP	30	15		38		45		ns	4.5	Fig.8
t _h	hold time D _n , $\overline{\text{CE}}$ to CP	0	-3		0		0		ns	4.5	Fig.9
t _h	hold time PE to CP	0	-13		0		0		ns	4.5	Fig.9
f _{max}	maximum clock pulse width	25	45		20		17		MHz	4.5	Fig.7

74HC/HCT166

AC WAVEFORMS

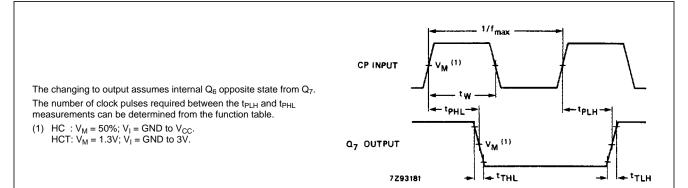


Fig.7 Waveforms showing the clock (CP) to output (Q₇) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

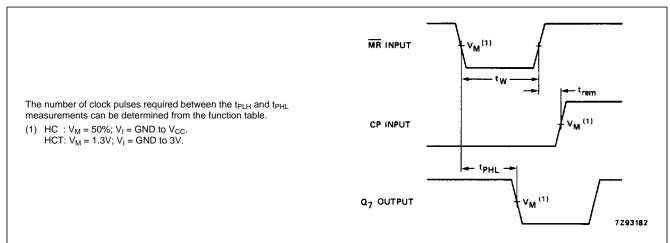
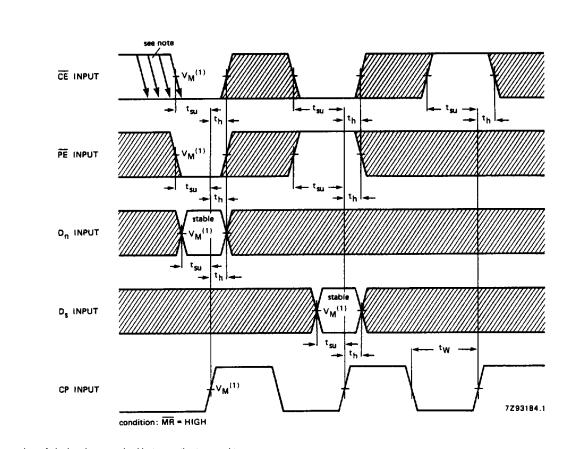



Fig.8 Waveforms showing the master reset (MR) pulse width, the master reset to output (Q₇) propagation delay and the master reset to clock (CP) removal time.

74HC/HCT166

The number of clock pulses required between the $t_{\rm PLH}$ and $t_{\rm PHL}$ measurements can be determined from the function table.

 $\overline{\text{CE}}$ may change only from HIGH-to-LOW while CP is LOW.

The shaded areas indicate when the input is permitted to change for predictable output performance.

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3V$; $V_I = GND$ to 3V.

Fig.9 Waveforms showing the set-up and hold times from the serial data input (D_s), the data inputs (D_n), the clock enable input (LOW \overline{CE}), the clock enable input \overline{CE} and the parallel enable input to the clock (CP).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".