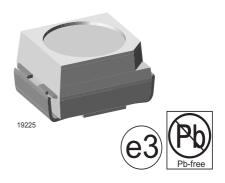


High Intensity SMD LED

Description


This device has been designed to meet the increasing demand for InGaN technology.

The package of the TLMB/ TLMBG/ TLMTG31.. is the PLCC-2 (equivalent to a size B tantalum capacitor).

It consists of a lead frame which is surrounded with a white thermoplast. The reflector inside this package is filled up with clear epoxy.

Features

- SMD LED with exceptional brightness
- · Luminous intensity categorized
- · Compatible with automatic placement equipment
- EIA and ICE standard package
- Compatible with infrared, vapor phase and wave solder processes according to CECC
- Available in 8 mm tape
- · Low profile package
- Non-diffused lens: excellent for coupling to light pipes and backlighting
- Low power consumption
- Luminous intensity ratio in one packaging unit $I_{Vmax}/I_{Vmin} \le 1.6$
- · Lead-free device

Applications

Automotive: Backlighting in dashboards and switches Telecommunication: Indicator and backlighting in telephone and fax

Indicator and backlight for audio and video equipment Indicator and backlight in office equipment Flat backlight for LCDs, switches and symbols General use

Parts Table

Part	Color, Luminous Intensity	Angle of Half Intensity (±φ)	Technology	
TLMB3140	Blue, I _V > 20 mcd	60 °	InGaN on SiC	
TLMBG3100	Blue green, I _V > 20 mcd	60 °	InGaN on SiC	
TLMTG3100	True green, I _V > 66 mcd	60 °	InGaN on SiC	

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified **TLMB3140** , **TLMBG3100** , **TLMT3100**

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	5	V
DC Forward current	T _{amb} ≤ 80 °C	I _F	20	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.2	Α
Power dissipation	T _{amb} ≤ 80 °C	P _V	84	mW
Junction temperature		T _j	110	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C

Document Number 83162 www.vishay.com

Rev. 1.3, 31-Aug-04

TLMB / BG / TG31..

Vishay Semiconductors

Parameter	Test condition	Symbol	Value	Unit
Storage temperature range		T _{stg}	- 40 to + 100	°C
Soldering temperature	t ≤ 5 s	T _{sd}	260	°C
Thermal resistance junction/ ambient	mounted on PC board (pad size > 16 mm ²)	R _{thJA}	350	K/W

Optical and Electrical Characteristics

 $T_{amb} = 25$ °C, unless otherwise specified

Pure green

TLMTG3100

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Luminous intensity 1)	I _F = 20 mA	I _V	80	180		mcd
Dominant wavelength	I _F = 20 mA	λ_{d}	515	528	541	nm
Peak wavelength	I _F = 20 mA	λ_{p}		522		nm
Angle of half intensity	I _F = 20 mA	φ		± 60		deg
Forward voltage	I _F = 20 mA	V _F		3.5	4.2	V
Reverse voltage	I _R = 10 μA	V_{R}	5			V
Temperature coefficient of V _F	I _F = 20 mA	TC _V		- 3.5		mV/K
Temperature coefficient of I _V	I _F = 20 mA	TCI		- 0.3		%/K

¹⁾ in one Packing Unit I_{Vmax}/I_{Vmin} ≤ 1.6

Blue green

TLMBG3100

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Luminous intensity 1)	I _F = 20 mA	I _V	66	130		mcd
Dominant wavelength	I _F = 20 mA	λ_{d}	496	505	514	nm
Peak wavelength	I _F = 20 mA	λ_{p}		502		nm
Angle of half intensity	I _F = 20 mA	φ		± 60		deg
Forward voltage	I _F = 20 mA	V _F		3.5	4.2	V
Reverse voltage	I _R = 10 μA	V_R	5			V
Temperature coefficient of V _F	I _F = 20 mA	TC _V		- 4		mV/K
Temperature coefficient of I _V	I _F = 20 mA	TCI		- 0.2		%/K

 $^{^{1)}}$ in one Packing Unit $I_{Vmax}/I_{Vmin} \le 1.6$

www.vishay.com

Document Number 83162

Rev. 1.3, 31-Aug-04

Blue

TLMB3140

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Luminous intensity 1)	I _F = 20 mA	I _V	20	40		mcd
Dominant wavelength	I _F = 20 mA	λ_{d}	462	470	476	nm
Peak wavelength	I _F = 20 mA	λ _p		464		nm
Angle of half intensity	I _F = 20 mA	φ		± 60		deg
Forward voltage	I _F = 20 mA	V _F		3.5	4.2	V
Reverse voltage	I _R = 10 μA	V_{R}	5			V
Temperature coefficient of V _F	I _F = 20 mA	TC _V		- 4		mV/K
Temperature coefficient of I _V	I _F = 20 mA	TC _I		- 0.4		%/K

 $^{^{1)}}$ in one Packing Unit $I_{Vmax}/I_{Vmin} \leq 1.6$

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

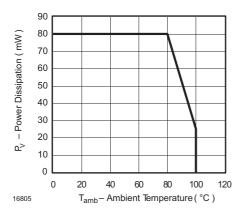


Figure 1. Power Dissipation vs. Ambient Temperature

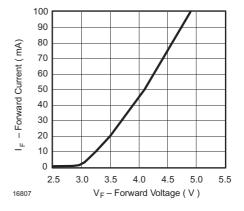


Figure 3. Forward Current vs. Forward Voltage

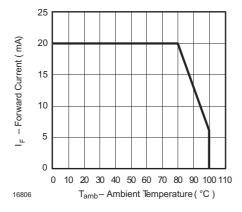


Figure 2. Forward Current vs. Ambient Temperature for InGaN

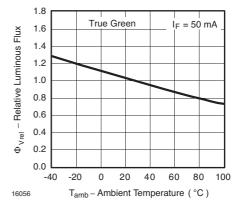


Figure 4. Rel. Luminous Flux vs. Ambient Temperature

Document Number 83162 Rev. 1.3, 31-Aug-04 www.vishay.com

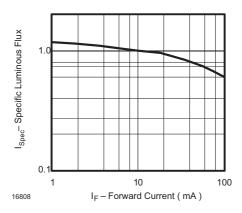


Figure 5. Specific Luminous Flux vs. Forward Current

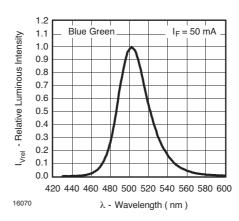


Figure 8. Relative Intensity vs. Wavelength

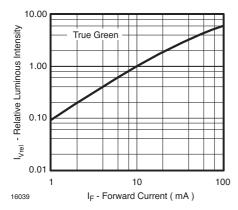


Figure 6. Relative Luminous Flux vs. Forward Current

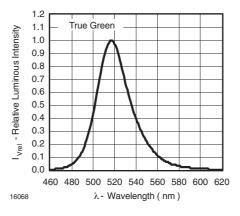


Figure 9. Relative Intensity vs. Wavelength

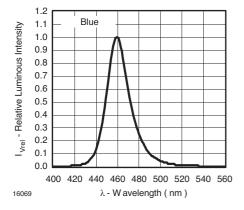


Figure 7. Relative Intensity vs. Wavelength

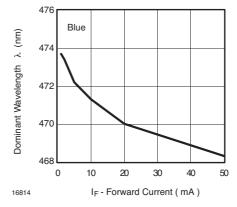


Figure 10. Dominant Wavelength vs. Forward Current

www.vishay.com

Document Number 83162 Rev. 1.3, 31-Aug-04

1

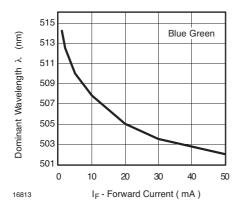


Figure 11. Dominant Wavelength vs. Forward Current

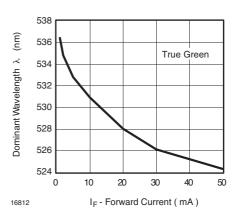
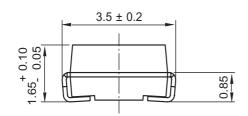
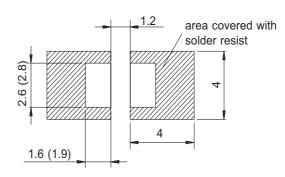



Figure 12. Dominant Wavelength vs. Forward Current

Package Dimensions in mm



Drawing-No.: 6.541-5025.01-4 Issue: 7; 05.04.04

95 11314

Mounting Pad Layout

Dimensions: IR and Vaporphase (Wave Soldering)

Document Number 83162 Rev. 1.3, 31-Aug-04

www.vishay.com

TLMB / BG / TG31..

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

www.vishay.com

Document Number 83162

Rev. 1.3, 31-Aug-04

Downloaded from Arrow.com.

Legal Disclaimer Notice

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08