

. eescale Semiconductor

Technical Data

Document Number: AFIC10275N Rev. 0, 4/2015

√RoHS

RF LDMOS Wideband Integrated Power Amplifiers

The avionics AFIC10275N is a 2-stage RFIC designed for transponder applications operating from 978 to 1090 MHz. These devices are suitable for use in pulse applications, including Mode S transponders used for ADS-B.

Narrowband Performance: (50 Vdc, T_A = 25°C)

Frequency	Signal Type	P _{out}	G _{ps}	2nd Stage Eff.
(MHz)		(W)	(dB)	(%)
1090 (1)	Pulse (128 μsec, 10% Duty Cycle)	250 Peak	32.1	61.4

Typical Wideband Performance (50 Vdc, T_A = 25°C)

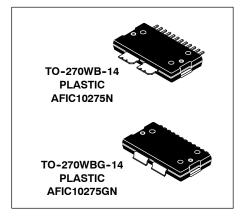
Frequency (MHz) ⁽²⁾	Signal Type	P _{out} (W)	G _{ps} (dB)	2nd Stage Eff. (%)
978	Pulse	250 Peak	32.6	61.0
1030	(128 μsec, 10% Duty Cycle)		32.5	59.1
1090			30.1	60.6

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
1090 (1)	Pulse (128 µsec, 10% Duty Cycle)	> 10:1 at all Phase Angles	0.345 W Peak (3 dB Overdrive)	50	No Device Degradation

- 1. Measured in 1090 MHz narrowband test circuit.
- 2. Measured in 978 1090 MHz broadband reference circuit.

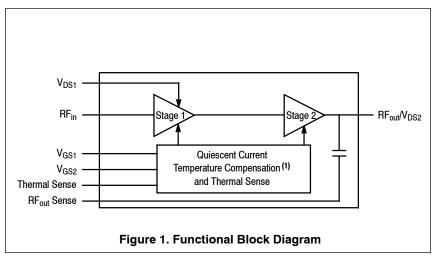
Features

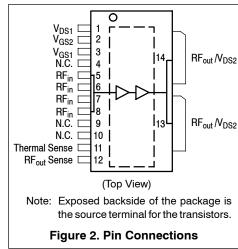

- Characterized from 978 to 1090 MHz
- On-Chip Input (50 Ohm) and Interstage Matching
- Single Ended
- Integrated ESD Protection
- Low Thermal Resistance
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (3)

Typical Applications

- · Air Traffic Control Systems (ATC), Including Ground-based Secondary Radars
- · Mode S Transponders, Including:
 - Traffic Alert and Collision Avoidance Systems (TCAS)
 - Automatic Dependent Surveillance-Broadcast In and Out (ADS-B) Using, e.g., 1090 Extended Squitter or Universal Access Transponder (UAT)
 - Mode S ELM Interrogators

AFIC10275N AFIC10275GN


978–1090 MHz, 250 W PEAK, 50 V AIRFAST RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS



3. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1977 and AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +100	Vdc
Gate-Source Voltage	V _{GS}	−6 , +10	Vdc
Operating Voltage	V_{DD}	50, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to 150	°C
Operating Junction Temperature Range (2,3)	TJ	-40 to 225	°C
Input Power	P _{in}	25	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (3,4)	Unit
Thermal Resistance, Junction to Case	$Z_{ heta JC}$		°C/W
Case Temperature 81°C, 250 W Peak, 128 μsec Pulse Width, 10% Duty Cycle, 1090 MHz			
Stage 1, 50 Vdc, I _{DQ1} = 80 mA		1.1	
Stage 2, 50 Vdc, I _{DQ2} = 150 mA		0.15	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	Class 2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	Class A, passes 150 V
Charge Device Model (per JESD22-C101)	Class II, passes 200 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

- 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.freescale.com/rf and search for AN1977 and AN1987.
- 2. Continuous use at maximum temperature will affect MTTF.
- 3. MTTF calculator available at http://www.freescale.com/rf/calculators.
- 4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics			•		•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 55 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 - On Characteristics			•		•
Gate Threshold Voltage ($V_{DS} = 10 \text{ Vdc}, I_D = 52 \mu\text{Adc}$)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _{DQ1} = 80 mAdc, Measured in Functional Test)	V _{GG(Q)}	6.0	7.0	8.0	Vdc
Stage 2 - Off Characteristics					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 55 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 - On Characteristics					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 528 \mu\text{Adc})$	V _{GS(th)}	1.3	1.8	2.3	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _{DQ2} = 150 mAdc, Measured in Functional Test)	V _{GG(Q)}	2.2	2.7	3.2	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.6 Adc)	V _{DS(on)}	_	0.25	_	Vdc

Power Gain	G _{ps}	30.5	32.1	34.0	dB
2nd Stage Drain Efficiency	η_{D}	57.0	61.4	_	%

$\textbf{Load Mismatch/Ruggedness} \text{ (In Freescale Test Fixture, 50 ohm system) } \textbf{I}_{DQ1} = 80 \text{ mA, } \textbf{I}_{DQ2} = 150 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
1090	Pulse (128 μsec, 10% Duty Cycle)	> 10:1 at all Phase Angles	0.345 W Peak (3 dB Overdrive)	50	No Device Degradation

Table 6. Ordering Information

Device	Tape and Reel Information	Package
AFIC10275NR1	D4 Outility 500 Units 44 years Tong Width 40 inch Deal	TO-270WB-14
AFIC10275GNR1	R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel	TO-270WBG-14

^{1.} Part internally input matched.

^{2.} Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

TYPICAL CHARACTERISTICS

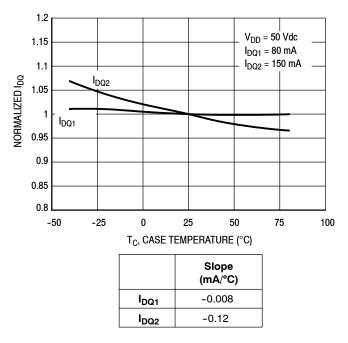
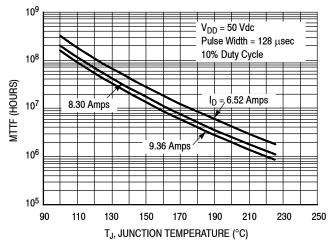



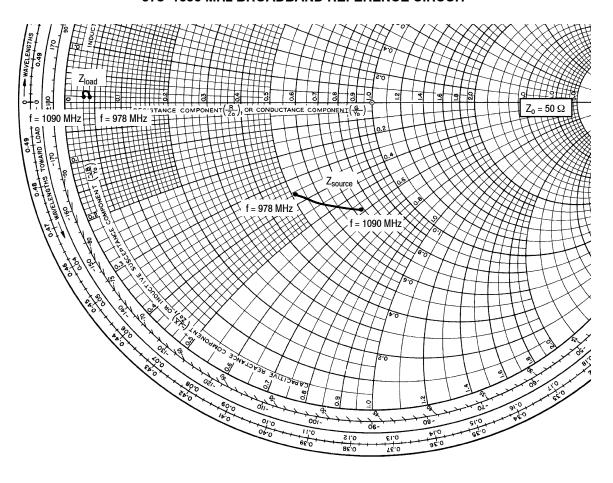
Figure 3. Normalized I_{DQ} versus Case Temperature

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at: http://www.freescale.com/rf/calculators

Figure 4. MTTF versus Junction Temperature - Pulse

978-1090 MHz BROADBAND REFERENCE CIRCUIT — 1.97" x 2.76" (5.0 cm x 7.0 cm)


Table 7. 978–1090 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) $V_{DD} = 50 \text{ Vdc}$, $I_{DQ1} = 80 \text{ mA}$, $I_{DQ2} = 150 \text{ mA}$, $P_{out} = 250 \text{ W}$ Peak, 128 μ sec Pulse Width, 10% Duty Cycle

Frequency (MHz)	G _{ps} (dB)	2nd Stage Eff. (%)	Signal Type	P _{out} (W)
978	32.6	61.0	Pulse	250
1030	32.5	59.1	Pulse	250
1090	30.1	60.6	Pulse	250

Note: For additional information on the 978-1090 broadband reference circuit, contact your local Freescale sales office or Freescale authorized distributor.

978-1090 MHz BROADBAND REFERENCE CIRCUIT

f MHz	$Z_{source} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Z _{load} Ω
978	26.0 - j18	2.2 + j0.05
1030	30.0 - j23	1.5 + j0.90
1090	36.7 - j29	1.3 + j0.60

Z_{source} = Test circuit input impedance as measured from gate to ground.

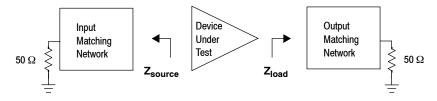
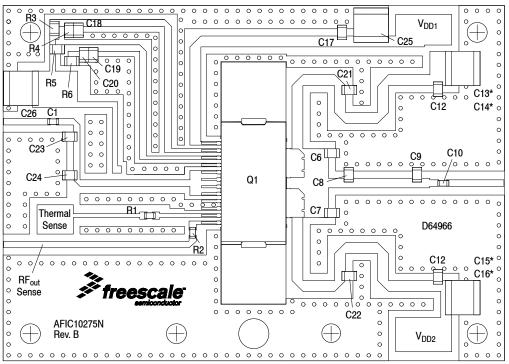



Figure 5. Broadband Series Equivalent Source and Load Impedance — 978–1090 MHz

1090 MHz REFERENCE CIRCUIT — 1.97" x 2.76" (5.0 cm x 7.0 cm)

^{*} Stacked Capacitors

Note: Component numbers C2, C3, C4, and C5 are not used.

Figure 6. AFIC10275N Reference Component Layout — 1090 MHz

Table 8. AFIC10275N Reference Circuit Component Designations and Values — 1090 MHz

Part	Description	Part Number	Manufacturer
C1, C10	56 pF Chip Capacitors	ATC600F560JT250XT	ATC
C11, C12, C17, C18, C19	51 pF Chip Capacitors	ATC600F510JT250XT	ATC
C6, C7	10 pF Chip Capacitors	ATC600F100JT250XT	ATC
C8	6.8 pF Chip Capacitor	ATC600F6R8BT250XT	ATC
C9	2.4 pF Chip Capacitor	ATC600F2R4BT250XT	ATC
C13, C14, C15, C16, C25, C26	10 μF Chip Capacitors	C5750X7S2A106M	TDK
C20	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata
C21, C22	8.2 pF Chip Capacitors	ATC600F8R2BT250XT	ATC
C23	2.7 pF Chip Capacitor	ATC600F2R7BT250XT	ATC
C24	1.5 pF Chip Capacitor	ATC600F1R5BT250XT	ATC
R1	13.7 kΩ, 1/16 W Chip Resistor	RR0816P-1372-B-T5-14C	Susumu
R2	1.2 kΩ, 1/16 W Chip Resistor	RR0816P-122-B-T5	Susumu
Q1	RF Power LDMOS Transistor	AFIC10275NR1	Freescale
PCB	Taconic RF60A 0.025", $\epsilon_{r} = 6.15$	D64966	MTL

TYPICAL CHARACTERISTICS — 1090 MHz REFERENCE CIRCUIT

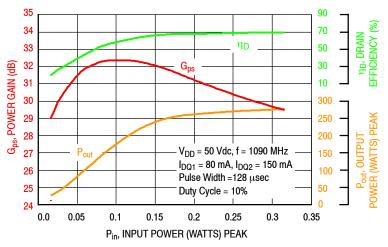


Figure 7. Power Gain, Drain Efficiency and Output
Power versus Input Power

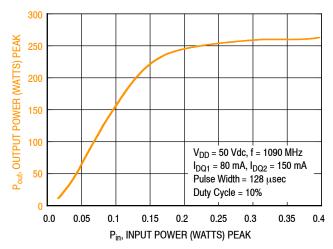


Figure 8. Output Power versus Input Power

f MHz	$Z_{source} \ \ \Omega$	Z _{load} Ω
1090	36.7 - j29	1.3 + j0.60

Z_{source} = Test circuit input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

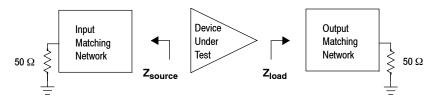


Figure 9. Series Equivalent Source and Load Impedance — 1090 MHz

1090 MHz NARROWBAND PRODUCTION TEST FIXTURE

Table 9. 1090 MHz Narrowband Performance $^{(1,2)}$ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ1} = 80 mA, I_{DQ2} = 150 mA, P_{out} = 250 W Peak (25 W Avg.), f = 1090 MHz, 128 μ sec Pulse Width, 10% Duty Cycle

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain	G _{ps}	30.5	32.1	34.0	dB
2nd Stage Drain Efficiency	η_{D}	57.0	61.4	_	%

^{1.} Part internally input matched.

^{2.} Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

1090 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4" x 5" (10.2 cm x 12.7 cm)

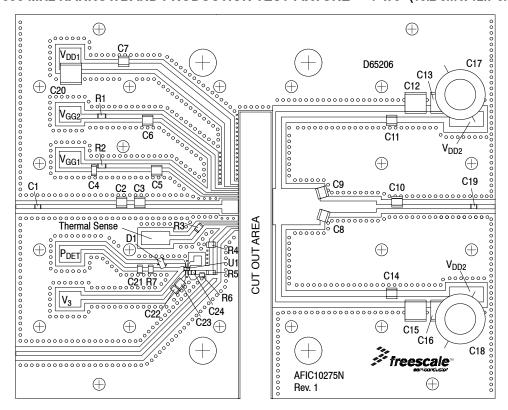


Figure 10. AFIC10275N Narrowband Test Circuit Component Layout — 1090 MHz

Table 10. AFIC10275N Narrowband Test Circuit Component Designations and Values — 1090 MHz

Part	Description	Part Number	Manufacturer
C1	47 pF Chip Capacitor	ATC600F470JT250XT	ATC
C2	2.7 pF Chip Capacitor	ATC100B2R7CT500XT	ATC
C3	2.0 pF Chip Capacitor	ATC100B2R0BW500XT	ATC
C4	1 μF Chip Capacitor	GRM31MR71H105KA88L	Murata
C5, C6, C7, C11, C14	43 pF Chip Capacitors	ATC100B430JT500XT	ATC
C8, C9	10 pF Chip Capacitors	ATC100B100JT500XT	ATC
C10	4.7 pF Chip Capacitor	ATC100B4R7CT500XT	ATC
C12, C13, C15, C16, C20	10 μF Chip Capacitors	C5750X752A106M230KB	TDK
C17, C18	220 μF, 100 V Electrolytic Capacitors	MCGPR100V227M16X26-RH	Multicomp
C19	30 pF Chip Capacitor	ATC600F300JT250XT	ATC
C21	10 nF Chip Capacitor	C0805C103J5RAC-TU	Kemet
C22	0.1 μF Chip Capacitor	C1206C104K1RAC-TU	Kemet
C23	47 pF Chip Capacitor	ATC800B470JT500XT	ATC
C24	1000 pF Chip Capacitor	C2012X7R2E102K085AA	TDK
D1	Diode Schottky RF SGL 70 V SOT-23	HSMS-2800-TR1G	Avago Technologies
R1	2.2 kΩ, 1/8 W Chip Resistor	CRCW08052K20JNEA	Vishay
R2	0 Ω, 1 A Chip Resistor	CWCR08050000Z0EA	Vishay
R3	1 kΩ, 1/10 W Chip Resistor	RR1220P-102-D	Susumu
R4	50 Ω, 10 W Chip Resistor	060120A25X50-2	Anaren
R5	15 kΩ, 1/10 W Chip Resistor	RR1220P-153-D	Susumu
R6	51 Ω, 1/8 W Chip Resistor	RK73B2ATTD510J	KOA Speer
R7	470 kΩ, 1/4 W Chip Resistor	CRCW1206470KFKEA	Vishay
U1	IC Detector RF PWR 3GHZ SC70-6	LT5534ESC6#TRMPBF	Linear Technology
PCB	Rogers, RO4350B, 0.020", $\varepsilon_r = 3.66$	D65206	MTL

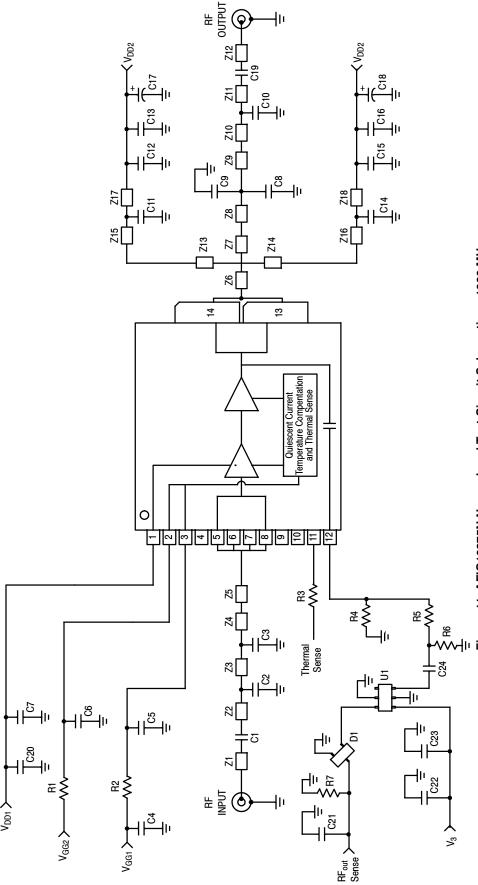


Figure 11. AFIC10275N Narrowband Test Circuit Schematic — 1090 MHz

Table 11. AFIC10275N Narrowband Test Circuit Microstrips — 1090 MHz

Microstrip	Description	Microstrip	Description	
Z1	0.202" × 0.043" Microstrip	9Z	0.030" × 0.378" Microstrip	
Z2	0.849" × 0.043" Microstrip	Z2	0.058" × 0.378" Microstrip	
Z3	0.188" × 0.043" Microstrip	Z8	0.404" × 0.378" Microstrip	
Z4	0.857" × 0.043" Microstrip	6Z	0.587" × 0.118" Microstrip	
Z5	0.170" × 0.140" Microstrip	Z10	0.215" × 0.044" Microstrip	
 11.00.01	**			,

0.774" × 0.044" Microstrip
0.803" × 0.058" Microstrip
0.025" × 0.485" Microstrip
1.150" × 0.058" Microstrip
0.249" × 0.058" Microstrip

Description

Microstrip

Z11 Z12 Z13, Z14 Z15,* Z16*

Z17, Z18

^{*} Line length include microstrip bends

TYPICAL CHARACTERISTICS — 1090 MHz NARROWBAND PRODUCTION TEST FIXTURE

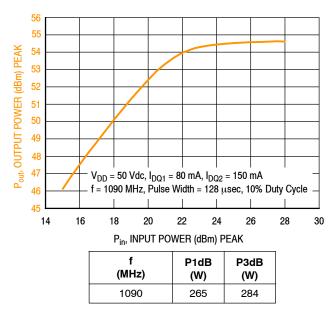


Figure 12. Output Power versus Input Power

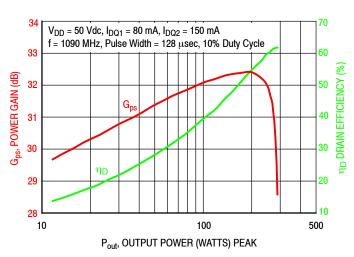


Figure 13. Power Gain and Drain Efficiency versus Output Power and Quiescent Current

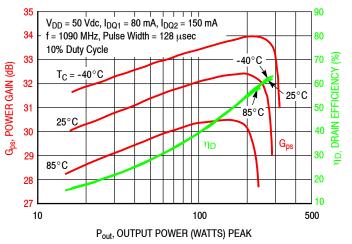


Figure 14. Power Gain and Drain Efficiency versus Output Power

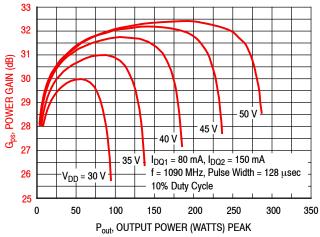


Figure 15. Power Gain versus Output Power and Drain-Source Voltage

1090 MHz NARROWBAND PRODUCTION TEST FIXTURE

f	Z _{source}	Z _{load}
MHz	Ω	Ω
1090	13.6 – j24.4	

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

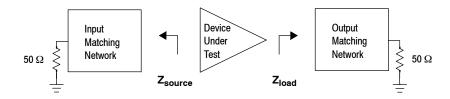
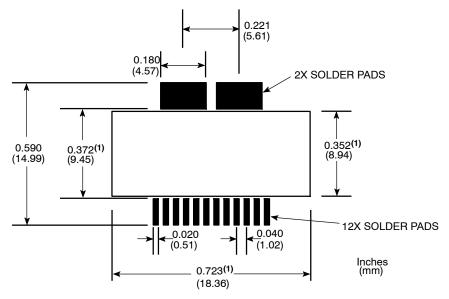



Figure 16. Narrowband Series Equivalent Source and Load Impedance — 1090 MHz

1. Slot dimensions are minimum dimensions and exclude milling tolerances.

Figure 17. PCB Pad Layout for TO-270WB-14

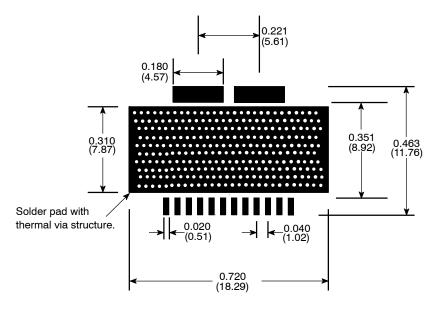
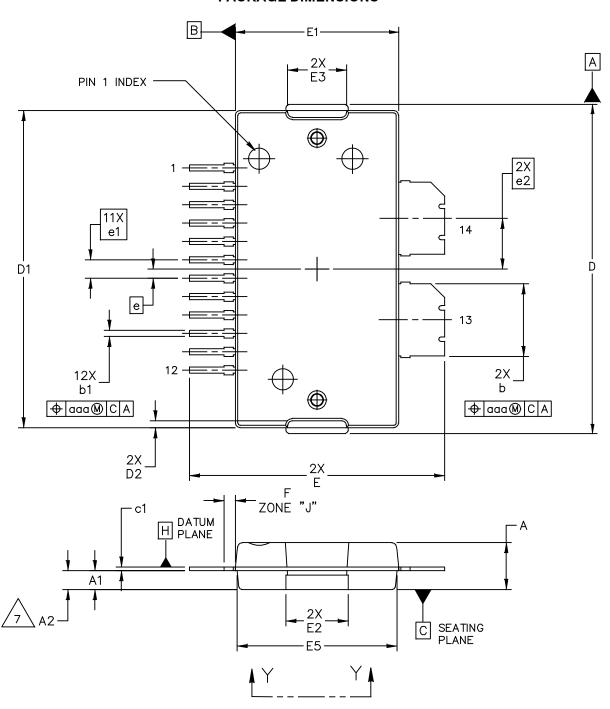
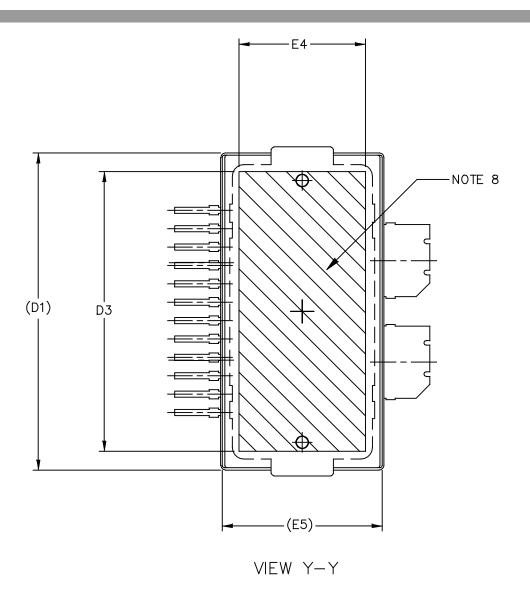



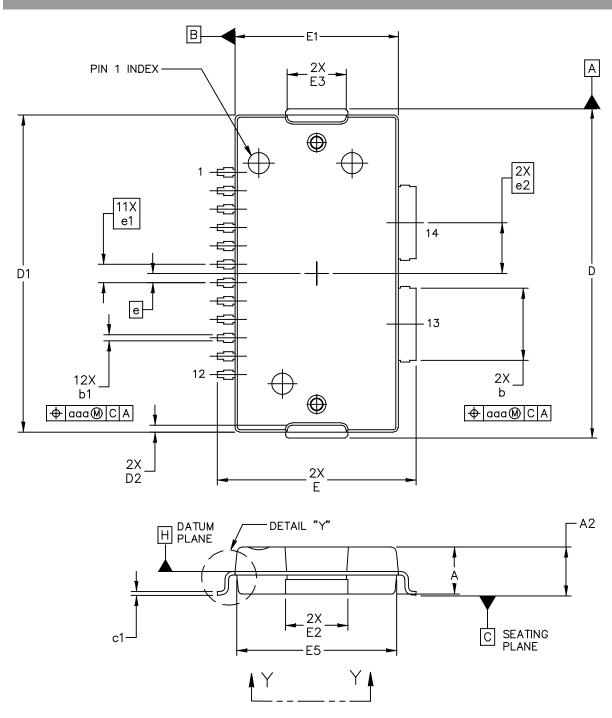
Figure 18. PCB Pad Layout for TO-270WBG-14



PACKAGE DIMENSIONS

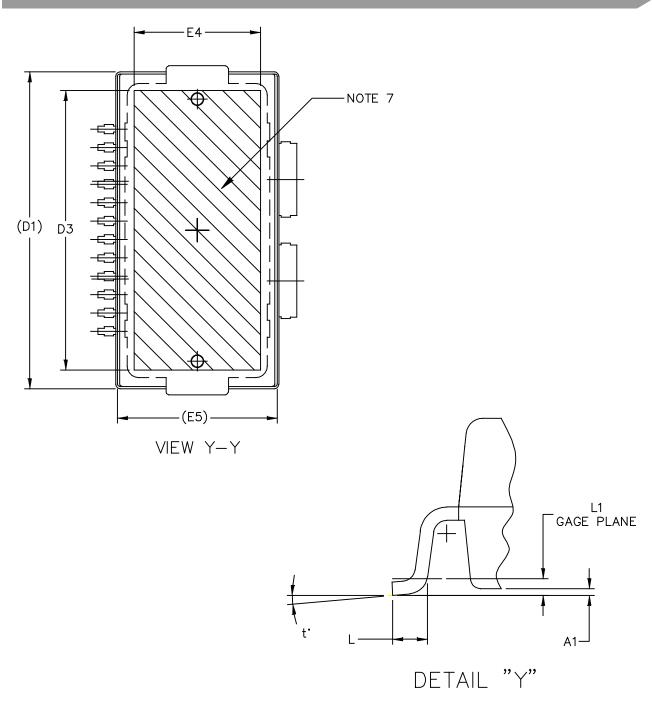
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO: 98ASA10650D REV: A			
TO-270 WIDE BODY 14 LEAD		CASE NUMBER: 1618-02 19 JUN 2007		
IT LEAD	STANDARD: NON-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO: 98ASA10650D		REV: A
TO-270 WIDE BOD	CASE NUMBER: 1618-02 19 JUN 2007		
	STANDARD: NON-JEDEC		



NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.


	IN	CH	МІ	LLIMETER			INCH	М	ILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	F .025 BSC 0.64 B		.025 BSC		0.64 BSC	
A1	.039	.043	0.99	1.09	b	.154	.160	3.9	1 4.06	
A2	.040	.042	1.02	1.07	b1	.010	.016	0.25	5 0.41	
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28	
D1	.688	.692	17.48	17.58	е	.c	20 BSC	(0.51 BSC	
D2	.011	.019	0.28	0.48	e1	.040 BSC		1.02 BSC		
D3	.600		15.24		e2	.1	105 BSC	2	.807 BSC	
E	.551	.559	14	14.2						
E1	.353	.357	8.97	9.07	aaa		.004		.10	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35						
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© FREESCALE SEMICONDUCTOR, INC. MECHANIC, ALL RIGHTS RESERVED.				L OUT	LINE	PRINT VERS	SION NC	T TO SCALE		
TITLE:	TITLE:				DOCU	MENT NO): 98ASA10650I	D	REV: A	
TO-270 WIDE BODY				CASE	NUMBER	R: 1618–02		19 JUN 2007		
	14 LEAD				STAN	DARD: NO	N-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BOD	DOCUMENT NO: 98ASA10653D		REV: A
14 LEAD	CASE NUMBER: 1621-02 19 JUN 2007		
GULL WING	STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BOD	DOCUMENT NO: 98ASA10653D		REV: A	
14 LEAD	CASE NUMBER: 1621-02 19 JUN 2007			
GULL WING	STANDARD: NON-JEDEC			

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	CH	MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	.010 BSC		0.25 BSC		
A2	.099	.110	2.51	2.79	b	.154	.160	3.9 ⁻	4.06	
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	0.41	
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28	
D2	.011	.019	0.28	0.48	е	.020 BSC		0.51 BSC		
D3	.600		15.24		e1	.0	.040 BSC		1.02 BSC	
E	.429	.437	10.9	11.1	e2	.1105 BSC		2.807 BSC		
E1	.353	.357	8.97	9.07	t	2.	8.	2.	8.	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35	aaa	.004			.10	
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA					L OUTLINE PRINT VERSION NO			T TO SCALE		
TITLE: TO-270 WIDE BODY					DOCUMENT NO: 98ASA10653D			REV: A		
14 LEAD						CASE NUMBER: 1621-02			19 JUN 2007	
GULL WING						STANDARD: NON-JEDEC				

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for HIgh Power RF Devices in Plastic Packages
- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

White Paper

• RFPLASTICWP: Designing with Plastic RF Power Transistors

Software

- Electromigration MTTF Calculator
- RF High Power Model

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
0	Apr. 2015	Initial Release of Data Sheet	

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2015 Freescale Semiconductor, Inc.

