88W8987 SDS

2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution

Rev. 3 — 15 September 2021

Product short data sheet

1 Product overview

The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution, specifically designed to support the speed, reliability, and quality requirements of next generation Very High Throughput (VHT) products.

The System-on-Chip (SoC) provides both simultaneous and independent operation of the following:

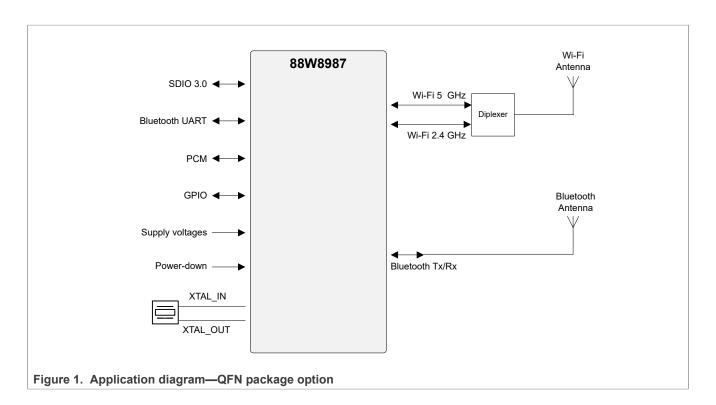
- IEEE 802.11ac (Wave 2), 1x1 with data rates up to MCS9 (433 Mbit/s)
- Bluetooth 5.2 (includes Bluetooth Low Energy (LE))

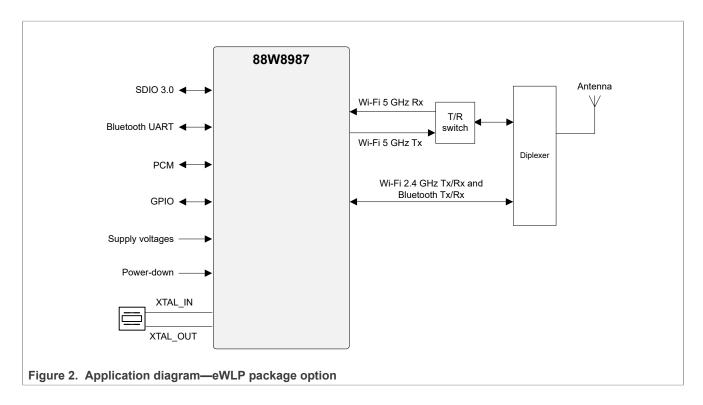
The SoC also provides:

- Bluetooth Classic and Bluetooth LE dual (Smart Ready) operation
- Wi-Fi indoor location positioning (802.11mc)

For security, the device supports high performance 802.11i security standards through implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), AES/Galois/Counter Mode Protocol (GCMP), AES/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms.

For video, voice, and multimedia applications, 802.11e Quality of Service (QoS) is supported. The device also supports 802.11h Dynamic Frequency Selection (DFS) for detecting radar pulses when operating in the 5 GHz range.


Host interfaces include SDIO 3.0 and high-speed UART interfaces for connecting Wi-Fi and Bluetooth technologies to the host processor.


The device is designed with two front-end configurations to accommodate Wi-Fi and Bluetooth on either separate or shared paths:

- 2-antenna configuration—1x1 Wi-Fi and Bluetooth on separate paths (QFN)
- 1-antenna configuration—1x1 Wi-Fi and Bluetooth on shared paths (eWLP)

The following figures show the application diagrams for each package option.

1.1 Applications

- Wi-Fi and Bluetooth enabled smart phones and tablets
- · Personal computing systems including notebooks and ultrabooks
- · Wireless home audio and video entertainment systems
- · Mobile routers and Internet of Things (IoT) gateways

1.2 Wi-Fi key features

- Support 802.11ac/n/a/g/b
- Dual band: 2.4 GHz and 5 GHz
- Up to MCS9 data rates
- 20/40/80 MHz channel bandwidth
- · Security: AES, WAPI

1.3 Bluetooth key features

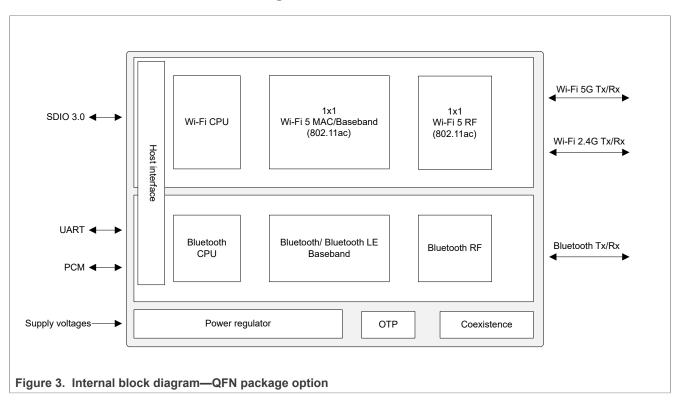
- Bluetooth 5.2 support
- PCM audio interface
- · Security: AES

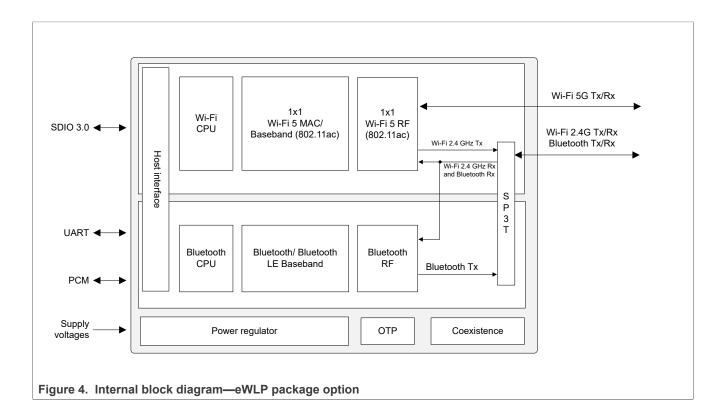
1.4 Host interfaces

Wi-Fi and Bluetooth host interface options

Wi-Fi	Bluetooth
SDIO 3.0	UART
SDIO 3.0	SDIO 3.0

1.5 Operating characteristics


• Supply voltage: 2.2V, 1.8V, and 1.1V


Operating temperature
 Extended: -30 to 85°C
 Industrial: -40 to 85°C

1.6 General features

- · Package options
 - 68-pin 8x8 mm QFN with wettable flanks
 - 83-bump 4.6x4.2 mm eWLP
- · Power management
 - Low power dissipation
 - Optional lower power operation with external sleep clock
 - Sleep and standby modes for low-power operation
- Independent ARM-based Wi-Fi and Bluetooth CPUs
- Supports reference clock signal from external crystal or external crystal oscillator
- Memory
 - Internal SRAM
 - Boot ROM
 - One Time Programmable (OTP) memory to store the MAC address and calibration data
- Peripheral interfaces
 - GPIO interface (up to 21)

1.7 Internal block diagram

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

2 Ordering information

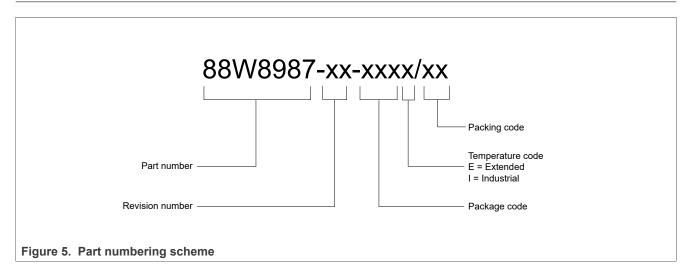


Table 1. Part order codes

Part order code	Package type	Packing
88W8987-A2-NYEE/AK	68-pin HVQFN - 8 x 8 x 0.85 mm, with 0.4 mm pitch	Tray
88W8987-A2-NYEE/AZ	68-pin HVQFN - 8 x 8 x 0.85 mm, with 0.4 mm pitch	Tape and reel
88W8987-A2-NYEI/AK	68-pin HVQFN - 8 x 8 x 0.85 mm, with 0.4 mm pitch	Tray
88W8987-A2-NYEI/AZ	68-pin HVQFN - 8 x 8 x 0.85 mm, with 0.4 mm pitch	Tape and reel
88W8987-A2-EAHE/AZ	83-terminal eWLP - 4.6 x 4.2 x 0.75 mm, with 0.4 mm pitch	Tape and reel

3 Wi-Fi subsystem

3.1 IEEE 802.11 standards

- 802.11 data rates of 1 and 2 Mbit/s
- 802.11b data rates of 5.5 and 11 Mbit/s
- 802.11a/g data rates 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s for multimedia content transmission
- 802.11g/b performance enhancements
- 802.11ac / 802.11n with maximum data rates up to 86.7 Mbit/s (20 MHz channel), 200 Mbit/s (40 MHz channel), 433 Mbit/s (80 MHz channel)
- 802.11d international roaming
- 802.11e quality of service
- 802.11h transmit power control
- 802.11h DFS radar pulse detection
- 802.11i enhanced security
- 802.11k radio resource measurement
- 802.11mc precise indoor location positioning
- 802.11n block acknowledgment extension
- 802.11r fast hand-off for AP roaming
- 802.11u Hotspot 2.0 (STA mode only)
- 802.11v TIM frame transmission/reception
- 802.11w protected management frames
- Fully supports clients (stations) implementing IEEE Power Save mode

Downloaded from Arrow.com.

3.2 Wi-Fi MAC

- Simultaneous peer-to-peer and Infrastructure Modes
- RTS/CTS for operation under DCF
- Hardware filtering of 32 multicast addresses and duplicate frame detection for up to 32 unicast addresses
- On-chip Tx and Rx FIFO for maximum throughput
- Open System and Shared Key Authentication services
- A-MPDU Rx (de-aggregation) and Tx (aggregation) (supports 802.11ac single-MPDU A-MPDU)
- 20/40/80 MHz coexistence
- Reduced Inter-Frame Spacing (RIFS) receive
- · Management information base counters
- · Radio resource measurement counters
- · Quality of service queues
- Block acknowledgment extension
- Dynamic frequency selection
- Beamforming
 - 802.11ac Explicit Beamformee, supports immediate feedback generation using 802.11ac compressed steering matrix feedback
 - 802.11ac Multi-User Beamformee
 - 802.11n Explicit Beamformee, supports immediate feedback generation using uncompress and compress steering matrix or delayed feedback of all feedback types
- TIM frame transmission/reception
- Multiple-BSS/Station
- Transmit rate adaptation
- · Transmit power control
- · Long and short preamble generation on a frame-by-frame basis for 802.11b frames
- · Mobile hotspot

Downloaded from Arrow.com.

3.3 Wi-Fi baseband

- 802.11ac (on-chip RF radio)
- Backward compatibility with legacy 802.11n/a/g/b technology
- Simultaneous Wi-Fi and Bluetooth receive in single-antenna mode (eWLP only)
- PHY data rates up to 433 Mbit/s
- 20 MHz bandwidth/channel, 40 MHz bandwidth/channel, upper/lower 20 MHz packets in 40 MHz channel, 20 MHz duplicate legacy packets in 40 MHz channel mode operation
- 80 MHz bandwidth/channel, 4 positions of 20 MHz packets in 80 MHz channel, upper/ lower 40 MHz packets in 80 MHz channel, 20 MHz quadruplicate legacy packets in 80 MHz channel mode operation
- Modulation and Coding Scheme (MCS)
 - 802.11ac-MCS 0~9 Nsts = 1
 - 802.11n-MCS 0~7 and MCS 32 (duplicate 6 Mbit/s)
- Dynamic frequency selection (radar detection)
 - Enhanced radar detection for long and short pulse radar
 - Enhanced AGC scheme for DFS channel
 - Japan DFS requirements for W53 and W56 frequency bands
- · Radio resource measurement
- Optional 802.11ac and 802.11n features:
 - 20/40/80 MHz coexistence with middle-packet detection (GI detection) for enhanced CCA
 - 1 spatial stream STBC reception
 - LDPC transmission and reception for both 802.11n and 802.11ac
 - 256 QAM (MCS 8, 9) modulation, optional support for 802.11ac MCS 9 in 20 MHz using LDPC
 - Short guard interval
 - RIFS on receive path for 802.11n packets
 - 802.11n greenfield Tx/Rx
 - Explicit beamformee support
 - 802.11ac multi-user beamformee
 - MU-PPDUs (receive)
- Wi-Fi indoor locationing (802.11mc)
- · Power save features

3.4 Wi-Fi radio

- Integrated direct-conversion radio
- 20, 40, and 80 MHz channel bandwidths
- Shared Wi-Fi/Bluetooth receive input scheme for 2.4 GHz band (eWLP only)

Wi-Fi Rx path

- · Direct conversion architecture eliminates need for external SAW filter
- On-chip gain selectable LNA with optimized noise figure and power consumption
- · High dynamic range AGC function in receive mode

Wi-Fi Tx path

- · Internal PA with power control
- Optimized Tx gain distribution for linearity and noise performance

Wi-Fi local oscillator

- Fractional-N for multiple reference clock support
- · Fine channel step

3.5 Wi-Fi encryption

- Advanced Encryption Standard (AES) / Counter-Mode/CBC-MAC Protocol (CCMP)
- Advanced Encryption Standard (AES) /Cipher-Based Message Authentication Code (CMAC)
- Advanced Encryption Standard (AES) / Galois/Counter Mode Protocol (GCMP)
- WLAN Authentication and Privacy Infrastructure (WAPI)

3.6 Wi-Fi host interfaces

 SDIO 3.0 device interface (4-bit SDIO and 1-bit SDIO) transfer modes at full clock range up to 208 MHz

4 Bluetooth subsystem

4.1 2.4 GHz Bluetooth Tx/Rx

- Bluetooth 5.2
- · Bluetooth Class 2
- Bluetooth Class 1
- Single-ended, shared Tx/Rx path for Bluetooth (QFN package option)
- Simultaneous Wi-Fi and Bluetooth receive in single-antenna mode (eWLP package option)
- PCM interface for voice applications
- Baseband and radio BDR and EDR packet types—1 Mbit/s (GFSK), 2 Mbit/s (π /4-DQPSK), and 3 Mbit/s (8DPSK)
- Fully functional Bluetooth baseband—AFH, forward error correction, header error control, access code correlation, CRC, encryption bit stream generation, and whitening
- Adaptive Frequency Hopping (AFH) using Packet Error Rate (PER)
- · Interlaced scan for faster connection setup
- Simultaneous active ACL connection support
- · Automatic ACL packet type selection
- Full master and slave piconet support
- Scatternet support
- · Standard SDIO and UART HCI transport layer
- · HCI layer to integrate with profile stack
- SCO/eSCO links with hardware accelerated audio signal processing and hardware supported PPEC algorithm for speech quality improvement
- All standard SCO/eSCO voice coding
- · All standard pairing, authentication, link key, and encryption operations
- Standard Bluetooth power saving mechanisms (sniff modes, and sniff sub-rating)
- Enhanced Power Control (EPC)
- Channel Quality Driven Data Rate (CQDDR)
- Wideband Speech (WBS) support (1 WBS link)
- · Encryption (AES) support

4.2 Bluetooth Low Energy (LE)

- · Broadcaster, Observer, Central, and Peripheral roles
- Supports link layer topology to be master and slave (connects up to 16 links)
- Wi-Fi/Bluetooth coexistence protocol support
- · Shared RF with BDR/EDR
- Encryption (AES) support
- Intelligent Adaptive Frequency Hopping (AFH)
- Bluetooth LE Privacy 1.2
- Bluetooth LE Secure Connection
- Bluetooth LE Data Length Extension
- Bluetooth LE Advertising Extension
- 2 Mbit/s Bluetooth LE

88W8987 SDS

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2021. All rights reserved

4.3 Bluetooth host interfaces

- SDIO 3.0
- High-speed UART

4.4 Coexistence

• Internal coexistence arbitration for Wi-Fi/Bluetooth

4.5 PCM interface

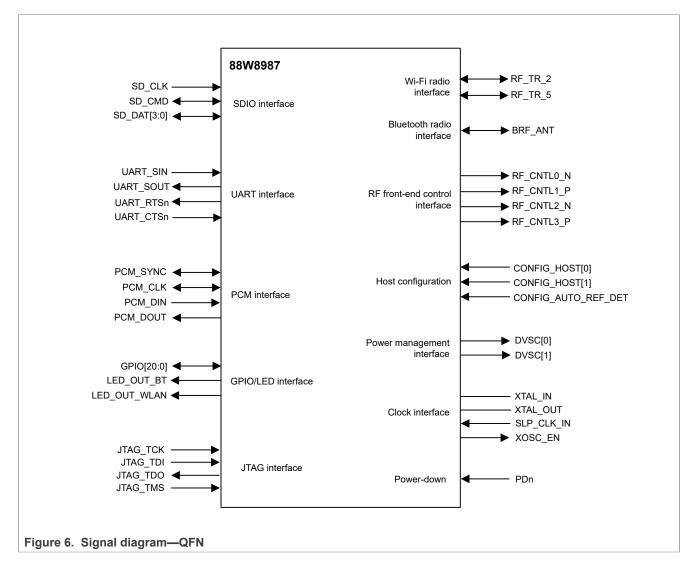
- · Master or slave mode
- PCM bit width size of 8 bits or 16 bits
- Up to 4 slots with configurable bit width and start positions
- PCM short frame and long frame synchronization
- Tri-state PCM interface capability

88W8987 SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

¹ In PCM Master mode, PCM long frame synchronization is 1 clock wide. In PCM Slave mode, PCM Master's long frame synchronization pattern is supported.

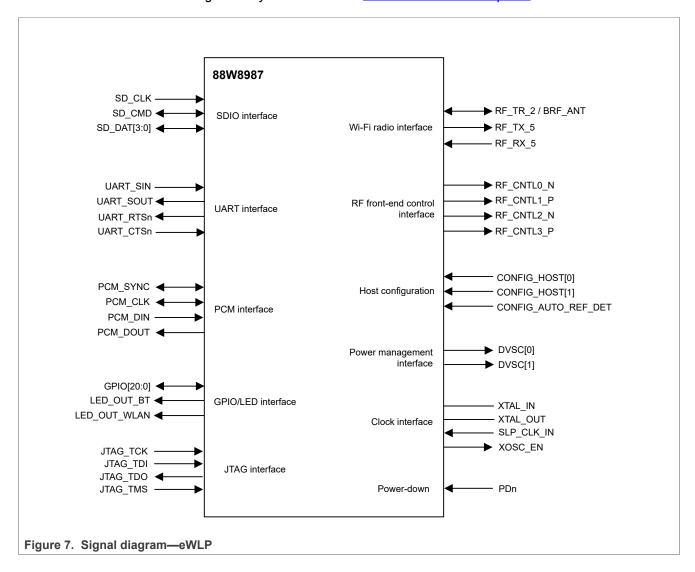

5 Pin information

5.1 Signal diagrams

5.1.1 Signal diagram for QFN package option

Figure 6 shows the signals for the QFN package of the device.

Note: Signals may be muxed. See Section 5.5 "Pin description".

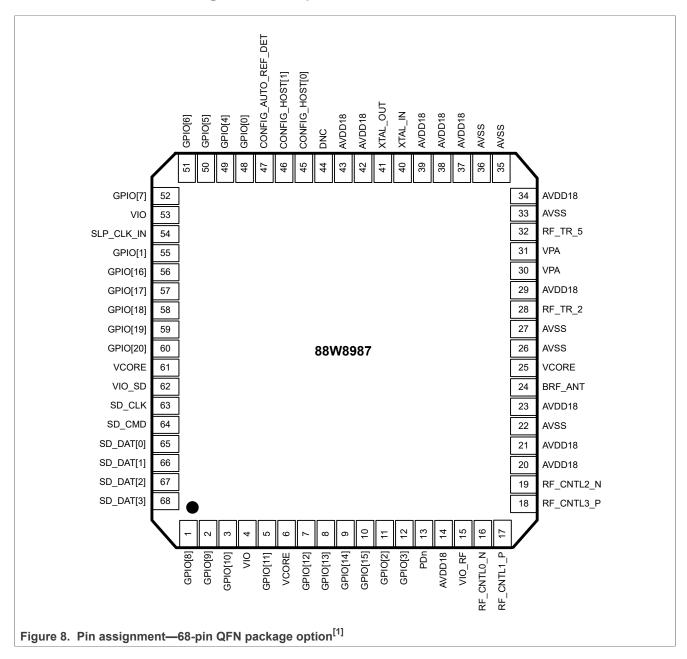


Downloaded from Arrow.com.

5.1.2 Signal diagram for eWLP package option

Figure 7 shows the signals for eWLP package option.

Note: Signals may be muxed. See Section 5.5 "Pin description".



5.2 Pin types

Table 2. Pin types

Pin type	Description
I/O	Digital input/output
I	Digital input
0	Digital output
A, I	Analog input
A, O	Analog output
A, I/O	Analog input/output
NC	No connect
DNC	Do not connect
Power	Power
Ground	Ground

5.3 Pin assignment—68-pin QFN

[1] EPAD on pin 69.

5.3.1 Pin list by number

The following table shows the pin list sorted by pin number.

Table 3. Pin list by number

Pin number	Pin name	Power	Туре
1	GPIO[8]	VIO	I/O
2	GPIO[9]	VIO	I/O
3	GPIO[10]	VIO	I/O
4	VIO		Power
5	GPIO[11]	VIO	I/O
6	VCORE		Power
7	GPIO[12]	VIO	I/O
8	GPIO[13]	VIO	I/O
9	GPIO[14]	VIO	I/O
10	GPIO[15]	VIO	I/O
11	GPIO[2]	VIO	I/O
12	GPIO[3]	VIO	I/O
13	PDn	AVDD18	I
14	AVDD18		Power
15	VIO_RF		Power
16	RF_CNTL0_N	VIO_RF	0
17	RF_CNTL1_P	VIO_RF	0
18	RF_CTLN3_P	VIO_RF	0
19	RF_CTLN2_N	VIO_RF	0
20	AVDD18		Power
21	AVDD18		Power
22	AVSS		Ground
23	AVDD18		Power
24	BRF_ANT	AVDD18	A, I/O
25	VCORE		Power
26	AVSS		Ground
27	AVSS		Ground
28	RF_TR_2	AVDD18	A, I/O
29	AVDD18		Power
30	VPA		Power
31	VPA		Power
32	RF_TR_5	AVDD18	A, I/O
33	AVSS		Ground
34	AVDD18		Power

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 3. Pin list by number...continued

Pin number	Pin name	Power	Туре
35	AVSS		Ground
36	AVSS		Ground
37	AVDD18		Power
38	AVDD18		Power
39	AVDD18		Power
40	XTAL_IN	AVDD18	I
41	XTAL_OUT	AVDD18	0
42	AVDD18		Power
43	AVDD18		Power
44	DNC		
45	CONFIG_HOST[0]	AVDD18	I
46	CONFIG_HOST[1]	AVDD18	I
47	CONFIG_AUTO_REF_DET	AVDD18	I
48	GPIO[0]	VIO	I/O
49	GPIO[4]	VIO	I/O
50	GPIO[5]	VIO	I/O
51	GPIO[6]	VIO	I/O
52	GPIO[7]	VIO	I/O
53	VIO		Power
54	SLP_CLK_IN	VIO	I
55	GPIO[1]	VIO	I/O
56	GPIO[16]	VIO	I/O
57	GPIO[17]	VIO	I/O
58	GPIO[18]	VIO	I/O
59	GPIO[19]	VIO	I/O
60	GPIO[20]	VIO	I/O
61	VCORE		Power
62	VIO_SD		Power
63	SD_CLK	VIO_SD	I
64	SD_CMD	VIO_SD	I/O
65	SD_DAT[0]	VIO_SD	I/O
66	SD_DAT[1]	VIO_SD	I/O
67	SD_DAT[2]	VIO_SD	I/O
68	SD_DAT[3]	VIO_SD	I/O

5.4 Pad locations—83-bump eWLP

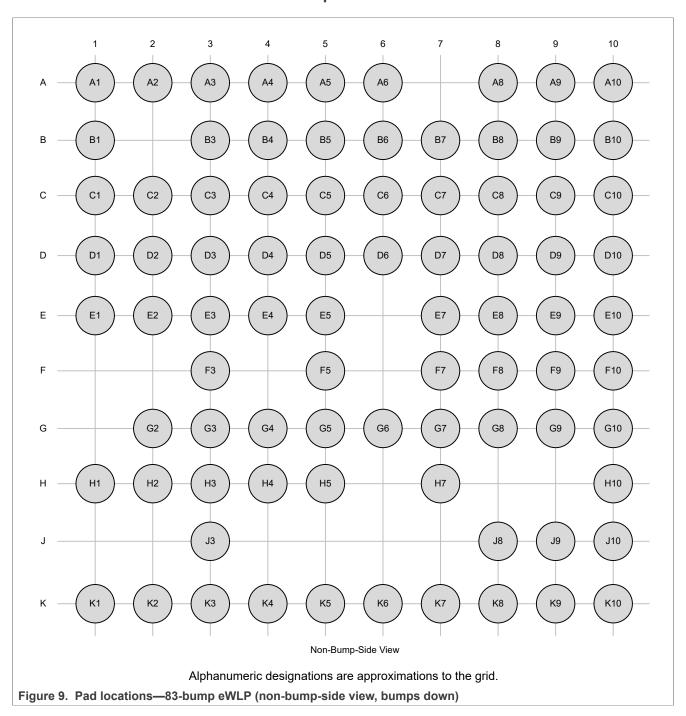


Table 4 indicates the pad locations in 83-bump eWLP package.

Note: Alphanumeric designations are approximations to the grid shown in Figure 9

Table 4. Pad locations—83-bump eWLP

Signal name	Alpha-numeric designation	Pad location relative to die center (non-bump-side view)		
		X	Υ	
NC	A1	-1800.0	1800.0	
GPIO[18]	A2	-1400.0	1800.0	
VSS	A3	-1000.0	1800.0	
GPIO[19]	A4	-600.0	1800.0	
VCORE	A5	-200.0	1800.0	
VIO_SD	A6	200.0	1800.0	
VSS	A8	1000.0	1800.0	
SD_DAT[3]	A9	1400.0	1800.0	
VSS	A10	1800.0	1800.0	
VIO	B1	-1800.0	1400.0	
SLP_CLK_IN	В3	-1000.0	1400.0	
GPIO[16]	B4	-600.0	1400.0	
GPI0[17]	B5	-200.0	1400.0	
GPI0[20]	B6	200.0	1400.0	
SD_CLK	B7	600.0	1400.0	
SD_DAT[0]	B8	1000.0	1400.0	
SD_DAT[1]	В9	1400.0	1400.0	
SD_DAT[2]	B10	1800.0	1400.0	
AVDD18	C1	-1800.0	1000.0	
AVSS	C2	-1400.0	1000.0	
GPIO[0] / XOSC_EN	C3	-1000.0	1000.0	
GPI0[6]	C4	-600.0	1000.0	
GPI0[7]	C5	-200.0	1000.0	
GPIO[1]	C6	200.0	1000.0	
SD_CMD	C7	600.0	1000.0	
GPIO[10]	C8	1000.0	1000.0	
GPIO[8]	C9	1400.0	1000.0	
VIO	C10	1800.0	1000.0	
XTAL_IN	D1	-1800.0	600.0	
XTAL_OUT	D2	-1400.0	600.0	
DNC	D3	-1000.0	600.0	
CONFIG_HOST[0]	D4	-600.0	600.0	
GPIO[4]	D5	-200.0	600.0	
GPIO[5]	D6	200.0	600.0	

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 4. Pad locations—83-bump eWLP...continued

Signal name	Alpha-numeric designation		relative to die ump-side view)
		X	Υ
GPIO[12]	D7	600.0	600.0
GPIO[9]	D8	1000.0	600.0
GPIO[11]	D9	1400.0	600.0
VCORE	D10	1800.0	600.0
AVDD18	E1	-1800.0	200.0
AVSS	E2	-1400.0	200.0
AVDD18	E3	-1000.0	200.0
AVSS	E4	-600.0	200.0
CONFIG_AUTO_REF_DET	E5	-200.0	200.0
GPIO[13]	E7	600.0	200.0
GPIO[3]	E8	1000.0	200.0
GPIO[15]	E9	1400.0	200.0
GPIO[14]	E10	1800.0	200.0
AVSS	F3	-1000.0	-200.0
CONFIG_HOST[1]	F5	-200.0	-200.0
GPIO[2]	F7	600.0	-200.0
PDn	F8	1000.0	-200.0
AVDD18	F9	1400.0	-200.0
VSS	F10	1800.0	-200.0
AVDD18	G2	-1400.0	-600.0
AVSS	G3	-1000.0	-600.0
VCORE	G4	-600.0	-600.0
AVSS	G5	-200.0	-600.0
RF_CNTL0_N	G6	200.0	-600.0
RF_CNTL1_P	G7	600.0	-600.0
RF_CNTL3_P	G8	1000.0	-600.0
RF_CNTL2_N	G9	1400.0	-600.0
VIO_RF	G10	1800.0	-600.0
AVSS	H1	-1800.0	-1000.0
AVSS	H2	-1400.0	-1000.0
AVSS	H3	-1000.0	-1000.0
AVSS	H4	-600.0	-1000.0
AVSS	H5	-200.0	-1000.0
AVSS	H7	600.0	-1000.0

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 4. Pad locations—83-bump eWLP...continued

Signal name	Alpha-numeric designation	Pad location relative to die center (non-bump-side view)		
		X	Υ	
AVSS	H10	1800.0	-1000.0	
VPA	J3	-1000.0	-1400.0	
AVSS	J8	1000.0	-1400.0	
AVSS	J9	1400.0	-1400.0	
AVSS	J10	1800.0	-1400.0	
NC	K1	-1800.0	-1800.0	
RF_RX_5	K2	-1400.0	-1800.0	
RF_TX_5	K3	-1000.0	-1800.0	
RF_TR_2 / BRF_ANT	K4	-600.0	-1800.0	
AVDD18	K5	-200.0	-1800.0	
AVSS	K6	200.0	-1800.0	
AVDD18	K7	600.0	-1800.0	
AVDD18	K8	1000.0	-1800.0	
AVDD18	K9	1400.0	-1800.0	
NC	K10	1800.0	-1800.0	

5.5 Pin description

5.5.1 Pin states

The pin states information provided in the tables includes:

- No Pad Power State indicates the state when there is no power
- **PwrDwn State** denotes the power-down state in default configuration. Many pads have programmable power-down values, which can be set by firmware.
- **Reset State** is the state after the power-on-reset state and before the hardware state (HW State)
- HW State (hardware state) is the state after boot code finishes and before firmware
 download begins (firmware may change the pin state). HW State may differ based on
 the pin muxing/strap setting. For example, for UART_RTSn and UART_SOUT, the boot
 code will enable the UART interface when the device is in SDIO-UARTor PCIe-UART
 mode, making the HW states output high and output low, respectively.
- PwrDwn Prog indicates if the power-down state can be programmed
- Internal PU/PD columns indicates the following:
 - Type of PU/PD (weak vs nominal)
 - The polarity (PU vs. PD)

The internal pull-up or pull-down applies when the pin is in input mode

- PU denotes whether the pull-up can be programmed or not
- PD denotes whether the pull-down can be programmed or not
- Pull-up and pull-down are only effective when the pad is in input mode
- After firmware is downloaded, the pads (GPIO, RF control, and so on) are programmed in functional mode per the functionality of the pins

5.5.2 General purpose I/O (GPIO)

Table 5. General purpose I/O (GPIO)^[1] (MFP) *Pins may be Multi-Functional Pins (MFP).*

Pin Name	Supply	No Pad Power State ^[2]	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/ PD	PU	PD
GPIO[20]	VIO	tristate	output	output high ^[3]	tristate	yes	weak PU	yes	yes
	GPIO Mode: GPIO[20] (input/output). This pin can be used for Bluetooth to host wake-up (out-of-band wake-up signal)								
GPIO[19]	VIO	tristate	output	output high	tristate	yes	weak PU	yes	yes
GPIO Mod	e: GPIO[19]	(input/outp	ut)						
Power Mai	nagement N	Mode: DVS0	C[1] digital v	oltage scaling co	ntrol (outpu	t)			
GPIO[18]	VIO	tristate	output	output high	tristate	yes	weak PU	yes	yes
		(input/outp	•						
Power Mai	nagement N	Node: DVS	C[0] digital v	oltage scaling co	ntrol (outpu	t)			
GPIO[17]	VIO	tristate	input	input	tristate	yes	weak PU	yes	yes
GPIO Mod	GPIO Mode: GPIO[17] (input/output)								
JTAG Mod	JTAG Mode: JTAG_TDO, JTAG test data (output)								
This pin is used as a configuration pin: CON[9] (input). See Section 5.6 "Configuration pins".									

88W8987_SDS

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2021. All rights reserved

Table 5. General purpose I/O ${\rm (GPIO)}^{[1]}$ (MFP)...continued

Pins may be Multi-Functional Pins (MFP).

Pin Name	Supply	No Pad Power State ^[2]	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/ PD	PU	PD
GPIO[16]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes
	=	input/outp	•						
JTAG Mod	le: JTAG_T	DI, JTAG te	st data (inpu	it)					
GPIO[15]	VIO	tristate	input	input	output high	yes	nominal PU	yes	yes
	-	[] (input/outpused as Blue	,	endent reset.					·
•		MS, JTAG o	•						
GPIO[14]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes
GPIO Mod	⊥ le : GPIO[14	_ l] (input/outp	out)	-					
	_	sed as Wi-F	,	nt reset.					
JTAG Mod	le: JTAG_T	CK, JTAG te	est clock (inp	•					
GPIO[13]	VIO	tristate	input	input ^[4] output ^[5]	output high	yes	nominal PU	yes	yes
GPIO Mod	le: GPIO[13	:: B] (input/outp	out)	I.		1			
				7 Wi-Fi wake-up	(out-of-band	l wake-up s	signal).		
GPIO[12]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes
		?] (input/outp		7 Bluetooth wak	e-up (out-of-l	oand wake-	·up signal)		,
GPIO[11]	VIO	tristate	input	input ^[4] output ^[5]	output high	yes	weak PU	yes	yes
UART Mod	de: UART_I] (input/outp RTSn (outpu	ıt) (active lo	w)] (input). See <u>Se</u>	ection 5.6 "Co	onfiguration	ı pins".	,	
GPIO[10]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes
	_)] (input/outp	•						
UART Mod	de: UART_	CTSn (input) (active low)					
GPIO[9]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes
	le: GPIO[9] de: UART_	(input/outpu SIN (input)	ıt)						
GPIO[8]	VIO	tristate	input	input ^[4] output ^[5]	output low	yes	weak PU	yes	yes
GPIO Mod	le: GPIO[8]	(input/outpu	it)	li .		1	L		
UART Mod	_	SOUT (outp	•						
		c	: OONE	IC VOCC CEL	(input) Coo	Coation E 6	"Configuration r	vine"	
This pin is	used as a d	configuration	pin: CONF	IG_XUSU_SEL	(iriput). See <u>s</u>	<u> </u>	Corniguration	<u> </u>	

88W8987 SD

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 5. General purpose I/O (GPIO)^[1] (MFP)...continued

Pins may be Multi-Functional Pins (MFP).

Pin Name	Supply	No Pad Power State ^[2]	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/ PD	PU	PD	
GPIO Mod	SPIO Mode: GPIO[7] (input/output)									
	_	NC (input/o	utput)							
Output if										
Input if sl										
GPIO[6]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes	
		(input/outpu	,							
Output if	_	Հ (input/outբ	out)							
Input if sl										
GPIO[5]	VIO	tristate	input	input	tristate	yes	weak PU	yes	yes	
SPIO Mod	e: GPIO[5]	input/outpu	t)							
		UT (output)	,							
his pin is	used as a c	onfiguration	pin: CON[7] (input). See <u>Se</u>	ction 5.6 "Co	<u>onfiguration</u>	pins".			
GPIO[4]	VIO	tristate	input	input	tristate	yes	nominal PU	yes	yes	
GPIO Mod	e: GPIO[4]	(input/outpu	t)						·	
PCM Mode	: PCM_DIN	l (input)								
GPIO[3]	VIO	tristate	output	output high ^[3]	tristate	yes	weak PU	yes	yes	
GPIO Mod	e: GPIO[3]	(input/outpu	t)				1	'		
ED Mode	: LED_OUT	_BT (outpu	t)							
GPIO[2]	VIO	tristate	output	output high ^[3]	tristate	yes	weak PU	yes	yes	
GPIO Mod	e: GPIO[2]	(input/outpu	t)				-	_		
_ED Mode	: LED_OUT	_WLAN (ou	ıtput)							
GPIO[1]	VIO	tristate	input	input	tristate	yes	weak PU	yes	yes	
GPIO Mod	e: GPIO[1]	(input/outpu	t).							
This pin ca	n also be us	sed for 88W	8987 Wi-Fi	to host wake-up	(out-of-band	l wake-up s	ignal).			
GPIO[0]	VIO	tristate	output	output high	output low	yes	nominal PU	yes	no	
GPIO Mod	e: GPIO[0]	input/outpu	t)		1	1	1	1		
			,	(active high). Se	e Section 5.	5.9 "Clock i	nterface".			

- Not all GPIO pins can be used for Host-to-SoC wakeup signals.

 Maximum input voltage is 0.4V when VIO has no power (or in uncertain situations).
- The signal may toggle while boot code is executing. When the device is in SDIO-SDIO mode. When the device is in SDIO-UART mode.

5.5.3 Wi-Fi/Bluetooth radio interface

Table 6. Wi-Fi/Bluetooth radio interface - QFN package

Pin Name	Туре	Supply	Description
RF_TR_2	A, I/O	AVDD18	Wi-Fi Transmit/Receive (2.4 GHz)
RF_TR_5	A, I/O	AVDD18	Wi-Fi Transmit/Receive (5 GHz)
BRF_ANT	A, I/O	AVDD18	Bluetooth Transmit/Receive

Table 7. Wi-Fi/Bluetooth radio interface - eWLP package option

Pin Name	Туре	Supply	Description
RF_TR_2/BRF_ANT	A, I/O	AVDD18	Wi-Fi Transmit/Receive (2.4 GHz) Bluetooth Transmit/Receive (shared path for Wi-Fi and Bluetooth)
RF_RX_5	A, I	AVDD18	Wi-Fi Receive (5 GHz)
RF_TX_5	A, O	AVDD18	Wi-Fi Transmit (5 GHz)

5.5.4 Wi-Fi RF front-end control interface

Table 8. Wi-Fi RF front-end control interface

Pin Name	Supply	No Pad Power State ^[1]	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/PD	PU	PD
RF_CNTL0_N	VIO_RF	tristate	output	output	drive low	yes	nominal PU	no	no
RF Control 0—RF	Control Outp	out Low (outp	ut)						,
RF_CNTL1_P	VIO_RF	tristate	output	output	drive high	yes	weak PU	no	no
RF Control 1—RF This pin is used a		• .	,	See <u>Sectior</u>	ı 5.6 "Configu	ration pins".			
RF_CNTL2_N	VIO_RF	tristate	output	output	drive low	yes	weak PU	no	no
RF Control 2—RF	Control Outp	out Low (outp	ut)		'				'
RF_CNTL3_P	VIO_RF	tristate	output	output	drive high	yes	weak PU	no	no
RF Control 3—RF	Control Outp	out High (outp	out)						

^[1] Maximum input voltage is 0.4V when VIO_RF has no power (or in uncertain situations).

5.5.5 SDIO host interface

Table 9. SDIO host interface

Supply	No Pad Power State ^[1]	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/ PD	PU	PD
VIO_SD	tristate	input	input	tristate	no	nominal PU	yes	yes
•				'	,		'	
VIO_SD	tristate	input	input	tristate	no	nominal PU	yes	yes
	. ,	nput/output)						
VIO_SD	tristate	input	input	tristate	no	nominal PU	yes	yes
VIO_SD	tristate	input	input	tristate	no	nominal PU	yes	yes
		wait (optior	nal)					·
VIO_SD	tristate	input	input	tristate	no	nominal PU	yes	yes
	Bit[1]			,				
VIO_SD	tristate	input	input	tristate	no	nominal PU	yes	yes
	de: Clock inpride: Clock inpride: Clock inpride: Clock inpride: Command de: Command VIO_SD de: Data line de: Read wair VIO_SD de: Data line de: Read wair vIO_SD de: Data line de: Read wair vIO_SD de: Data line de: Interrupt	VIO_SD tristate de: Clock input de: Clock input VIO_SD tristate de: Command/response (inde: Command line VIO_SD tristate de: Data line Bit[3] de: Reserved VIO_SD tristate de: Data line Bit[2] or read de: Read wait (optional) VIO_SD tristate de: Data line Bit[1] de: Interrupt	VIO_SD tristate input de: Clock input de: Clock input VIO_SD tristate input de: Command/response (input/output) de: Command line VIO_SD tristate input de: Data line Bit[3] de: Reserved VIO_SD tristate input de: Data line Bit[2] or read wait (option de: Read wait (optional) VIO_SD tristate input de: Data line Bit[1] de: Data line Bit[1] de: Data line Bit[1]	VIO_SD tristate input input de: Clock input de: Clock input VIO_SD tristate input input de: Command/response (input/output) de: Command line VIO_SD tristate input input de: Data line Bit[3] de: Reserved VIO_SD tristate input input de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input de: Data line Bit[1] de: Data line Bit[1] de: Data line Bit[1]	VIO_SD tristate input input tristate de: Clock input de: Clock input VIO_SD tristate input input tristate de: Command/response (input/output) de: Command line VIO_SD tristate input input tristate de: Data line Bit[3] de: Reserved VIO_SD tristate input input tristate de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input tristate de: Data line Bit[1] de: Data line Bit[1] de: Data line Bit[1] de: Interrupt	VIO_SD tristate input input tristate no de: Clock input de: Clock input VIO_SD tristate input input tristate no de: Command/response (input/output) de: Command line VIO_SD tristate input input tristate no de: Data line Bit[3] de: Reserved VIO_SD tristate input input tristate no de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input tristate no de: Data line Bit[1] de: Interrupt	State [1] VIO_SD tristate input input tristate no nominal PU de: Clock input de: Clock input VIO_SD tristate input input tristate no nominal PU de: Command/response (input/output) de: Command line VIO_SD tristate input input tristate no nominal PU de: Data line Bit[3] de: Reserved VIO_SD tristate input input tristate no nominal PU de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input tristate no nominal PU de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input tristate no nominal PU de: Data line Bit[1] de: Interrupt	State ^[1] VIO_SD tristate input input tristate no nominal PU yes de: Clock input de: Clock input VIO_SD tristate input input tristate no nominal PU yes de: Command/response (input/output) de: Command line VIO_SD tristate input input tristate no nominal PU yes de: Data line Bit[3] de: Reserved VIO_SD tristate input input tristate no nominal PU yes de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input tristate no nominal PU yes de: Data line Bit[2] or read wait (optional) de: Read wait (optional) VIO_SD tristate input input tristate no nominal PU yes de: Data line Bit[1] de: Interrupt

^[1] Maximum input voltage is 0.4V when VIO_SD has no power (or in uncertain situations).

5.5.6 UART host interface

Table 10. UART host interface (MFP)

Pins may be Multi-Functional Pins (MFP).

Pin Name	Туре	Supply	Description
UART_SIN	I	VIO	UART serial input signal - GPIO[9] input/output
UART_SOUT	0	VIO	UART serial output signal - GPIO[8] input/output
UART_RTSn	0	VIO	UART request-to-send output signal . Active low - GPIO[11] input/output
UART_CTSn	I	VIO	UART clear-to-send input signal - Active low - GPIO[10] input/output

5.5.7 Audio interface

Table 11. Audio interface pins (MFP)

Pins may be Multi-Functional Pins (MFP).

Pin Name	Type	Supply	Description
PCM_DIN	I	VIO	Receive PCM input signal. GPIO[4] input/ouput
PCM_DOUT	0	VIO	Transmit PCM output signal. GPIO[5] input/ouput
PCM_CLK	I/O	VIO	PCM data clock. GPIO[6] input/output Output if master Input if slave
PCM_SYNC	I/O	VIO	PCM frame sync. GPIO[7] input/ouput Output if master Input if slave

5.5.8 Configuration interface

Table 12. Configuration interface

Table III Collingala									
Pin Name	Supply	No Pad Power State	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/PD	PU	PD
CONFIG_HOST[0]	AVDD18	tristate	input	input	tristate	no	weak PU	yes	yes
This pin is used as a	configuration	pin: CONFIG	-HOST[0]	(input). S	ee Section 5.6	6 "Configuration	on pins".		
CONFIG_HOST[1]	AVDD18	tristate	input	input	tristate	no	weak PU	yes	yes
This pin is used as a	configuration	pin: CONFIG	HOST[1]	(input). S	ee Section 5.6	6 "Configuration	on pins".		
CONFIG_AUTO_ REF_DET	AVDD18	tristate	input	input	tristate	no	weak PU	yes	yes
This pin is used as a	configuration	pin: CONFIG	_AUTO_F	REF_DET	(input). See <u>S</u>	ection 5.6 "Co	onfiguration p	ins"	

Downloaded from Arrow.com.

5.5.9 Clock interface

Table 13. Clock interface (MFP)

Pins may be Multi-Functional Pins (MFP).

Pin Name	Supply	No Pad Power State ^[1]	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/ PD	PU	PD
XTAL_IN	AVDD18								

Reference Clock Input

Reference clock signal frequency must be 26 MHz or 38.4 MHz from an external crystal or external crystal oscillator.

Power consumption in sleep mode is lower with an external crystal compared to an external crystal oscillator when an external sleep clock is not used.

See Section 9.9 "Reference clock specifications".

XTAL_OUT	AVDD18								
----------	--------	--	--	--	--	--	--	--	--

Connect this pin to an external crystal when an external crystal is used.

When an external crystal oscillator is used, connect this pin to ground with resistance less than 5 k Ω .

SLP CLK IN	VIO	tristate	input ^[2]	input	tristate	no	nominal PU	ves	ves
	_		· •				_	,	,

Sleep Clock Input (optional)

Used for lower power operation in sleep mode.

- · An external sleep clock of 32.768 kHz can be used for lowest current consumption in sleep mode.
- An external sleep clock is required if automatic reference clock frequency detection is used. See <u>Section 5.6</u>
 "Configuration pins".
- If no external sleep clock is used, leave this pin floating (DNC).

XOSC_EN	VIO								
---------	-----	--	--	--	--	--	--	--	--

Oscillator Enable (output) (active high)

XOSC_EN signal can be used ONLY when an external sleep clock is used.

Used to enable an external oscillator.

0 = disable external oscillator

1 = enable external oscillator

NOTE: Muxed with GPIO[0].

- 1] Maximum input voltage is 0.4V when VIO has no power (or in uncertain situations).
- [2] Input mode after reset

5.5.10 Power down (PDn) pin

Table 14. Power down (PDn) pin

Pin Name	Supply	No Pad Power State	Reset State	HW State	PwrDwn State	PwrDwn Prog	Internal PU/ PD	PU	PD
PDn	AVDD18								

Full Power-down (input) (active low)

0 = full power-down mode

1 = normal mode

- PDn can accept an input of 1.8V to 4.5V
- · PDn may be driven by the host
- · PDn must be high for normal operation

No internal pull-up on this pin.

Product short data sheet

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

5.5.11 Power supply and ground

Table 15. Power supply and ground

Pin Name	Туре	Description
VCORE	Power	1.10V Core Power Supply
VIO	Power	1.8V/3.3V Digital I/O Power Supply
VIO_SD	Power	1.8V Digital I/O SDIO Power Supply
VIO_RF	Power	1.8V/3.3V Analog I/O RF Power Supply
AVDD18	Power	1.8V Analog Power Supply
VPA	Power	2.2V Analog Power Supply
AVSS	Ground	Ground
NC	NC	Not Connected
DNC	DNC	Do Not Connect Do not connect these pins. Leave these pins floating.

5.6 Configuration pins

<u>Table 16</u> shows the pins used as configuration inputs to set parameters following a reset. The definition of these pins changes immediately after reset to their usual function.

To set a configuration bit to 0, attach a 50 k Ω –100 k Ω resistor from the pin to ground. No external circuitry is required to set a configuration bit to 1.

See <u>Section 9.11 "Configuration pin specifications"</u> for the internal pull-up values of the configuration pins.

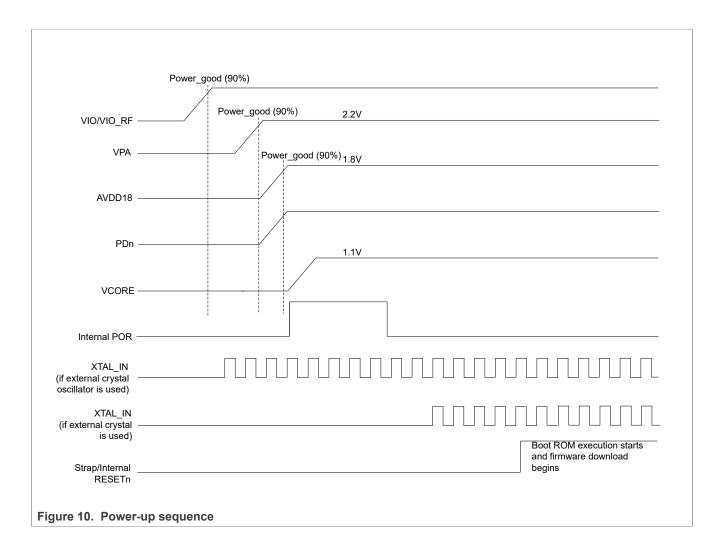
Table 16. Configuration pins

Configuration Bits	Pin Name	Configuration Function
CON[9]	GPIO[17]	Reserved
CON[8]	GPIO[11]	Set to 1.
CON[7]	GPIO[5]	
CON[6]	RF_CNTL1_P	Reserved Set to 1.
CONFIG_XOSC_SEL	GPIO[8]/UART_SOUT	Reference clock frequency select Valid when CONFIG_AUTO_REF_DET = 0 0 = 38.4 MHz 1 = 26 MHz (default)
CONFIG_AUTO_REF_ DET	CONFIG_AUTO_REF_ DET	Reference clock frequency detection select 0 = reference clock frequency detection by CONFIG_XOSC_SEL 1 = reference clock frequency detection using external sleep clock (default)(valid only when external sleep clock is used)
CON[1]	CONFIG_HOST[1]	Host configuration options
CON[0]	CONFIG_HOST[0]	No hardware impact. Software reads and boots accordingly. See <u>Table 17</u> .

Table 17. Host configuration options

Strap Value	Wi-Fi	Bluetooth/ Bluetooth LE	Number of SDIO Functions
00 (reserved)			
01 (reserved)			
10	SDIO	UART	1 (Wi-Fi)
11	SDIO	SDIO	2 (Wi-Fi, Bluetooth)

Downloaded from **Arrow.com**.

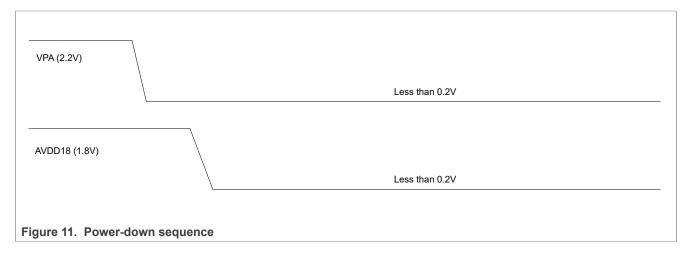

6 Power information

<u>Section 5.5.11 "Power supply and ground"</u> shows the required voltage levels for each rail and for PDn input signal.

6.1 Power-up sequence

- VIO/VIO_RF must be good (90%) before or at the same time all other power supplies start ramping up.
- VIO/VIO_RF must be good (90%) before or at the same time PDn starts ramping up.
- VPA must be good (90%) before or at the same time AVDD18 starts ramping up.
- It is recommended to start ramping up AVDD18 ≤1 ms after VPA ramps up.
- AVDD18 must be good (90%) before or at the same time VCORE starts ramping up.
- Ramp-up time of VIO/VIO_RF must be <100 ms.
- Ramp-up time of VPA must be <100 ms.
- Ramp-up time of AVDD18 must be <100 ms.
- Ramp-up time of VCORE must be <5 ms.
- All supplies must be monotonic.
- If using an external crystal oscillator, the reference clock must be stable before PDn ramps up.

Figure 10 shows the power-up sequence.


6.2 Power-down sequence

It is recommended:

- To ramp down AVDD18 after VPA ramps down
- To discharge all of the power supplies to less than 0.2V to reduce leakage.

PDn must be asserted when powering down the device.

Figure 11 shows the power-down sequence.

6.3 Reset

88W8987 is reset to its default operating state under any of the following conditions:

- Internal Power-On Reset (POR): POR is triggered when the device receives power and VCORE and AVDD18 supplies are good. See Section 6.1 "Power-up sequence".
- Software/Firmware reset: the software or firmware issues a reset.
- External PDn pin assertion: the device is reset when the PDn input pin is <0.2V and transitions from low to high.

See <u>Section 9.10 "Power-down (PDn) pin specifications"</u> for the electrical specifications.

6.3.1 Lowest power state

The device can be put into the lowest power mode of operation to conserve energy when Wi-Fi and Bluetooth are not in use.

To put the device in the lowest power mode, assert PDn low to enter power-down mode. Once PDn is de-asserted, the power sequence must be followed. If the firmware is not downloaded, the device must be kept in power-down mode to reduce leakage.

88W8987 SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

Absolute maximum ratings 7

CAUTION: The absolute maximum ratings table defines the limitations for electrical and thermal stresses. These limits prevent permanent damage to the device. Exposure to conditions at or beyond these ratings is not guaranteed and can damage the device.

Table 18. Absolute maximum ratings

Symbol	Parameter	Min	Max	Units
VCORE	1.10V core power supply		1.21	V
VIO	1.8V/3.3V digital I/O power supply		2.2 ^[1]	V
			4.0 ^[2]	V
VIO_SD	1.8V digital I/O SDIO power supply		2.2	V
VIO_RF	1.8V/3.3V I/O power supply		2.2 ^[3]	V
			4.0 ^[4]	V
AVDD18	1.8V analog power supply		1.98	V
VPA	2.2V analog power supply		2.3	V
T _{STORAGE}	Storage Temperature	-55	+125	°C

When using 1.8V digital I/O power supply [1]

Table 19. Limiting values - QFN option

Symbol	Parameter	Condition	Min	Max	Unit
V _{ESD}	Electrostatic discharge	human body model (HBM) ^[1]	-1.5	+1.5	kV
		charged device model (CDM) ^[2]	-500	+500	V

According to ANSI/ESDA/JEDEC JS-001.

Table 20. Limiting values - eWLP option

Symbol	Parameter	Condition	Min	Max	Unit
V _{ESD}	Electrostatic discharge	human body model (HBM) ^[1]	-1.5	+1.5	kV
		charged device model (CDM) ^[2]	-400	+400	V

According to ANSI/ESDA/JEDEC JS-001.

^[2] When using 3.3V digital I/O power supply

When using 1.8V I/O power supply

When using 3.3V I/O power supply

According to ANSI/ESDA/JEDEC JS-002

According to ANSI/ESDA/JEDEC JS-002

8 Recommended operating conditions

Note: Operation beyond the recommended operating conditions is neither recommended nor guaranteed.

Table 21. Recommended operating conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
VCORE	1.10V core power supply		1.05	1.10	1.15	V
VIO	1.8V/3.3V digital I/O power supply		1.67	1.8	1.92	V
			3.07	3.3	3.53	V
VIO_SD	1.8V digital I/O SDIO power supply		1.67	1.8	1.92	V
VIO_RF	1.8V/3.3V I/O power supply		1.67	1.8	1.92	V
			3.07	3.3	3.53	V
AVDD18	1.8V analog power supply		1.71	1.8	1.89	V
VPA	2.2V analog power supply		2.09	2.2	2.26	V
T _A	Ambient operating temperature	Extended	-30		85	°C
		Industrial	-40		85	°C
T_J	Maximum junction temperature				125	°C

Downloaded from Arrow.com.

9 Electrical specifications

9.1 GPIO/LED interface specifications

9.1.1 VIO DC characteristics

9.1.1.1 1.8V operation

Table 22. DC electrical characteristics—1.8V operation (VIO)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IH}	Input high voltage		0.7*VIO		VIO+0.4	V
V _{IL}	Input low voltage		-0.4		0.3*VIO	V
V _{HYS}	Input hysteresis		100			mV
V _{OH}	Output high voltage		VIO-0.4			V
V _{OL}	Output low voltage				0.4	V

9.1.1.2 3.3V operation

Table 23. DC electrical characteristics—3.3V operation (VIO)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IH}	Input high voltage		0.7*VIO		VIO+0.4	V
V _{IL}	Input low voltage		-0.4		0.3*VIO	V
V _{HYS}	Input hysteresis		100			mV
V _{OH}	Output high voltage		VIO-0.4			V
V _{OL}	Output low voltage				0.4	V

9.1.2 **LED** mode

Table 24. LED mode data

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Тур	Unit
I _{OH}	Switching current high	Tristate on pad (requires pull-up on board)	Tristate when driving high	mA
I _{OL}	Switching current low	@ 0.4V	10	mA

9.2 RF front-end control interface specifications

9.2.1 VIO_RF DC characteristics

9.2.1.1 1.8V operation

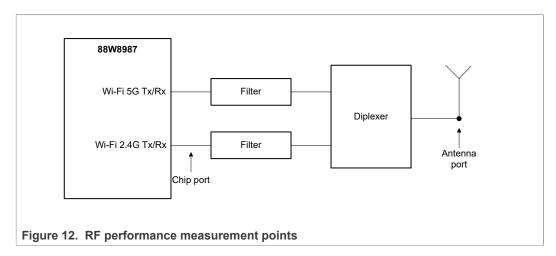
Table 25. DC electrical characteristics—1.8V operation (VIO_RF)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IH}	Input high voltage		0.7*VIO_RF		VIO_RF+0.4	V
V _{IL}	Input low voltage		-0.4		0.3*VIO_RF	V
V _{HYS}	Input hysteresis		100			mV
V _{OH}	Output high voltage		VIO_RF-0.4			V
V _{OL}	Output low voltage				0.4	V

9.2.1.2 3.3V operation

Table 26. DC electrical characteristics—3.3V operation (VIO_RF)


Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IH}	Input high voltage		0.7*VIO_RF		VIO_RF+0.4	V
V _{IL}	Input low voltage		-0.4		0.3*VIO_RF	V
V _{HYS}	Input hysteresis		100			mV
V _{OH}	Output high voltage		VIO_RF-0.4			V
V _{OL}	Output low voltage				0.4	V

9.3 Wi-Fi radio specifications

9.3.1 Wi-Fi radio performance measurement

The Wi-Fi transmit/receive performance is measured either at the antenna port or at the chip port.

Downloaded from Arrow.com.

9.3.2 2.4 GHz Wi-Fi receiver performance

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, and at chip port.

Table 27. 2.4 GHz Wi-Fi receiver performance

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency range	20 MHz and 40 MHz bandwidths	2400		2500	MHz
Rx input IP3 at RF high gain (In-Band)	Rx input IP3 when LNA in high gain mode (24 dB) at chip input		-20		dBm
Maximum Rx input level	Maximum Rx input level without device damage			2	dBm
	1 Mbit/s		-99		dBm
Receiver sensitivity 802.11b	2 Mbit/s		-95		dBm
Receiver Sensitivity 602.11b	5.5 Mbit/s		-93		dBm
	11 Mbit/s		-90		dBm
	6 Mbit/s		-89		dBm
	9 Mbit/s		-89		dBm
	12 Mbit/s		-88		dBm
Receiver conditivity 902 11 a	18 Mbit/s		-87		dBm
Receiver sensitivity 802.11g	24 Mbit/s		-85		dBm
	36 Mbit/s		-81		dBm
	48 Mbit/s		-77		dBm
	54 Mbit/s		-76 ^[1]		dBm
	MCS0		-89		dBm
	MCS1		-88		dBm
	MCS2		-85		dBm
Receiver sensitivity 802.11n HT20 ^[1]	MCS3		-83		dBm
BCC waveform	MCS4		-80		dBm
	MCS5		-76		dBm
	MCS6		-74		dBm
	MCS7		-73		dBm
	MCS0		-87		dBm
	MCS1		-86		dBm
Receiver sensitivity 802.11n HT40 ^[1]	MCS2		-84		dBm
	MCS3		-81		dBm
BCC waveform	MCS4		-77		dBm
	MCS5		-73		dBm
	MCS6		-72		dBm
	MCS7		-71		dBm

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 27. 2.4 GHz Wi-Fi receiver performance...continued

Parameter	Conditions	Min	Тур	Max	Unit
Receiver maximum input level	802.11b		-1		dBm
	802.11g		-2		dBm
	802.11n MCS0-4		-1		dBm
	802.11n MCS5-6		-2		dBm
	802.11n MCS7		-5		dBm
	1 Mbit/s		54		dB
Receiver adjacent channel interference	2 Mbit/s		49		dB
rejection (ACI) 802.11b	5.5 Mbit/s		47		dB
	11 Mbit/s		45		dB
	6 Mbit/s		37		dB
	9 Mbit/s		35		dB
	12 Mbit/s		39		dB
Receiver adjacent channel interference	18 Mbit/s		36		dB
rejection (ACI) 802.11g	24 Mbit/s		33		dB
	36 Mbit/s		27		dB
	48 Mbit/s		27		dB
	54 Mbit/s		24		dB
	MCS0		37		dB
	MCS1		36		dB
	MCS2		36		dB
Receiver adjacent channel interference	MCS3		30		dB
rejection (AČI) 802.11n, HT20	MCS4		28		dB
	MCS5		26		dB
	MCS6		21		dB
	MCS7		20		dB
	MCS0		33		dB
	MCS1		32		dB
	MCS2		29		dB
Receiver adjacent channel interference	MCS3		27		dB
rejection (ACI) 802.11n, HT40,	MCS4		26		dB
	MCS5		22		dB
	MCS6		19		dB
	MCS7		17		dB

^[1] De-sense of ~2 dB at 2472 MHz

9.3.3 5 GHz Wi-Fi receiver performance

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, and at the chip port.

Table 28. 5 GHz Wi-Fi receiver performance

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency range	5 GHz—IEEE 802.11ac/n/a	4900		5925	MHz
Rx input IP3 at RF high gain (In-Band)	Rx Input IP3 when LNA in high gain mode (24 dB) at chip input	_	-20	_	dBm
Maximum Rx input level	Maximum Rx input level without device damage	_	_	2	dBm
	6 Mbit/s		-92		dBm
	9 Mbit/s		-92		dBm
	12 Mbit/s		-91		dBm
Receiver sensitivity 802.11a	18 Mbit/s		-89		dBm
Receiver sensitivity 602.11a	24 Mbit/s		-86		dBm
	36 Mbit/s		-83		dBm
	48 Mbit/s		-78		dBm
	54 Mbit/s		-77		dBm
	MCS0		-92		dBm
	MCS1		-90		dBm
	MCS2		-87		dBm
Receiver sensitivity 802.11n HT20	MCS3		-84		dBm
BCC waveform	MCS4		-81		dBm
	MCS5		-76		dBm
	MCS6		-75		dBm
	MCS7		-73		dBm
	MCS0		-88		dBm
	MCS1		-87		dBm
	MCS2		-84		dBm
Receiver sensitivity 802.11n HT40 BCC	MCS3		-81		dBm
waveform	MCS4		-78		dBm
	MCS5		-74		dBm
	MCS6		-73		dBm
	MCS7		-71		dBm

Table 28. 5 GHz Wi-Fi receiver performance...continued

Parameter	Conditions	Min	Тур	Max	Unit
	MCS0		-92		dBm
	MCS1		-90		dBm
	MCS2		-88		dBm
	MCS3		-85		dBm
Receiver sensitivity 802.11ac VHT20 BCC waveform	MCS4		-83		dBm
BOO Wavelollii	MCS5		-80		dBm
	MCS6		-78		dBm
	MCS7		-76		dBm
	MCS8		-72		dBm
	MCS0		-88		dBm
	MCS1		-87		dBm
	MCS2		-85		dBm
	MCS3		-82		dBm
Receiver sensitivity 802.11ac VHT40	MCS4		-80		dBm
BCC waveform	MCS5		-76		dBm
	MCS6		-75		dBm
	MCS7		-74		dBm
	MCS8		-70		dBm
	MCS9		-68		dBm
	MCS0		-84		dBm
	MCS1		-84		dBm
	MCS2		-82		dBm
	MCS3		-79		dBm
Receiver sensitivity 802.11ac VHT80	MCS4		-78		dBm
BCC waveform	MCS5		-73		dBm
	MCS6		-72		dBm
	MCS7		-71		dBm
	MCS8		-66		dBm
	MCS9		-64		dBm
	802.11a 6-36 Mbit/s		-3		dBm
	802.11a 48-54 Mbit/s		-5		dBm
Danahan mandan malinar Alasa	802.11n MCS0-4		-3		dBm
Receiver maximum input level	802.11n MCS5		-4		dBm
	802.11n MCS6		-5		dBm
	802.11n MCS7-9		-8		dBm

Table 28. 5 GHz Wi-Fi receiver performance...continued

Parameter	Conditions	Min	Тур	Max	Unit
	6 Mbit/s		34		dB
	9 Mbit/s		32		dB
	12 Mbit/s		33		dB
Receiver adjacent channel interference	18 Mbit/s		32		dB
rejection (ACI) 802.11a	24 Mbit/s		29		dB
	36 Mbit/s		24		dB
	48 Mbit/s		24		dB
	54 Mbit/s		17		dB
	MCS0		32		dB
	MCS1		31		dB
	MCS2		31		dB
Receiver adjacent channel interference	MCS3		26		dB
rejection (ACI) 802.11n, HT20	MCS4		22		dB
	MCS5		20		dB
	MCS6		17		dB
	MCS7		15		dB
	MCS0		29		dB
	MCS1		28		dB
	MCS2		28		dB
Receiver adjacent channel interference	MCS3		22		dB
rejection (ACI) 802.11n, HT40	MCS4		23		dB
	MCS5		19		dB
	MCS6		18		dB
	MCS7		16		dB

9.3.4 2.4 GHz Wi-Fi transmitter performance

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, and at the chip port.

Table 29. 2.4 GHz Wi-Fi transmitter performance

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency range	2.4 GHz—IEEE 802.11n/g/b	2400		2500	MHz
	2.4 GHz—IEEE 802.11ac, bandwidth 20 MHz and bandwidth 40 MHz				
Transmitter output saturation	Saturation power at chip output	-	27		dBm
Transmit carrier suppression (CW)	Carrier suppression at chip output		-36		dB
Transmit I/Q suppression with IQ calibration	I/Q suppression at chip output		-45		dBc
	802.11b		22		dBm
	OFDM BPSK		21		dBm
Transmit power (EVM and mask compliant) 20 MHz	OFDM QPSK		21		dBm
	OFDM 16-QAM		21		dBm
	OFDM 64-QAM		21		dBm
	OFDM BPSK		20		dBm
Transmit power (EVM and mask	OFDM QPSK	-	20		dBm
compliant) 40 MHz	OFDM 16-QAM	-	20		dBm
	OFDM 64-QAM		20		dBm
Transmit output power level control range			22 ^[1]		dB
Transmit output power control step			1 ^[2]		dB
Transmit output power accuracy			1.5		dB
Transmit carrier suppression	802.11n HT40 MCS7 at 18 dBm		49		dB

^{[1] 0-22} dBm

^[2] Hardware capability = 0.5 dB, software capability = 1 dB

9.3.5 5 GHz Wi-Fi transmitter performance

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, and at the chip port.

Table 30. 5 GHz Wi-Fi transmitter performance

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency range	5 GHz—IEEE 802.11ac/n/a	4900		5925	MHz
Transmit output saturation	Saturation power at chip output	_	27	_	dBm
Transmit carrier suppression (CW)	Carrier suppression at chip output	_	-36	_	dB
Transmit I/Q suppression with IQ calibration	I/Q suppression at chip output	_	-45	_	dBc
	OFDM BPSK		21		dBm
	OFDM QPSK		21		dBm
Transmit power (EVM and mask compliant) 20 MHz	OFDM 16-QAM		21		dBm
oomphanty 20 mm2	OFDM 64-QAM (MCS7)		21		dBm
	OFDM 256-QAM (MCS8)		20		dBm
	OFDM BPSK		20		dBm
	OFDM QPSK		20		dBm
Transmit power (EVM and mask compliant) 40 MHz	OFDM 16-QAM		20		dBm
	OFDM 64-QAM (MCS7)		20		dBm
	OFDM 256-QAM (MCS9)		18		dBm
	OFDM BPSK		17		dBm
	OFDM QPSK		17		dBm
Transmit power (EVM and mask compliant) 80 MHz	OFDM 16-QAM		17		dBm
oomphanty oo mile	OFDM 64-QAM (MCS7)		17		dBm
	OFDM 256-QAM (MCS9)		15		dBm
Transmit output power level control range			21 ^[1]		dB
Transmit output power control step			1 ^[2]		dB
Transmit output power accuracy			1.5		dB
Transmit carrier suppression	802.11ac MCS9 VHT80, at 15 dBm		51		dBc

^{[1] 0-21} dBm

^[2] Hardware capability = 0.5 dB, software capability = 1 dB

9.3.6 Local oscillator

Table 31. Local oscillator

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Condition	Min	Тур	Max	Units
Phase noise	Measured at 2.438 GHz at 100 kHz offset		-103		dBc/Hz
Phase noise	Measured at 5.501 GHz at 100 kHz offset	_	-100	_	dBc/Hz
Integrated RMS phase noise at RF output (from 1 kHz–10 MHz)	Reference clock frequency = 38.4 MHz (2.4 GHz)		0.3		degrees
Integrated RMS phase noise at RF output (from 10 kHz–10 MHz)	Reference clock frequency = 38.4 MHz (5 GHz)	_	0.5	_	degrees
Frequency resolution	_	0.02			kHz

Product short data sheet

9.4 Bluetooth radio specifications

The Bluetooth radio interface pin is powered by AVDD18 voltage supply.

9.4.1 Bluetooth and Bluetooth LE receiver performance

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, and at BRF_ANT pin.

Table 32. Bluetooth and Bluetooth LE receiver performance

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency range		2.4		2.5	GHz
IF frequency			2		MHz
Input IP3 (@ maximum gain of 72 dB)			-19		dBm
In-band blocking	GFSK C/I (Co-channel)		10		dB
	C/I (1 MHz)		-4		dB
	C/I (2 MHz)		-45		dB
	C/I (3 MHz)		-49		dB
	C/I (Image)		-21		dB
	C/I (Image ±1 MHz)		-32		dB
	Pi/4-DQPSK C/I (Co-channel)		10		dB
	C/I (1 MHz)		-9		dB
	C/I (2 MHz)		-47		dB
	C/I (3 MHz)		-51		dB
	C/I (Image)		-19		dB
	C/I (Image ±1 MHz)		-35		dB
	8-DPSK C/I (Co-channel)		16		dB
	C/I (1 MHz)		-6		dB
	C/I (2 MHz)		-42		dB
	C/I (3 MHz)		-48		dB
	C/I (Image)		-12		dB
	C/I (Image ±1 MHz)		-33		dB
Out-of-band blocking	30–2000 MHz		-12.5		dBm
	2–2.399 GHz		-12.4		dBm
	2.484–3 GHz		-18		dBm
	3–12.75 GHz		-2.6		dBm
RSSI range	Resolution = 1 dB		-90	0	dBm
50 Ω return loss				-10	dB

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 32. Bluetooth and Bluetooth LE receiver performance...continued

Parameter	Conditions	Min	Тур	Max	Unit		
Bluetooth sensitivity (RCV/CA/01/C & RCV/CA/02/C & RCV/CA/07/C)	DH5		-96 ^[1]		dBm		
	2DH5		-95 ^[2]		dBm		
,	3DH5		-88 ^[3]		dBm		
Bluetooth LE sensitivity	Bluetooth LE 1 Mbit/s		-99 ^[4]		dBm		
(RCV-LE/CA/02/C)	Bluetooth LE 2 Mbit/s		-96 ^[4]		dBm		

Desense of ~9.5 dB at CH 2419 MHz, ~6 dB at 2457 MHz, ~9 dB at 2458 MHz due to internal clock harmonics

^[2] [3] [4]

Desense of ~8.5 dB at CH 2419 MHz, ~3 dB at CH 2432 MHz, ~5 dB at 2457 MHz, ~7.5 dB at 2458 MHz due to internal clock harmonics Desense of ~9 dB at CH 2419 MHz, ~3.5dB at CH 2432 MHz, ~5 dB at 2457 MHz, ~7.5 dB at 2458 MHz due to internal clock harmonics

Desense of ~7 dB at CH 2432 MHz and ~9 dB at 2458MHz due to internal clock harmonics

9.4.2 Bluetooth and Bluetooth LE transmitter performance

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, and at BRF_ANT pin.

Table 33. Bluetooth and Bluetooth LE transmitter

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency range		2.4		2.5	GHz
Gain range	Class 1 without external PA		30		dB
Gain resolution			0.5		dB
Spurious emission (BDR) (in-band)	±500 kHz			-20	dBc
	±2 MHz		-33	-20	dBm
	±3 MHz		-45	-40	dBm
Spurious emission (EDR) (in-band)	±1 MHz			-26	dBc
	±1.5 MHz			-20	dBm
	±2.5 MHz			-40	dBm
Spurious emission (out-of-band)	30–88 MHz		-65	-41.25	dBm
	88–960 MHz		-65	-41.25	
	0.96–20 GHz All frequencies in this range < -41.25 dBm, except at 2x Bluetooth channel frequency. Measured at pin without external filter.		-35	-25	
	Restricted—2.38–2.39 GHz		-55	-41.25	
	Restricted—2.4835–2.6 GHz		-50	-41.25	
Out-of-band/	GSM850 (869–894 MHz)		-140		dBm/Hz
Cellular band noise	GSM900 (925–960 MHz)		-140		
	GSM DCS (1805-1880 MHz)		-135		
	GSM PCS (1930-1990 MHz)		-135		
	GPS (1575.42 ±1.023 MHz)		-140		
	WCDMA Band I (2110–2170 MHz)		-130		
	WCDMA Band V (869–894 MHz)		-140		
Transmit output power	BDR		13		dBm
(TRM/CA/01/C)	EDR		10		dBm
Power control (TRM/CA/03/C)			5		dB
Frequency range (TRM/CA/04/C)	Freq Low		2400.9		MHz
rrequency range (TRM/CA/04/C)	Freq High		2481		MHz
-20dB BW (TRM/CA/05/C)	DH5		955		kHz
Modulation characteristics	Delta F1 avg		164		kHz
(TRM/CA/07/C)	Delta F2 max Threshold		100		%
Modulation characteristics	Delta F2/Delta F1		0.9		
(TRM/CA/07/C)	Delta F2 avg		148		kHz
	*				

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 33. Bluetooth and Bluetooth LE transmitter...continued

Parameter	Conditions	Min	Тур	Max	Unit
ICFT (TRM/CA/08/C)	DH1		19		kHz
	Max Drift - DH1		-7		kHz
	Drift Rate - DH1		-0.9		kHz
Carrier frequency drift	Max Drift - DH3		-7		kHz
(TRM/CA/09/C)	Drift Rate - DH3		-1		kHz
	Max Drift - DH5		-7		kHz
	Drift Rate - DH5		-1.3		kHz
EDR relative power (TRM/CA/10/C)	2DH5 (DPSK/GFSK)		-0.1		dB
EDR relative power (TRIVI/CA/TO/C)	3DH5 (DPSK/GFSK)		-0.1		dB
	2DH5 Peak DEVM		0.07		
EDR carrier frequency stability and	2DH5 RMS DEVM		0.03		
modulation accuracy (TRM/CA/11/C)	3DH5 Peak DEVM		0.08		
	3DH5 RMS DEVM		0.03		
Diff. phase encoding (TRM/CA/12/C)	2DH5		100		%
Dill. phase encoding (TRIVI/CA/12/C)	3DH5		100		%
Bluetooth LE output power	Bluetooth LE 1 Mbit/s		10		dBm
(TRM/-Bluetooth LE/CA/01/C)	Bluetooth LE 2 Mbit/s		10		dBm
	Delta F1 avg - Bluetooth LE 1 Mbit/s		247		kHz
	Delta F2/Delta F1- Bluetooth LE 1 Mbit/s		0.9		kHz
Bluetooth LE modulation characteristics	Delta F2 avg - Bluetooth LE 1 Mbit/s		223		kHz
(TRM-Bluetooth LE/CA/05/C)	Delta F1 avg - Bluetooth LE 2 Mbit/s		504		kHz
	Delta F2/Delta F1- 2 Mbit/s		1		kHz
	Delta F2 avg- Bluetooth LE 2 Mbit/s		474		kHz
	Max Drift - Bluetooth LE 1 Mbit/s		0.5		kHz
Bluetooth LE carrier frequency drift	Drift Rate - Bluetooth LE 1 Mbit/s		1.5		kHz
(TRM-Bluetooth LE/CA/06/C)	Max Drift - Bluetooth LE 2 Mbit/s		-1.5		kHz
	Drift Rate - Bluetooth LE 2 Mbit/s		1		kHz
Frequency accuracy	Bluetooth LE 1 Mbit/s		-9		kHz
(TRM-LE/CA/BV-06-C)	Bluetooth LE 2 Mbit/s		-10		kHz

9.5 Current consumption

Note: Unless otherwise stated, all specifications are at 25°C, nominal voltage, across frequency and typical value. Data is collected with SDIO-SDIO interface configuration. The power consumption in transmit mode refers to the device port pin

Table 34. Current consumption

Mode	2.2V	1.8V	1.1V	Unit						
Sleep mode current consumption										
Power down	0	0.04	2.8	mA						
Wi-Fi and Bluetooth in deep- sleep mode	0	0.02	1.01	mA						
Wi-Fi only in deep-sleep mode	0	0.025	1.04	mA						
Bluetooth only in deep-sleep mode	0	0.024	1.14	mA						
Bluetooth LE only in deep-sleep mode	0	0.02	1.22	mA						
Bluetooth LE current consumption ^[1]										
Bluetooth LE advertise (interval = 1.28s)	0	0.05	1.1	mA						
Bluetooth LE scan (interval = 1.28s, window = 11.25 ms)	0	0.15	1.2	mA						
Bluetooth LE link (master mode, interval=1.28s)	0	0.07	1.2	mA						
Bluetooth LE peak transmit (at 0 dBm), 1 Mbit/s	0	25	21	mA						
Bluetooth LE peak transmit (at 5 dBm), 1 Mbit/s	0	37	23	mA						
Bluetooth LE peak transmit (at 10 dBm), 1 Mbit/s	0	53	22	mA						
Bluetooth LE peak receive, 1 Mbit/s	0	17	21	mA						
Bluetooth current consumption ^[1]			I	J						
Bluetooth page scan	0	0.18	1.2	mA						
Bluetooth page and inquiry scan	0	0.32	1.33	mA						
Bluetooth ACL link, master sniff mode, (interval = 1.28s)	0	0.09	1.3	mA						
Bluetooth ACL link, master sniff mode, (interval = 500 ms)	0	0.18	1.7	mA						
Bluetooth ACL (data pump) DH1	0	11.7	18	mA						
Bluetooth ACL (data pump) 2-DH3	0	17.2	19.5	mA						
Bluetooth ACL (data pump) 3-DH5	0	19.3	20	mA						
Bluetooth SCO HV3 peak transmit (at 0 dBm)	0	25	21	mA						
Bluetooth SCO HV3 peak transmit (at 5 dBm)	0	37	23	mA						
Bluetooth SCO HV3 peak transmit (at 10 dBm)	0	53	22	mA						
Bluetooth SCO HV3 peak transmit (at 13 dBm)	0	67	22	mA						
Bluetooth SCO HV3 Peak Receive	0	17	21	mA						
Bluetooth Peak Transmit (at 0 dBm), DH5	0	25	21	mA						
Bluetooth Peak Transmit (at 5 dBm), DH5	0	37	23	mA						
Bluetooth Peak Transmit (at 10 dBm), DH5	0	53	22	mA						
Bluetooth Peak Transmit (at 13 dBm), DH5	0	67	22	mA						
Bluetooth Peak Receive, DH5	0	17	21	mA						

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 34. Current consumption...continued

Table 34. Current consumptioncontinued				
Mode	2.2V	1.8V	1.1V	Unit
IEEE power save mode ^[2]				
IEEE-PS_2GHz-Legacy (DTIM-1)	0	1	3.18	mA
IEEE-PS_2GHz-Legacy (DTIM-3)	0	0.35	1.88	mA
IEEE-PS_2GHz-Legacy (DTIM-5)	0	0.2	1.7	mA
IEEE-PS_2GHz-Legacy (DTIM-10)	0	0.14	1.27	mA
IEEE-PS_5GHz-Legacy (DTIM-1)	0	0.7	2.33	mA
EEE-PS_5GHz-Legacy (DTIM-3)	0	0.25	1.6	mA
IEEE-PS_5GHz-Legacy (DTIM-5)	0	0.15	1.43	mA
IEEE-PS_5GHz-Legacy (DTIM-10)	0	0.12	1.32	mA
2.4 GHz Wi-Fi receive mode ^[3]				,
802.11b, 11 Mbit/s	0	40	95	mA
802.11g, 54 Mbit/s	0	38	112	mA
802.11n, HT20 MCS7	0	38	118	mA
5 GHz Wi-Fi 5 receive mode ^[3]				,
802.11a, 54 Mbit/s	0	54	118	mA
802.11n, HT20 MCS7	0	55	120	mA
802.11n, HT40 MCS7	0	65	140	mA
802.11ac, VHT20 MCS8	0	55	120	mA
802.11ac, VHT40 MCS9	0	65	140	mA
802.11ac, VHT80 MCS9	0	70	158	mA
2.4 GHz Wi-Fi transmit mode ^[3]				,
802.11b, 11 Mbit/s at 20 dBm	400	80	221	mA
802.11g, 54 Mbit/s at 20 dBm	377	79	220	mA
802.11n, HT20 MCS0 at 20 dBm	382	80	238	mA
802.11n, HT20 MCS7 at 20 dBm	382	80	238	mA
5 GHz Wi-Fi transmit mode ^[3]	'			,
802.11a, 6 Mbit/s at 19 dBm	285	141	215	mA
802.11a, 54 Mbit/s at 19 dBm	285	141	220	mA
802.11n, HT20 MCS0 at 19 dBm	290	145	238	mA
802.11n, HT20 MCS7 at 19 dBm	290	145	238	mA
802.11n, HT40 MCS0 at 17 dBm	230	138	239	mA
802.11n, HT40 MCS7 at 17 dBm	230	138	239	mA
802.11ac, VHT20 MCS0 at 19 dBm	290	144	235	mA
802.11ac, VHT20 MCS8 at 19 dBm	290	144	235	mA
802.11ac, VHT40 MCS0 at 17 dBm	230	138	238	mA
802.11ac, VHT40 MCS9 at 17 dBm	230	138	238	mA

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 34. Current consumption...continued

·									
Mode	2.2V	1.8V	1.1V	Unit					
802.11ac, VHT80 MCS0 at 15 dBm	190	132	232	mA					
802.11ac, VHT80 MCS9 at 15 dBm	190	132	232	mA					
Peak current consumption during device initialization									
Maximum peak current consumption during device initialization	975	198	198	mA					

 ^[1] Wi-Fi core in sleep mode
 [2] Beacon interval = 100 ms. Bluetooth not enabled
 [3] Bluetooth in deep-sleep mode

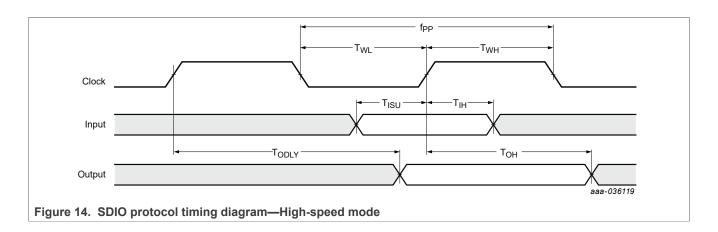
9.6 SDIO host interface specifications

The SDIO host interface pins are powered by VIO_SD voltage supply.

The SDIO electrical specifications are identical for the 4-bit SDIO and 1-bit SDIO modes.

9.6.1 VIO_SD DC characteristics

9.6.1.1 1.8V operation


Table 35. DC electrical characteristics—1.8V operation (VIO_SD)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IH}	Input high voltage		0.7*VIO_SD		VIO_SD+0.4	V
V _{IL}	Input low voltage		-0.4		0.3*VIO_SD	V
V _{HYS}	Input hysteresis		100			mV
V _{OH}	Output high voltage		VIO_SD-0.4			V
V _{OL}	Output low voltage				0.4	V

9.6.2 Default speed, high-speed modes

88W8987_SDS

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2021. All rights reserved

Table 36. SDIO timing data—Default Speed, High-Speed Modes

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{PP}	Clock frequency	Normal	0		25	MHz
		High-speed	0		50	MHz
T _{WL}	Clock low time	Normal	10			ns
		High-speed	7			ns
T _{WH}	Clock high time	Normal	10			ns
		High-speed	7			ns
T _{ISU}	Input setup time	Normal	5			ns
		High-speed	6			ns
T _{IH}	Input hold time	Normal	5			ns
		High-speed	2			ns
T _{ODLY}	Output delay time	Normal			14	ns
	CL ≤ 40 pF (1 card)	High-speed			14	ns
T _{OH}	Output hold time	High-speed	2.5			ns

9.6.3 SDR12, SDR25, SDR50 modes (up to 100 MHz) (1.8V)

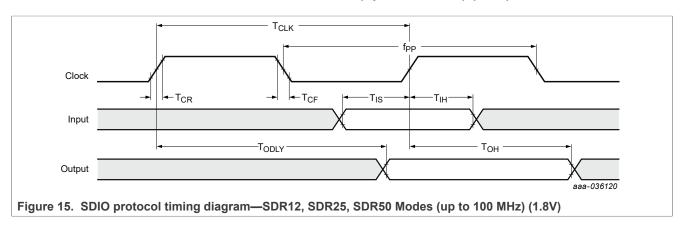
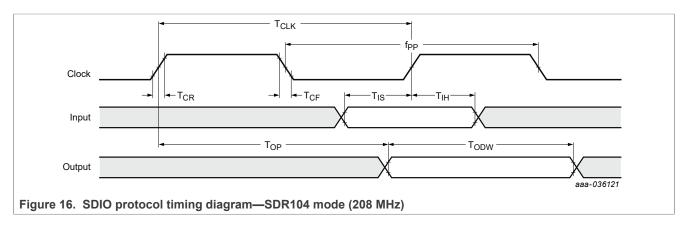
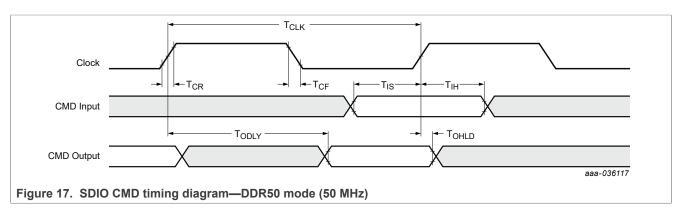


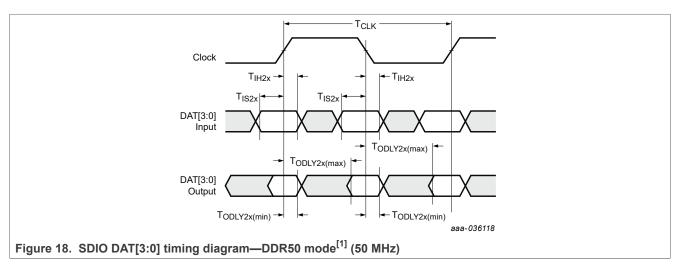
Table 37. SDIO timing data——SDR12, SDR25, SDR50 Modes (up to 100 MHz) (1.8V)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{PP}	Clock frequency	SDR12/25/50	25		100	MHz
T _{IS}	Input setup time	SDR12/25/50	3			ns
T _{IH}	Input hold time	SDR12/25/50	0.8			ns
T _{CLK}	Clock time	SDR12/25/50	10		40	ns
T _{CR} , T _{CF}	Rise time, fall time T_{CR} , T_{CF} < 2 ns (max) at 100 MHz C_{CARD} = 10 pF	SDR12/25/50			0.2*T _{CLK}	ns
T _{ODLY}	Output delay time C _L ≤ 30 pF	SDR12/25/50			7.5	ns
T _{OH}	Output hold time C _L = 15 pF	SDR12/25/50	1.5			ns

9.6.4 SDR104 mode (208 MHz) (1.8V)


Table 38. SDIO timing data—SDR104 mode (208 MHz)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{PP}	Clock frequency	SDR104	0		208	MHz
T _{IS}	Input setup time	SDR104	1.4			ns
T _{IH}	Input hold time	SDR104	0.8			ns
T _{CLK}	Clock time	SDR104	4.8			ns
T _{CR} , T _{CF}	Rise time, fall time T_{CR} , T_{CF} < 0.96 ns (max) at 208 MHz C_{CARD} = 10 pF	SDR104			0.2*T _{CLK}	ns
T _{OP}	Card output phase	SDR104	0		10	ns
T _{ODW}	Output timing of variable data window	SDR104	2.88			ns

9.6.5 DDR50 mode (50 MHz) (1.8V)

^[1] In DDR50 mode, DAT[3:0] lines are sampled on both edges of the clock (not applicable for CMD line).

Table 39. SDIO timing data—DDR50 mode (50 MHz)

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Units
Clock			'			
T _{CLK}	Clock time 50 MHz (max) between rising edges	DDR50	20			ns
T _{CR} , T _{CF}	Rise time, fall time T_{CR} , T_{CF} < 4.00 ns (max) at 50 MHz C_{CARD} = 10 pF	DDR50			0.2*T _{CLK}	ns
Clock Duty		DDR50	45		55	%
CMD Input (referenced to clock rising edg	je)	1	1	1	J
T _{IS}	Input setup time C _{CARD} ≤ 10 pF (1 card)	DDR50	6			ns

88W8987_SDS All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Table 39. SDIO timing data—DDR50 mode (50 MHz)...continued

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Units
T _{IH}	Input hold time C _{CARD} ≤ 10 pF (1 card)	DDR50	0.8			ns
CMD Output	(referenced to clock rising	edge)				
T _{ODLY}	Output delay time during data transfer mode $C_L \le 30 \text{ pF } (1 \text{ card})$	DDR50			13.7	ns
T _{OHLD}	Output hold time $C_L \ge 15 \text{ pF (1 card)}$	DDR50	1.5			ns
DAT[3:0] Inp	ut (referenced to clock risin	g and falling edges)	1	J	1	
T _{IS2x}	Input setup time C _{CARD} ≤ 10 pF (1 card)	DDR50	3			ns
T _{IH2x}	Input hold time C _{CARD} ≤ 10 pF (1 card)	DDR50	0.8			ns
DAT[3:0] Out	put (referenced to clock ris	ing and falling edges)	1	J	1	
T _{ODLY2x (max)}	Output delay time during data transfer mode C _L ≤ 25 pF (1 card)	DDR50			7.0	ns
T _{ODLY2x (min)}	Output hold time C _L ≥ 15 pF (1 card)	DDR50	1.5			ns

9.6.6 SDIO internal pull-up/pull-down specifications

Table 40. SDIO internal pull-up/pull-down specifications

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Condition	Min	Тур	Max	Unit
Internal nominal pull-up/pull-down resistance		60	90	120	kΩ

9.7 High-speed UART specifications

The UART Tx and Rx pins are powered by VIO voltage supply.

See Section 9.1.1 "VIO DC characteristics" for DC specifications.

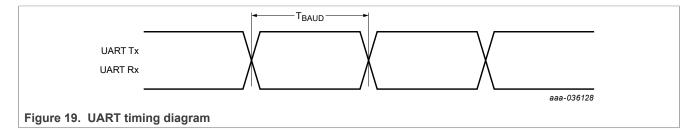
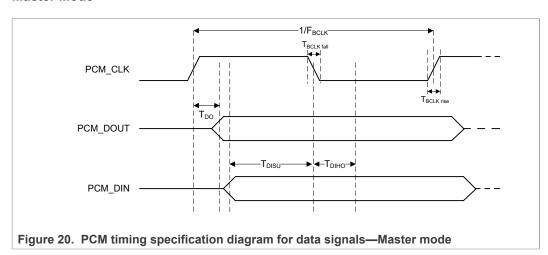


Table 41. UART timing data^[1]

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{BAUD}	Baud rate	38.4 MHz input clock	250			ns

^[1] The acceptable deviation from the UART Rx target baud rate is ±3%.


9.8 Audio interface specifications

9.8.1 PCM interface specifications

The PCM pins are powered by VIO voltage supply. See <u>Section 9.1.1 "VIO DC characteristics"</u> for specifications.

Downloaded from **Arrow.com**.

Master Mode

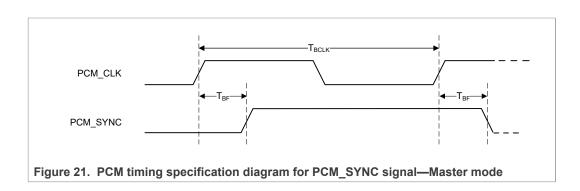
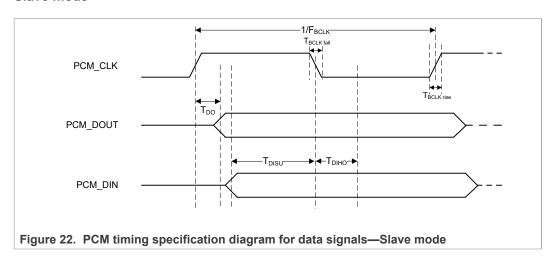



Table 42. PCM timing specification data—Master mode

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{BCLK}	Bit clock frequency		2	2/2.048	2.048	MHz
Duty Cycle _{BCLK}	Bit clock duty cycle		0.4	0.5	0.6	
T _{BCLK rise/fall}	PCM_CLK rise/fall time			3		ns
T _{DO}	Delay from PCM_CLK rising edge to PCM_DOUT rising edge				15	ns
T _{DISU}	Setup time for PCM_DIN before PCM_ CLK falling edge		20			ns
T _{DIHO}	Hold time for PCM_DIN after PCM_CLK falling edge		15			ns
T _{BF}	Delay from PCM_CLK rising edge to PCM_SYNC rising edge				15	ns

Slave mode

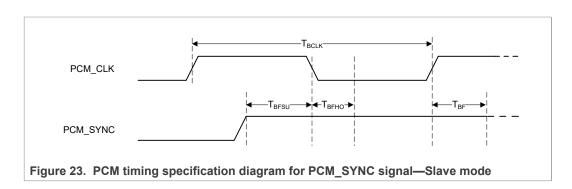


Table 43. PCM timing specification data—Slave mode

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{BCLK}	Bit clock frequency		0.512	2/2.048	4	MHz
Duty Cycle _{BCLK}	Bit clock duty cycle		0.4	0.5	0.6	
T _{BCLK rise/fall}	PCM_CLK rise/fall time			3		ns
T _{DO}	Delay from PCM_CLK rising edge to PCM_DOUT rising edge				30	ns
T _{DISU}	Setup time for PCM_DIN before PCM_ CLK falling edge		15			ns
T _{DIHO}	Hold time for PCM_DIN after PCM_CLK falling edge		10			ns
T _{BFSU}	Setup time for PCM_SYNC before PCM_CLK falling edge		15			ns
T _{BFHO}	Hold time for PCM_SYNC after PCM_ CLK falling edge		10			ns

9.9 Reference clock specifications

9.9.1 External crystal oscillator specifications

The reference clock from the external crystal oscillator requires a CMOS input signal.

Note: All new designs should use the 38.4 MHz reference clock. For existing designs the 26 MHz reference clock can still be used.

Table 44. Clock DC specifications^[1]

Parameter	Condition	Min	Тур	Max	Unit
Single-ended high-level voltage				1.8	V
Single-ended low-level voltage		0			V
Clock amplitude (pk-pk)		0.5		1	V
Mid-point slope		125			MV/s

^[1] The AC-coupling capacitor is integrated into the SoC.

Table 45. 26 MHz clock timing

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Condition	Min	Тур	Max	Unit
XO26 period		38.46 - 20 ppm	38.46	38.46 + 20 ppm	ns
XO26 rise time				5.00	ns
XO26 fall time				5.00	ns
XO26 duty cycle		48.05	50	51.95	%

Table 46. 38.4 MHz clock timing

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Condition	Min	Тур	Max	Unit
XO38_4 period		26.04 - 20 ppm	26.04	26.04 + 20 ppm	ns
XO38_4 rise time				2.50	ns
XO38_4 fall time				2.50	ns
XO38_4 duty cycle		47.12	50	52.88	%

Table 47. Phase Noise—2.4 GHz operation

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Test Conditions	Min	Тур	Max	Unit
Fref = 26 MHz	Offset = 1 kHz			-126	dBc/Hz
	Offset = 10 kHz			-137	dBc/Hz
	Offset = 100 kHz			-145	dBc/Hz
	Offset > 1 MHz			-145	dBc/Hz
Fref = 38.4 MHz	Offset = 1 kHz			-123	dBc/Hz
	Offset = 10 kHz			-134	dBc/Hz
	Offset = 100 kHz			-142	dBc/Hz
	Offset > 1 MHz			-142	dBc/Hz

Table 48. Phase Noise—5 GHz operation

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Test Conditions	Min	Тур	Max	Unit
Fref = 26 MHz	Offset = 1 kHz			-130	dBc/Hz
	Offset = 10 kHz			-150	dBc/Hz
	Offset = 100 kHz			-156	dBc/Hz
	Offset > 1 MHz			-156	dBc/Hz
Fref = 38.4 MHz	Offset = 1 kHz			-126	dBc/Hz
	Offset = 10 kHz			-146	dBc/Hz
	Offset = 100 kHz			-154	dBc/Hz
	Offset > 1 MHz			-154	dBc/Hz

Downloaded from Arrow.com.

9.9.2 External crystal specifications

Note: All new designs should use the 38.4 MHz reference clock. For existing designs the 26 MHz reference clock can still be used.

Table 49. External crystal specifications

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Condition	Min	Тур	Max	Unit
Fundamental frequencies			26 or 38.4		MHz
Resonance mode			A1, Fundamental		
Equivalent differential load capacitance			5		pF
Shunt capacitance			2		pF
Frequency tolerance	Over process at 25°C		±10		ppm
Frequency stability	Over operating temperature		±10		ppm
Aging			±2		ppm/ 5 years
Series resistance (ESR)	38.4 MHz			60	Ω
	26 MHz			60	Ω
Insulation resistance	at DC 100V	500			МΩ
Drive level		150			μW

9.9.3 External sleep clock specifications

Table 50. External sleep clock specifications^[1]

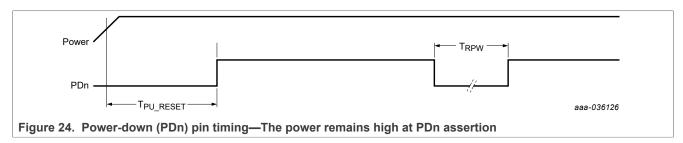
Parameter	Min	Тур	Max	Units
Clock frequency range/accuracy CMOS input clock signal type ±250 ppm (initial, aging, temperature)		32.768		kHz
Phase noise requirement (@ 100 kHz)		-125		dBc/Hz
Cycle jitter		1.5		ns (RMS)
Slew rate limit (10-90%)			100	ns
Duty cycle tolerance	20		80	%

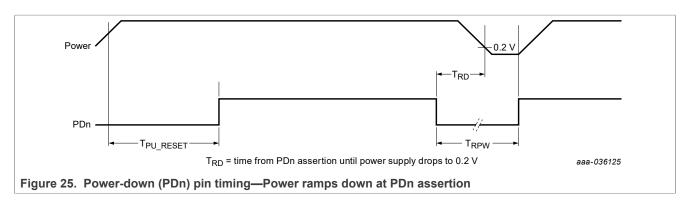
^[1] Voltage input levels = 1.8V or 3.3V. See Section 8 "Recommended operating conditions".

9.10 Power-down (PDn) pin specifications

9.10.1 PDn asserted low—All power supplies good

<u>Figure 24</u> and <u>Table 51</u> show the specifications for the PDn signal when it is asserted (low) while all power supplies to the device are good.




Table 51. Power-down (PDn) pin specifications—The power remains high at PDn assertion Unless otherwise specified, the values apply per the Recommended operating conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{PU_RESET}	Valid power to PDn de- asserted		0			ms
T _{RPW}	PDn pulse width		1 ^[1]			μs
V _{IH}	Input high voltage		1.4		4.5	V
V _{IL}	Input low voltage		-0.4		0.5	V

^[1] Minimum value guaranteed for a valid reset. Smaller values may put the device in an undefined state.

9.10.2 PDn asserted Low—One or more power supplies ramp down

<u>Figure 25</u> and <u>Table 52</u> show the specifications for the PDn signal when it is asserted (low) while 1 or more of the power supplies (including VCORE) ramps down.

88W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 52. Power-down (PDn) pin secifications—Power ramps down at PDn assertion

Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{PU_RESET}	Valid power to PDn de- asserted		0	_	_	ms
T _{RPW}	PDn pulse width		T _{RD} ^[1]	_	_	μs
V _{IH}	Input high voltage		1.4	_	4.5	V
V _{IL}	Input low voltage		-0.4	_	0.2	V

^[1] Minimum value guaranteed for a valid reset. Smaller values may put the device in an undefined state.

9.11 Configuration pin specifications

For a list of configuration pins, see Section 5.6 "Configuration pins".

Table 53. Configuration pin specifications^[1]
Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Parameter	Condition	Min	Тур	Max	Unit
Internal weak pull-up resistance	Around 1 ms following any reset	_	800	_	kΩ
Internal nominal pull-up resistance	Around 1 ms following any reset	_	100	_	kΩ

^[1] After approximately 1 ms, the configuration pins become functional pins.

Downloaded from Arrow.com.

9.12 JTAG interface specifications

The test interface pins are powered by VIO voltage supply.

See Section 9.1.1 "VIO DC characteristics" for specifications.

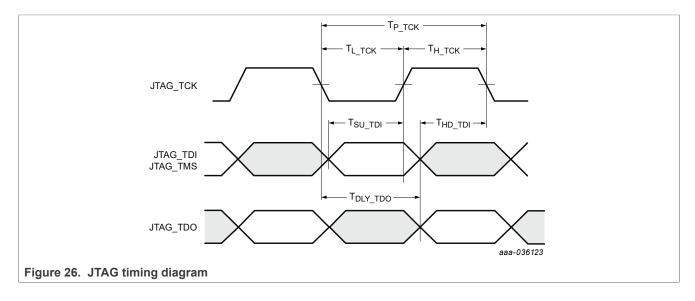


Table 54. JTAG timing data^[1]
Unless otherwise specified, the values apply per Section 8 "Recommended operating conditions"

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{P_TCK}	TCK period		40			ns
T _{H_TCK}	TCK high		12			ns
T _{L_TCK}	TCK low		12			ns
T _{SU_TDI}	TDI, TMS to TCK setup time		10			ns
T _{HD_TDI}	TDI, TMS to TCK hold time		10			ns
T _{DLY_TDO}	TCK to TDO delay		0		15	ns

[1] Does not apply to JTAG enabled by the JTAG_TMS pin.

10 Package information

10.1 Package thermal conditions

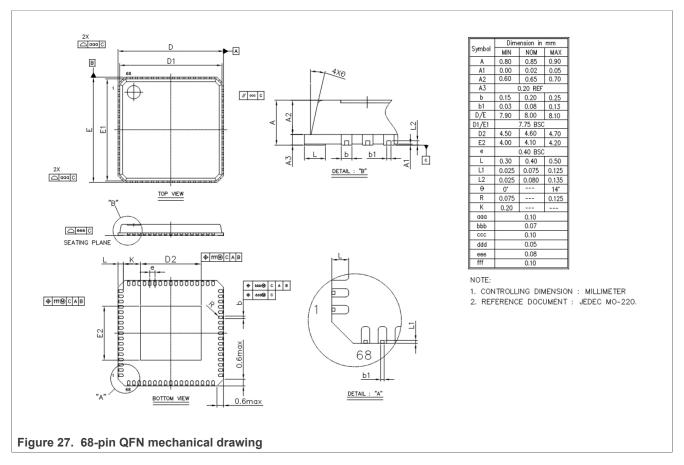
10.1.1 68-pin QFN thermal conditions

Table 55. Thermal conditions—QFN package

Symbol	Parameter	Condition	Тур	Unit
θ_{JA}	Thermal resistance Junction to ambient of package. $\theta_{JA} = (T_J - T_A)/P$	24 x 30 x 1.05 mm 6-layer PCB no air flow	43.00	°C/W
	P = total power dissipation	24 x 30 x 1.05 mm 6-layer PCB 1 meter/sec air flow	36.90	°C/W
		24 x 30 x 1.05 mm 6-layer PCB 2 meter/sec air flow	32.50	°C/W
		24 x 30 x 1.05 mm 6-layer PCB 3 meter/sec air flow	30.30	°C/W
ΤυΨ	Thermal characteristic parameter Junction to top-center of package. $\psi_{JT} = (T_J - T_{TOP})/P$ $T_{TOP} = temperature on top-center of package$	24 x 30 x 1.05 mm 6-layer PCB no air flow	4.10	°C/W
ΨЈВ	Thermal characteristic parameter Junction to bottom surface, center of package. $\psi_{JB} = (T_J - T_B)/P$ $T_B = surface temperature of package$	24 x 30 x 1.05 mm 6-layer PCB no air flow	13.80	°C/W
θ _{JC}	Thermal resistance Junction to case of the package. $\theta_{JC} = (T_J - T_C) / P_{TOP}$ $T_C = \text{temperature on top-center of package}$ $P_{TOP} = \text{power dissipation from top of package}$	24 x 30 x 1.05 mm 6-layer PCB no air flow	13.80	°C/W
θ_{JB}	Thermal resistance Junction to board of package. $\theta_{JB} = (T_J - T_B)/P_{BOTTOM}$ $P_{BOTTOM} = power dissipation from bottom of package to PCB surface$	24 x 30 x 1.05 mm 6-layer PCB no air flow	14.10	°C/W

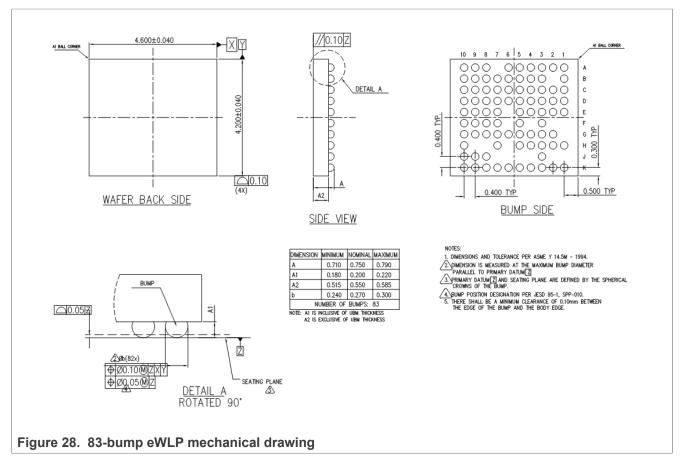
Downloaded from Arrow.com.

10.1.2 83-bump eWLP thermal conditions


Table 56. Thermal conditions—eWLP package

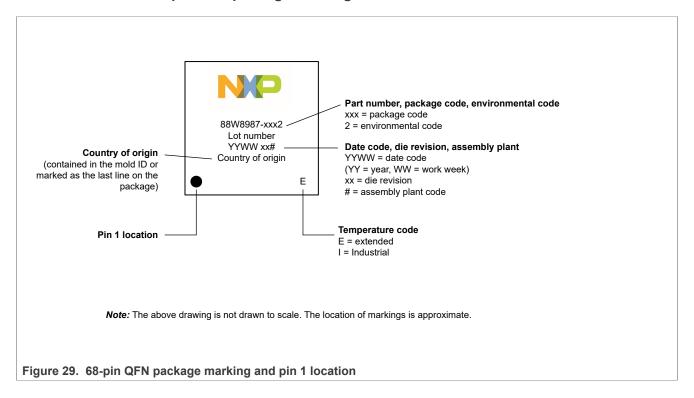
Symbol	Parameter	Condition	Тур	Unit
$\theta_{JA} = (T_J - T_A)/P$	Junction to ambient of package. $\theta_{JA} = (T_J - T_A)/P$	JEDEC 4 in. x 4.5 in. 4-layer PCB with 41 thermal via no air flow	28.07	°C/W
	P = total power dissipation	JEDEC 4 in. x 4.5 in. 4-layer PCB with no thermal via no air flow	41.96	°C/W
ΨЈТ	Thermal characteristic parameter Junction to top-center of package. $\psi_{JT} = (T_J - T_{TOP})/P$ $T_{TOP} = temperature on top-center of package$	JEDEC 4 in. x 4.5 in. 4-layer PCB with no thermal via no air flow	0.08	°C/W
ΨЈВ	Thermal characteristic parameter Junction to bottom surface, center of package. $\psi_{JB} = (T_J - T_B)/P$ $T_B = surface temperature of package$	JEDEC 4 in. x 4.5 in. 4-layer PCB with no thermal via no air flow	15.30	°C/W

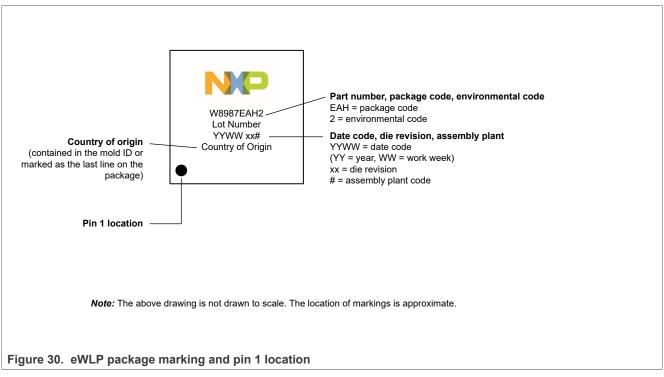
71 / 89


10.2 Package mechanical drawing

10.2.1 68-pin QFN mechanical drawing

Note: See also Section 10.1.1 "68-pin QFN thermal conditions" and Section 10.3.1 "68-pin QFN package marking".


10.2.2 83-bump eWLP mechanical drawing


• Dimensions in mm. Also refer to <u>Section 10.1.2 "83-bump eWLP thermal conditions"</u> and Section 10.3.2 "83-bump eWLP package marking".

10.3 Package marking

10.3.1 68-pin QFN package marking

10.3.2 83-bump eWLP package marking

38W8987_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

11 Acronyms and abbreviations

Table 57. Acronyms and abbreviations

Acronym	Definition
A2DP	Advanced audio distribution profiles
ABR	Automatic baud rate
ACK	Acknowledgment
ADAS	Advanced driver assistance systems
ADC	Analog-to-digital converter
AES	Advanced encryption standard
AFC	Automatic frequency correction
AFH	Adaptive frequency hopping
AGC	Automatic gain control
АНВ	Advanced high-performance bus
AIFS	Arbitration inter-frame space
AoA	Angle of arrival
AoD	Angle of departure
AP	Access point
APB	Advanced peripheral bus
API	Application program interface
ARM	Advanced RISC machine
ATIM	Announcement traffic indication message
BAMR	Base address mask register
BAR	Base address register
BBU	Baseband processor unit
ВСВ	Benzocyclobutene (flip chip bump process)
BDR	Basic data rate
BER	Bit error rate
ВОМ	Bill of materials
BR	Baud rate
BRF	Bluetooth RF unit
BSS	Basic service set
BSSID	Basic service set identifier
ВТМ	BSS transition management
BTU	Bluetooth baseband unit
BWQ	Bandwidth queue
СВС	Cipher block chaining
СВР	Contention-based period

Table 57. Acronyms and abbreviations...continued

Acronym	and abbreviationscontinued Definition
CCA	Clear channel assessment
ССК	Complementary code keying
CCMP	Counter mode CBC-MAC protocol
CDE	Close descriptor enable
CFP	Contention-free period
CFQ	Contention-free queue
CID	Connection identifier
CIS	Card information structure
CIU	CPU interface unit
CMD	Command
CMQ	Control management queue
CRC	Cyclic redundancy check
CS	Card select
CSL	Coordinated sampled listening
CSMA/CA	Carrier sense multiple access / collision avoidance
CSMA/CD	Carrier sense multiple access / collision detection
CSU	Clocked serial unit
CTS	Clear to send
DAC	Digital-to-analog converter
DBPSK	Differential binary phase shift keying
DCD	Device controller driver
DCE	Data communication equipment
DCF	Distributed coordination function
DCLA	Direct current level adjustment
DCLB	Digital contactless bridge
DCU	DMA controller unit
DFS	Dynamic frequency selection
DIFS	Distributed inter frame space
DMA	Direct memory access
dQH	Device queue head
DQPSK	Differential quadrature phase shift keying
DSM	Distribution system medium
DSP	Digital signal processor
DSRC	Dedicated short range communications
dTD	Linked list transfer descriptors
DTIM	Delivery traffic indication message

Downloaded from Arrow.com.

Table 57. Acronyms and abbreviations...continued

Table 57. Acronyms and abbreviationscontinued				
Acronym	Definition			
DUP	Duplicated packet			
DVSC	Digital voltage scaling control			
EAP	Extensible authentication protocol			
EBRAM	Extended block random access memory			
ECDSA	Elliptic curve digital signature algorithm			
ED	Energy detect			
EDCA	Enhanced distributed channel access			
EEPROM	Electrically erasable programmable read only memory			
EIFS	Extended inter frame Space			
EMC	Electromagnetic compatibility			
ER	Extended range			
ERP-OFDM	Extended rate PHY-orthogonal frequency division multiplexing			
ETSI	European telecommunications standards institute			
eWLP	Embedded wafer level package			
FAE	Field application engineer			
FCC	Federal communications commission			
FIFO	First in first out			
FIPS	Federal information processing standards			
FIQ	Fast interrupt request			
FPU	Floating point unit			
FW	Firmware			
GATT	Generic attribute profile			
GCMP	Galois/counter mode protocol			
GI	Guard interval			
GPIO	General purpose input/output			
GPL	General Public License			
GPT	General purpose timer			
GPU	General purpose input/output unit			
HID	Human interface device			
HIU	Host interface unit			
HOGP	HID over GATT profile			
HSP	Hands-free profile			
HT	High throughput			
HVQFN	Thermal enhanced very thin quad flat package			
HW	Hardware			
I/F	Interface			
	ı.			

Downloaded from Arrow.com.

Table 57. Acronyms and abbreviations...continued

Acronym	and abbreviationscontinued Definition
I/Q	In-phase/quadrature
IB	In band
IBSS	Independent basic service set
ICE	In-circuit emulator (or emulation)
ICR	Interrupt cause register
ICU	Interrupt controller unit
ICV	Integrity check value
IE	Information element
IEEE	Institute of electrical and electronics engineers
IEMR	Interrupt event mask register
IFS	inter frame space
IMR	Interrupt mask register
IPG	Inter-packet gap
IPsec	Internet protocol security
IR	Infrared
IRQ	Interrupt request
ISA	Instruction set architecture
ISDN	Integrated services digital network
ISM	Industrial, scientific, and medical
ISMR	Interrupt status mask register
ISR	Interrupt status register
JEDEC	Joint electronic device engineering council
JTAG	Joint test action group
LC3	Low complexity communication codec
LDPC	Low density parity check
LE	Low energy
LED	Light emitting diode
LME	Layer management entity
LNA	Low noise amplifier
LPM	Low power management
LSb	Least significant bit
LSB	Least significant byte
LSP	Low-speed peripheral
LTE	Long term evolution
MAC	Media/medium access controller
MC	Memory controller

Downloaded from Arrow.com.

Table 57. Acronyms and abbreviations...continued

Acronym	and abbreviationscontinued Definition
MCI	Microcontroller subsystem
MCS	Modulation and coding scheme
MCU	MAC Control unit
MDI	Modem data interface
MIB	Management information base
MIC	Message integrity code
MII	Media independent interface
MIMO	Multiple input multiple output
MIPS	Million instructions per second
MLME	MAC sublayer management entity
MMI	Modem management interface
MMPDU	MAC management protocol data unit
MMU	Memory management unit
MPDU	MAC protocol data unit
MPU	Memory protection unit
MSb	Most significant bit
MSB	Most significant byte
MSDU	MAC service data unit
MU-MIMO	Multi user MIMO
MU-PPDU	Multi user PPDU
MWS	Mobile wireless system Multimedia wireless system
NAV	Network allocation vector
NBS	Narrow band speech
NDP	Null data packet
NL	No load
NPTR	Next descriptor pointer
Nsts	Number of space time streams
NVIC	Nested vector interrupt controller
ОСВ	Outside the context of a BSS
OFDM	Orthogonal frequency division multiplexing
OID	Object identifier
ООВ	Out of band
ОТР	One time programmable
P2P	Peer-to-peer

Product short data sheet

Table 57. Acronyms and abbreviations...continued

Acronym	s and abbreviationscontinued Definition
PAD	Packet assembler/disassembler
PBU	Peripheral bus unit
PC	Point coordinator
РСВ	Printed circuit board
PCF	Point coordination function
PCI	Peripheral component interconnect
PCIe	PCI express
PCM	Pulse code modulation
PDn	Power down
PDU	Protocol data unit
PEAP	Protected EAP
PHY	Physical layer
PIFS	Priority inter frame space
PLL	Phase-locked loop
PLME	Physical layer management entity
PMU	Power management unit
POS	Point of sale
POST	Power-on self test
PPDU	PHY protocol data unit
PPK	Per-packet key
PPM	Pulse position modulation
PSK	Pre shared keys
PTA	Packet traffic arbitration
PUF	Physically unclonable function
PWK	Pairwise key
QAM	Quadrature amplitude modulation
QFN	Quad flat non-leaded package
QoS	Quality of service
RA	Receiver address
RBDS	Radio broadcast data system
RDS	Radio data system
RF	Radio frequency
RFID	Radio frequency identification
RIFS	Reduced inter frame space
RISC	Reduced instruction set computer
ROM	Read only memory

Table 57. Acronyms and abbreviations...continued

Acronym	Definition
RSSI	Receiver signal strength indication
RTC	Real time clock
RTS	Request to send
RTU	General purpose timer unit
RU	Resource unit
SA	Source address
SAP	Service access point
SCLK	Serial interface clock
SDA	Serial interface data
SDK	Software development kit
SE	Secure element
SFD	Start of frame delimiter
SHA	Secure hash algorithm
SIFS	Short inter frame space
SISO	Single input single output
SIU	Serial interface unit (UART)
SJU	System/software JTAG controller unit
SM	Switch module
SMI	Serial management interface
SNR	Signal-to-noise ratio
SO	Serial out
SoC	System-on-chip
SPDT	Single pole double throw
SPI	Serial peripheral interface
SQU	Internal SRAM unit
SRWB	Serial interface read write
SS	Service set
SSID	Service set identifier
STA	Station
STBC	Space-time block code
SWD	Serial wire debug
SWP	Single wire protocol
SysTick	System tick timer
TA	Transmitter address
TBG	Time base generator
ТВТТ	Target beacon transmission time

Table 57. Acronyms and abbreviations...continued

12 Revision history

Table 58. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
88W8987_SDS v.3.0	20210915	Product short data sheet	-	88W8987_SDS v.2.0
Modifications	supported. Upda - Section 1 "Pro - Section 1.2 "V - Section 3.5 "V • Section 9.8.1 "P - PCM_CLK in and T _{BCLK} fall	ated sections: oduct overview" Vi-Fi key features" Vi-Fi encryption" CM interface specification Figure 20 and Figure 22:	o <mark>ns"</mark> : renamed T _{BCLK} as	ntion methods are no longer $1/F_{BCLK}$, added T_{BCLK} rise
88W8987 SDS v.2.0	20210521	Product short data	_	00M0007 CDC v 1 0
33113301_320 1.2.0		sheet		88W8987_SDS v.1.0
Modifications			ce to version 5.2	000V0907_3D3 V.1.0

13 Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

13.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

88W8987 SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

88W8987 SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

Tables

Tab. 1.	Part order codes	6	Tab. 32.	Bluetooth and Bluetooth LE receiver	
Tab. 2.	Pin types	15		performance	48
Tab. 3.	Pin list by number		Tab. 33.	Bluetooth and Bluetooth LE transmitter	
Tab. 4.	Pad locations—83-bump eWLP		Tab. 34.	Current consumption	
Tab. 5.	General purpose I/O (GPIO) (MFP)		Tab. 35.	DC electrical characteristics—1.8V	
Tab. 6.	Wi-Fi/Bluetooth radio interface - QFN			operation (VIO_SD)	55
	package	26	Tab. 36.	SDIO timing data—Default Speed, High-	
Tab. 7.	Wi-Fi/Bluetooth radio interface - eWLP			Speed Modes	56
	package option		Tab. 37.	SDIO timing data——SDR12, SDR25,	
Tab. 8.	Wi-Fi RF front-end control interface	26		SDR50 Modes (up to 100 MHz) (1.8V)	57
Tab. 9.	SDIO host interface	27	Tab. 38.	SDIO timing data—SDR104 mode (208	
Tab. 10.	UART host interface (MFP)	27		MHz)	58
Tab. 11.	Audio interface pins (MFP)		Tab. 39.	SDIO timing data—DDR50 mode (50 MHz)	59
Tab. 12.	Configuration interface		Tab. 40.	SDIO internal pull-up/pull-down	
Tab. 13.	Clock interface (MFP)			specifications	60
Tab. 14.	Power down (PDn) pin		Tab. 41.	UART timing data	
Tab. 15.	Power supply and ground		Tab. 42.	PCM timing specification data—Master	
Tab. 16.	Configuration pins			mode	. 62
Tab. 17.	Host configuration options		Tab. 43.	PCM timing specification data—Slave	0_
Tab. 18.	Absolute maximum ratings			mode	63
Tab. 19.	Limiting values - QFN option		Tab. 44.	Clock DC specifications	
Tab. 20.	Limiting values - eWLP option		Tab. 45.	26 MHz clock timing	
Tab. 21.	Recommended operating conditions		Tab. 46.	38.4 MHz clock timing	
Tab. 21.	DC electrical characteristics—1.8V	50	Tab. 47.	Phase Noise—2.4 GHz operation	
Iau. ZZ.	operation (VIO)	37	Tab. 47.	Phase Noise—5 GHz operation	
Tab. 23.	DC electrical characteristics—3.3V	01	Tab. 49.	External crystal specifications	
1ab. 25.	operation (VIO)	27	Tab. 50.	External sleep clock specifications	
Tab. 24.	LED mode data				00
		31	Tab. 51.	Power-down (PDn) pin specifications—The	67
Tab. 25.	DC electrical characteristics—1.8V	20	Tob EO	power remains high at PDn assertion	67
T-1- 00	operation (VIO_RF)	38	Tab. 52.	Power-down (PDn) pin secifications—	00
Tab. 26.	DC electrical characteristics—3.3V	00	T 1 50	Power ramps down at PDn assertion	
T . 07	operation (VIO_RF)		Tab. 53.	Configuration pin specifications	
Tab. 27.	2.4 GHz Wi-Fi receiver performance		Tab. 54.	JTAG timing data	
Tab. 28.	5 GHz Wi-Fi receiver performance		Tab. 55.	Thermal conditions—QFN package	
Tab. 29.	2.4 GHz Wi-Fi transmitter performance		Tab. 56.	Thermal conditions—eWLP package	
Tab. 30.	5 GHz Wi-Fi transmitter performance		Tab. 57.	Acronyms and abbreviations	
Tab. 31.	Local oscillator	47	Tab. 58.	Revision history	83
Figure	es				
Fig. 1.	Application diagram—QFN package option	2	Fig. 11.	Power-down sequence	34
Fig. 2.	Application diagram—eWLP package		Fig. 12.	RF performance measurement points	
1 19. 2.	option	2	Fig. 13.	SDIO protocol timing diagram—Default	00
Fig. 3.	Internal block diagram—QFN package	2	1 lg. 13.	speed mode	55
ı ıg. ö.	option	5	Fig. 14.	SDIO protocol timing diagram—High-speed	55
Eig 1	Internal block diagram—eWLP package		1 ig. 14.		55
Fig. 4.		E	Fig. 1E	mode	55
F: F	option		Fig. 15.	SDIO protocol timing diagram—SDR12,	
Fig. 5.	Part numbering scheme			SDR25, SDR50 Modes (up to 100 MHz)	
Fig. 6.	Signal diagram—QFN		F: 40	(1.8V)	5/
Fig. 7.	Signal diagram—eWLP	14	Fig. 16.	SDIO protocol timing diagram—SDR104	
Fig. 8.	Pin assignment—68-pin QFN package	40	F: 1=	mode (208 MHz)	58
- : •	option	16	Fig. 17.	SDIO CMD timing diagram—DDR50 mode	
Fig. 9.	Pad locations—83-bump eWLP (non-			(50 MHz)	59
- :	bump-side view, bumps down)		Fig. 18.	SDIO DAT[3:0] timing diagram—DDR50	
Fig. 10.	Power-up sequence	33		mode (50 MHz)	59
88W8987_SDS	All information provi	ded in this docu	ment is subject to leg	gal disclaimers. © NXP B.V. 2021. All rights re	served

Product short data sheet

NXP Semiconductors

88W8987_SDS

2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution

Fig. 19.	UART timing diagram61	Fig. 24.	Power-down (PDn) pin timing—The power	
Fig. 20.	PCM timing specification diagram for data		remains high at PDn assertion	67
	signals—Master mode62	Fig. 25.	Power-down (PDn) pin timing—Power	
Fig. 21.	PCM timing specification diagram for		ramps down at PDn assertion	67
	PCM_SYNC signal—Master mode62	Fig. 26.	JTAG timing diagram	69
Fig. 22.	PCM timing specification diagram for data	Fig. 27.	68-pin QFN mechanical drawing	72
	signals—Slave mode63	Fig. 28.	83-bump eWLP mechanical drawing	73
Fig. 23.	PCM timing specification diagram for	Fig. 29.	68-pin QFN package marking and pin 1	
PC	PCM_SYNC signal—Slave mode 63		location	74
		Fig. 30.	eWLP package marking and pin 1 location	74

Contents

1	Product overview	1	9.2	RF front-end control interface specifications	38
1.1	Applications	3	9.2.1	VIO_RF DC characteristics	38
1.2	Wi-Fi key features	3	9.2.1.1	1.8V operation	38
1.3	Bluetooth key features		9.2.1.2	3.3V operation	
1.4	Host interfaces		9.3	Wi-Fi radio specifications	
1.5	Operating characteristics		9.3.1	Wi-Fi radio performance measurement	
1.6	General features		9.3.2	2.4 GHz Wi-Fi receiver performance	
1.7	Internal block diagram		9.3.3	5 GHz Wi-Fi receiver performance	
2	Ordering information		9.3.4	2.4 GHz Wi-Fi transmitter performance	
3	Wi-Fi subsystem		9.3.5	5 GHz Wi-Fi transmitter performance	
3.1	IEEE 802.11 standards		9.3.6	Local oscillator	
3.2	Wi-Fi MAC		9.4	Bluetooth radio specifications	
3.3	Wi-Fi baseband		9.4.1	Bluetooth and Bluetooth LE receiver	40
3.4	Wi-Fi radio		9. 4 .1	performance	/Ω
3.5			9.4.2	Bluetooth and Bluetooth LE transmitter	40
	Wi-Fi encryption		9.4.2		50
3.6	Wi-Fi host interfaces		0.5	performance	
4	Bluetooth subsystem		9.5	Current consumption	
4.1	2.4 GHz Bluetooth Tx/Rx		9.6	SDIO host interface specifications	
4.2	Bluetooth Low Energy (LE)		9.6.1	VIO_SD DC characteristics	. 55
4.3	Bluetooth host interfaces		9.6.1.1	1.8V operation	
4.4	Coexistence		9.6.2	Default speed, high-speed modes	55
4.5	PCM interface		9.6.3	SDR12, SDR25, SDR50 modes (up to 100	
5	Pin information			MHz) (1.8V)	
5.1	Signal diagrams		9.6.4	SDR104 mode (208 MHz) (1.8V)	
5.1.1	Signal diagram for QFN package option	13	9.6.5	DDR50 mode (50 MHz) (1.8V)	59
5.1.2	Signal diagram for eWLP package option	14	9.6.6	SDIO internal pull-up/pull-down	
5.2	Pin types	15		specifications	. 60
5.3	Pin assignment—68-pin QFN	16	9.7	High-speed UART specifications	
5.3.1	Pin list by number		9.8	Audio interface specifications	
5.4	Pad locations—83-bump eWLP		9.8.1	PCM interface specifications	
5.5	Pin description		9.9	Reference clock specifications	
5.5.1	Pin states		9.9.1	External crystal oscillator specifications	
5.5.2	General purpose I/O (GPIO)		9.9.2	External crystal specifications	
5.5.3	Wi-Fi/Bluetooth radio interface		9.9.3	External sleep clock specifications	
5.5.4	Wi-Fi RF front-end control interface		9.10	Power-down (PDn) pin specifications	
5.5.5	SDIO host interface		9.10.1	PDn asserted low—All power supplies good	
5.5.6	UART host interface		9.10.2	PDn asserted Low—One or more power	. 01
5.5.7	Audio interface		5.10.2	supplies ramp down	67
5.5.8	Configuration interface		9.11	Configuration pin specifications	
5.5.9	Clock interface		9.11	JTAG interface specifications	
5.5.10	Power down (PDn) pin		10	Package information	
	Power supply and ground	29		Package thermal conditions	
5.5.11			10.1		
5.6	Configuration pins		10.1.1	68-pin QFN thermal conditions	
6	Power information		10.1.2	83-bump eWLP thermal conditions	
6.1	Power-up sequence		10.2	Package mechanical drawing	
6.2	Power-down sequence		10.2.1	68-pin QFN mechanical drawing	
6.3	Reset		10.2.2	83-bump eWLP mechanical drawing	
6.3.1	Lowest power state		10.3	Package marking	
7	Absolute maximum ratings		10.3.1	68-pin QFN package marking	
8	Recommended operating conditions		10.3.2	83-bump eWLP package marking	
9	Electrical specifications		11	Acronyms and abbreviations	
9.1	GPIO/LED interface specifications		12	Revision history	83
9.1.1	VIO DC characteristics	37	13	Legal information	84
9.1.1.1	1.8V operation	37			
9.1.1.2	3.3V operation				
9.1.2	LED mode				

88W8987_SD

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

88W8987_SDS

2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2021.

All rights reserved.