12.5 mm Modular Panel Potentiometer High Dielectric Strength

QUICK REFERENCE DATA	
Multiple module	Up to 7 modules
Switch module	Yes
Detent module	Yes
Special electrical laws	A: linear, L: logarithmic, F: reverse logarithmic and others see specification
Sealing level	IP 64
Lifespan	50 K cycles

FEATURES

- High dielectric strength potentiometer up to 5000 VRMS
- 12.5 mm square single turn panel control

RoHS COMPLIANT

- Plastic shaft and bushing
- Two shaft lengths and 29 terminal styles
- P11P: cermet element
- P11D: conductive plastic element
- Multiple assemblies - up to seven modules
- Test according to CECC 41000 or IEC 60393-1
- Shaft and panel sealed version
- Up to twenty-one indent positions
- Rotary switch options
- Custom designs on request
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

P11P, P11D

GENERAL SPECIFICATIONS

Notes

- Nothing stated herein shall be construed as a guarantee of quality or durability
(1) Consult Vishay Sfernice for other ohmic values

MECHANICAL (initial)	
Mechanical travel	$300^{\circ} \pm 5^{\circ}$
Operating torque (typical) single and dual assemblies three to seven modules (per module)	0.2 Ncm to 1 Ncm max. (0.3 oz.-inch to 1.4 oz.-inch max.) 0.2 Ncm to 0.3 Ncm max. (0.3 oz.-inch to 0.45 oz.-inch max.)
End stop torque	80 Ncm max. (6.8 lb-inch max.)
Tightening torque	150 Ncm max. (13 lb-inch max.)
Weight single assemblies two to seven modules (per module)	$\begin{gathered} 3.5 \mathrm{~g} \\ 1.5 \mathrm{~g} \text { to } 2 \mathrm{~g}(0.25 \mathrm{oz} . \text { to } 0.32 \mathrm{oz} .) \end{gathered}$

ENVIRONMENTAL SPECIFICATIONS	P11P	
	P11D	P1P
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Climatic category	$40 / 100 / 21$	$40 / 100 / 56$
Sealing	IP 64	IP64
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

MARKING

- Potentiometer module

Vishay logo, SAP code of ohmic value, tolerance in \%, variation law, manufacturing date (four digits), " 3 " for the lead 3, product series (P11D, P11P)

- Switch module Version, manufacturing date (four digits), "c" for common lead
- Indent module

Version, manufacturing date (four digits)

PACKAGING

- Box

PERFORMANCES				
TESTS	CONDITIONS	TYPICAL VALUE AND DRIFTS		
			P11D	P11P
Electrical endurance	1000 h at rated power $90^{\prime} / 30^{\prime}$ - ambient temp. $70^{\circ} \mathrm{C}$	$\Delta R_{\mathrm{T}} / R_{\mathrm{T}}$ Contact resistance variation	$\begin{gathered} \pm 10 \% \\ \pm 5 \% \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ & \pm 4 \% \end{aligned}$
Change of temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 5$ cycles	$\Delta R_{T} / R_{T}$	± 0.5 \%	± 0.2 \%
Damp heat, steady state	$+40^{\circ} \mathrm{C}, 93$ \% relative humidity P11P: 56 days, P11D: 21 days	$\begin{gathered} \Delta R_{\mathrm{T}} / R_{\mathrm{T}} \\ \text { Insulation resistance } \end{gathered}$	$\begin{gathered} \pm 5 \% \\ >10 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ > & 1000 \mathrm{M} \Omega \end{aligned}$
Mechanical endurance	50000 cycles	$\Delta R_{\mathrm{T}} / R_{\mathrm{T}}$ Contact resistance variation	$\begin{aligned} & \pm 6 \% \\ & \pm 4 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \\ & \hline \end{aligned}$
Climatic sequence	Dry heat at $+125^{\circ} \mathrm{C} /$ damp heat cold $-55^{\circ} \mathrm{C} /$ damp heat, 5 cycles	$\Delta R_{T} / R_{\text {T }}$	-	$\pm 1 \%$
Shock	50 g 's, 11 ms 3 shocks - 3 directions	$\begin{gathered} \Delta R_{\mathrm{T}} / R_{\mathrm{T}} \\ \Delta R_{1-2} / R_{1-2} \end{gathered}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$
Vibration	10 Hz to 55 Hz 0.75 mm or 10 g 's, 6 h	$\begin{gathered} \Delta R_{\mathrm{T}} / R_{\mathrm{T}} \\ \Delta \mathrm{~V}_{1-2} N_{1-3} \end{gathered}$	$\begin{aligned} & \hline \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$

P11P, P11D

ORDERING INFORMATION (part number)

STANDARD RESISTANCE ELEMENT DATA												
	P11P CERMET						P11D CONDUCTIVE PLASTIC					
STANDARD	LINEAR TAPER			NON LINEAR TAPER			LINEAR TAPER			NON LINEAR TAPER		
RESISTANCE VALUES	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAXX WORKING VOLTAGE	$\begin{aligned} & \text { MAX. CUR. } \\ & \text { THROUGH } \\ & \text { WIPER } \end{aligned}$	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAXX WORKING VOLTAGE	$\begin{aligned} & \text { MAX. CURR } \\ & \text { THROUGH } \\ & \text { WIPER } \end{aligned}$
Ω	W	V	mA									
22	1	4.69	213									
47	1	6.86	146									
50	1	7.07	141									
100	1	10.0	100	0.5	7.07	70.7						
220	1	14.8	67.4	0.5	10.0	47.7						
470	1	21.7	46.1	0.5	15.3	32.6						
500	1	22.4	44.7	0.5	15.8	31.6				0.25	11.2	22.4
1K	1	31.6	31.6	0.5	22.4	22.4	0.5	22.4	22.4	0.25	15.8	15.8
2.2 K	1	46.9	21.3	0.5	33.2	15.1	0.5	33.2	15.1	0.25	23.5	10.7
4.7K	1	63.6	14.5	0.5	48.5	10.3	0.5	48.5	10.3	0.25	34.3	7.29
5K	1	70.7	14.1	0.5	50.0	10.0	0.5	50.0	10.0	0.25	35.4	7.07
10K	1	100	10.0	0.5	70.7	7.07	0.5	70.7	7.07	0.25	50.0	5.00
22K	1	148	6.74	0.5	105	4.77	0.5	105	4.77	0.25	74.2	3.37
47K	1	217	4.61	0.5	153	3.26	0.5	153	3.26	0.25	108	2.31
50K	1	224	4.47	0.5	158	3.16	0.5	158	3.16	0.25	112	2.24
100K	1	316	3.16	0.5	224	2.24	0.5	224	2.24	0.25	158	1.58
220 K	0.56	350	1.59	0.5	332	1.51	0.5	332	1.51	0.25	235	1.07
470K	0.26	350	0.75	0.26	349	0.74	0.26	350	0.74	0.25	343	0.73
500K	0.25	350	0.70	0.25	350	0.70	0.25	350	0.70	0.25	350	0.70
1M	0.12	350	0.35	0.12	350	0.35	0.12	350	0.35			
2.2M	0.56	350	0.16	0.056	350	0.16						
4.7M	0.26	350	0.074									
5M	0.25	350	0.070									
10M	0.12	350	0.035									

P11P, P11D

ORDERING INFORMATION (part number)

BUSHING DIMENSIONS - Dimensions in mm (inches) $\pm 0.5 \mathrm{~mm}$ (± 0.02 ")

PANEL CUT OUT - Dimensions in mm (inches) $\pm 0.5 \mathrm{~mm}\left(\pm 0.02{ }^{\prime \prime}\right)$

Note

- Hardware supplied in separate bags

P11P, P11D
Vishay Sfernice

ORDERING INFORMATION (part number)

LOCATING PEGS (anti-rotation lug)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9.

Bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation lug is not necessary.

CODE	Ø d $(\mathbf{m m})$	\mathbf{L} $(\mathbf{m m})$	EFFECTIVE HIGH PEG
A	2	6.2	0.7
B	2	7.75	0.7
C	3.5	13.5	1.1

PANEL AND SHAFT SEALED

O ring plate can not be used with locating pegs.

Note

- Locating pegs and panel o ring are supplied in separate bags with nuts and washers

P11P, P11D

ORDERING INFORMATION (part number)

SHAFTS - Dimensions in mm (inches) $\pm 0.5 \mathrm{~mm}$ (± 0.02 ")

The shaft length are always measured from the mounting face. Shafts are designed by a 3 letter code (3 digits). Shafts are slotted and aligned to $\pm 10^{\circ}$ of the wiper position.

FIRST DIGIT	
\mathbf{Y}	Soldering lugs
\mathbf{X}	PCB pins
\mathbf{Z}	PCB pins with front support plate
\mathbf{A}	PCB pins with front and back support plates
\mathbf{W}	PCB pins - vertical mounting with 2 extra pins - 1 module only (more modules on request)

SECOND DIGIT	
$\mathbf{0}$	$Y=4.65(0.183 ")$ A, X, Z, W $=5.08\left(0.200^{\prime \prime}\right)$ pin spacing pins section $0.9 \times 0.3\left(0.035^{\prime \prime} \times 0.012 "\right)$
$\mathbf{1}$	2.54 (0.100") pin spacing pin section 0.6 $\times 0.3\left(0.024^{\prime \prime} \times 0.012 "\right)$
$\mathbf{2}$	5.08 (0.200") pin spacing pins section $0.6 \times 0.3\left(0.024^{\prime \prime} \times 0.012 "\right)$

THIRD DIGIT	
$\mathbf{0}$	$5.08(0.200$ "') space between modules
$\mathbf{3}$	$7.62\left(0.300^{\prime \prime}\right)$ space between modules
$\mathbf{4}$	$10.16\left(0.400^{\prime \prime}\right)$ space between modules

ORDERING INFORMATION (part number)

SPECIAL CODES GIVEN BY VISHAY

Option available:

- Custom design on request
- Specific linearity
- Specific interlinerarity
- Specific taper
- Multiple assemblies with various modules

P11 OPTION: ROTARY SWITCH MODULES

- Rotary switch
- Current up to 2 A
- Actuation CW or CCW position
- Sealing IP60

MODULES: RS ON/OFF SWITCH RSI CHANGEOVER SWITCH

The position of each module is free.
RS and RSI rotary switches are housed in a standard P11 module size $12.7 \mathrm{~mm} \times 12.7 \mathrm{~mm} \times 5.08 \mathrm{~mm}\left(0.5^{\prime \prime} \times 0.5^{\prime \prime} \times 0.2^{\prime \prime}\right)$. They have the same terminal styles as the assembled electrical modules.
An assembly can comprise 1 or more switch modules.
Switch actuation is described as seen from the shaft end.
D: Means actuation in maximum CCW position
F: Means actuation in maximum CW position
The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$ and electrical travel of electrical modules is $238^{\circ} \pm 10^{\circ}$.
Leads finish: gold plated

RSD SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

RSF SINGLE POLE SWITCH, NORMALLY OPEN

In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1. Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3. Switch actuation (CCW direction) reverses these positions.

SWITCH SPECIFICATIONS	
Switching power maximum	62.5 VA V $15 \mathrm{VA}=$
Switching current maximum	0.25 A 250 V v $0.5 \mathrm{~A} 30 \mathrm{~V}=$
Maximum current through element	2 A
Contact Resistance	$100 \mathrm{~m} \Omega$
Dielectric strength	Terminal to terminal
	Terminal to bushing
Maximum voltage operation	$5000 \mathrm{~V}_{\mathrm{RMS}}$
Insulation resistance between contacts	250 VMS
Life at $\mathrm{P}_{\text {max. }}$	$10^{6} \mathrm{M} \Omega$
Minimal travel	10000 actuations
Operating temperature	25°

ELECTRICAL DIAGRAM

RSD	RSID	RSIF
RSF	CCW POSITION	CW POSITION

Note
${ }^{(1)}$ Common

ORDERING INFORMATION (First order only)

RSID

SPST: Single pole, open switch in CCW position - 2 pins
RSF SPST: Single pole, open switch in CW position - 2 pins
RSID SPDT: Single pole, changeover switch in CCW position-3 pins
RSIF

$$
\text { SPDT: Single pole, changeover switch in CW position - } 3 \text { pins }
$$

P11 OPTION: DETENT MODULES

The detents mechanism is housed in a standard P11 module. Up to 21 detent positions available.
Count detents as follows: 1 for CCW position, 1 for full CW position, plus the other positions forming equal resistance increments (linear taper) - not equal angles.
Available: CVID - CVIF - CVIM
CV3-CV11-CV21

Mechanical endurance: 10000 cycles
ORDERING INFORMATION (First order only for special code creation)

> CV1M

CV1M 1 detent at half travel

CV1M J84 CV1M with accuracy of center point $\pm 2 \%$ (all tapers except S)
CV1D 1 detent at CCW position
CV1F 1 detent at CW position
CV3 3 detents
CV11 11 detents
CV21 21 detents

P11 OPTION: NEUTRAL MODULES "EN"

Neutral or screen module is housed in a standard P11 module.
It is used as a screen between two electrical modules.
The leads can be connected to ground.
ORDERING INFORMATION (first order only for special code creation)

EN

EN
Neutral module

P11 OPTION: CENTER CURRENT TAP "J"

The extra terminal is a solder lug connected at 50% of electrical travel and siluated in the potentiometer module opposite the terminals.
Center tap presents a short circuit of 11° of travel.

- Sealing IP60

ORDERING INFORMATION (First order only)
\square

J
Center tap

P11 OPTION: SPECIAL LINEARITY - CONFORMITY

ORDERING INFORMATION (First order only)
\square

For other request, contact us. voltage E (centered).
For

P11 OPTION: SPECIAL INTERLINEARITY - INTERCONFORMITY

The independent linearity (conformity for the non linear laws) is the maximum gap $\Delta \mathrm{V}$ between the actual variation curve and the theoretical variation curve the nearest to it. The linearity and the conformity are expressed in percentage of the total applied

$$
\text { linearity conformity }=\frac{ \pm \Delta \mathrm{V}_{\max }}{\mathrm{E}}
$$

They are measured over 90% of actual electrical travel
On request linearity can be guaranteed in linear law.

It is the maximum deviation between the actual voltage outputs of 2 or more pot modules in the same assembly. It is expressed as a percentage of the total applied voltage, or in dB attenuation.
Interlinearity is measured between 2 pot modules, over 20 to 90% of the attenuation.
The interlinearity or interconformity is expressed as a percentage of the total applied voltage:

$$
1 \%=\frac{|C|}{E}
$$

Or in decibels by comparison between outputs V1 and V2

$$
\mathrm{IdB}=20 \log \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}
$$

ORDERING INFORMATION (First order only)
J44

EXAMPLES OF FIRST ORDER INFORMATION

FIRST EXAMPLE: Triple module (switch is counted as a module)

ORDERING INFORMATION:

PART NUMBER
SHAFT AND BUSHING
MODULE NO. 1
MODULE NO. 2
MODULE NO. 3

PART NUMBER DESCRIPTION (used on some Vishay document or label, for information only)

P11P	3	F	0	GG	s	Yoo	10K	20 \%	A			e3
MODEL	MODULES	BUSHING	OPTION	SHAFT	SHAFT	LEADS	Value	TOL.	TAPER	SPECIAL		$\frac{1}{1}$
					STYLE	Leads	value	TOL.	TAPER	SPECIAL	SPECIAL	(Pb)-FREE

RELATED DOCUMENTS	
APPLICATION NOTES	
Potentiometers and Trimmers	www.vishay.com/doc?51001
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

