

Vishay Siliconix

0.25 Ω Low-Voltage Dual SPDT Analog Switch

DESCRIPTION

The DG3535, DG3536 is a sub 1 Ω (0.25 Ω at 2.7 V) dual SPDT analog switches designed for low voltage applications.

The DG3535, DG3536 has on-resistance matching (less than 0.05 Ω at 2.7 V) and flatness (less than 0.2 Ω at 2.7 V) that are guaranteed over the entire voltage range. Additionally, low logic thresholds makes the DG3535, DG3536 an ideal interface to low voltage DSP control signals.

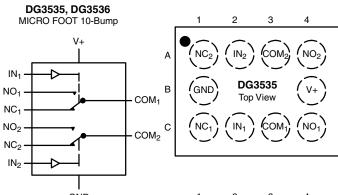
The DG3535, DG3536 has fast switching speed with break-before-make guaranteed. In the On condition, all switching elements conduct equally in both directions. Off-isolation and crosstalk is - 69 dB at 100 kHz.

The DG3535, DG3536 is built on Vishay Siliconix's high- density low voltage CMOS process. An eptiaxial layer is built in to prevent latchup. The DG3535, DG3536 contains the additional benefit of 2000 V ESD protection.

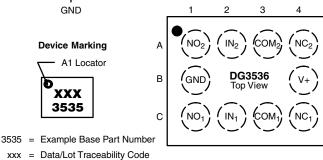
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For MICRO FOOT analog switching products manufactured with tin/silver/copper (SnAgCu) device terminations, the (Pb)-free "-E1" suffix is being used as a designator.

FEATURES

- Low voltage operation
- Low on-resistance R_{ON} : 0.25 Ω at 2.7 V
- 69 dB OIRR at 2.7 V, 100 kHz
- MICRO FOOT® package
- ESD protection > 2000 V
- Compliant to RoHS Directive 2002/95/EC


BENEFITS

- Reduced power consumption
- High accuracy
- Reduce board space
- 1.6 V logic compatible
- High bandwidth


APPLICATIONS

- · Cellular phones
- Speaker headset switching
- Audio and video signal routing
- PCMCIA cards
- Battery operated systems
- Relay replacement

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE					
Logic	NC1 and NC2	NO1 and NO2			
0	ON	OFF			
1	OFF	ON			

ORDERING INFORMATION					
Temp. Range Package Part Number					
	MICRO FOOT: 10 Bump	DG3535DB-T5-E1			
- 40 °C to 85 °C	, ,	DG3535DB-T1-E1			
	238 μm Bump Height)	DG3536DB-T5-E1			

Document Number: 72961 S11-0303-Rev. G, 28-Feb-11

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS					
Parameter	Limit	Unit			
Reference V+ to GND	- 0.3 to + 6	V			
IN, COM, NC, NO ^a	- 0.3 to (V+ + 0.3 V)	V			
Continuous Current (NO, NC, COM)	± 300	mA			
Peak Current (Pulsed at 1 ms, 10 % duty	± 500	IIIA			
Storage Temperature	(D Suffix)	- 65 to 150			
Package Solder Reflow Conditions ^b	IR/Convection	250	°C		
ESD per Method 3015.7		> 2	kV		
Power Dissipation (Packages) ^c	MICRO FOOT: 10 Bump (4 x 3 mm) ^d	457	mW		

Notes:

- a Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b Refer to IPC/JEDEC (J-STD-020B)
- c All bumps welded or soldered to PC board.
- d Derate 5.7 mW/°C above 70 °C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (V+ = 3 V)							
		Test Conditions Otherwise Unless Specified		Limits - 40 °C to 85 °C			
Parameter	Symbol	$V+ = 3 V, \pm 10 \%, V_{1N} = 0.5 V \text{ or } 1.4 V^{e}$	Temp.a	Min.b	Typ.c	Max.b	Unit
Analog Switch							
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}		Full	0		V+	٧
On-Resistance ^d	R _{ON}		Room Full		0.25	0.4 0.5	
R _{ON} Flatness ^d	R _{ON} Flatness	$V+ = 2.7 \text{ V}, V_{COM} = 0.6/1.5 \text{ V}$ $I_{NO}, I_{NC} = 100 \text{ mA}$				0.15	Ω
On-Resistance Match Between Channels ^d	$\Delta R_{DS(on)}$		Room			0.05	
Switch Off Leakage Current	I _{NO(off)}	V+ = 3.3 V, $V_{NO}, V_{NC} = 0.3 \text{ V/3 V}, V_{COM} = 3 \text{ V/0.3 V}$	Room Full	- 2 - 20		2 20	
	I _{COM(off)}		Room Full	- 2 - 20		2 20	nA
Channel-On Leakage Current	I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.3 \text{ V/3 V}$	Room Full	- 2 - 20		2 20	
Digital Control							
Input High Voltage ^d	V _{INH}		Full	1.4			V
Input Low Voltage	V _{INL}		Full			0.5	, v
Input Capacitance	C _{in}		Full		10		pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	1		1	μΑ

Vishay Siliconix

SPECIFICATIONS (V+ = 3 V)								
		Test Conditions Otherwise Unless Specified		Limits - 40 °C to 85 °C				
Parameter	Symbol	$V+ = 3 V$, $\pm 10 \%$, $V_{IN} = 0.5 V$ or 1.4 V^e	Temp.a	Min.b	Typ. ^c	Max.b	Unit	
Dynamic Characteristics								
Turn-On Time	t _{ON}	V_{NO} or V_{NC} = 2 V, R_L = 50 Ω , C_L = 35 pF	Room Full		52	82 90		
Turn-Off Time	t _{OFF}		Room Full		43	73 78	ns	
Break-Before-Make Time	t _d		Room	1	6			
Charge Injection ^d	Q _{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 1.5 \text{ V, } R_{GEN} = 0 \Omega$	Full		21		рC	
Off-Isolation ^d	OIRR	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 100 kHz$	Room		- 69		dB	
Crosstalk ^d	X _{TALK}	π = 30 22, 0 = 3 μ , τ = 100 κ π	Room		- 69		uБ	
N _O , N _C Off Capacitance ^d	C _{NO(off)}	V - 0 or V + f - 1 MHz	Room		145		nE	
N _O , N _C On Capacitance	C _{NC(off)}		Room		145			
o	O d	C _{NO(on)}	$V_{IN} = 0$ or V_{+} , $f = 1$ MHz	Room		406		pF
Channel-On Capacitance ^d	C _{NC(on)}		Room		406			
Power Supply								
Power Supply Current	l+	$V_{IN} = 0$ or $V+$	Room Full		0.001	1	μА	

Notes:

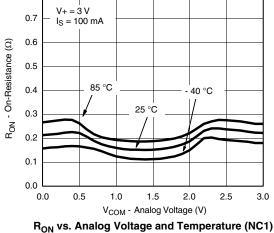
- a. Room = 25 $^{\circ}$ C, full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.

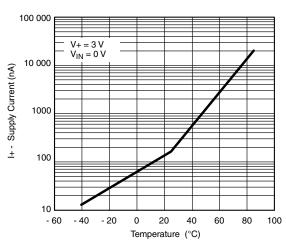
0.8

300 250

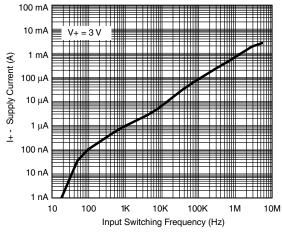
200

150

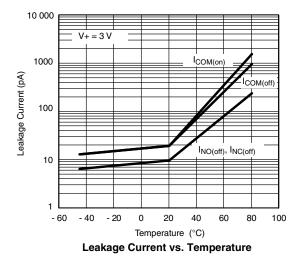

DG3535, DG3536


Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



 R_{ON} vs. V_{COM} and Supply Voltage

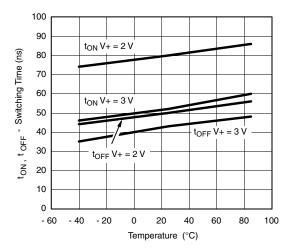


Supply Current vs. Temperature

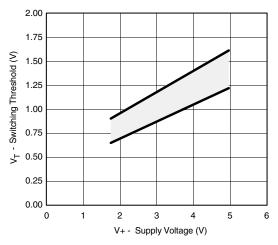
Supply Current vs. Input Switching Frequency

100 _eakage Current (pA) I_{NO(off)}, I_{NC(off)} 50 - 50 - 100 - 150 - 200 - 250 - 300 2.0 0.0

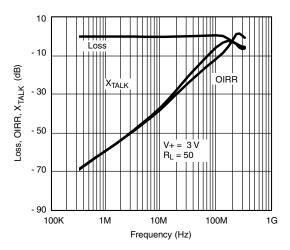
V + = 3 V

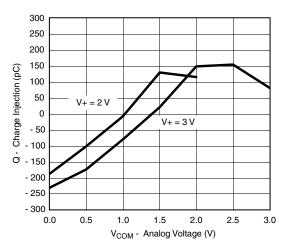

V_{COM} - Analog Voltage (V) Leakage vs. Analog Voltage

I_{COM(on)}



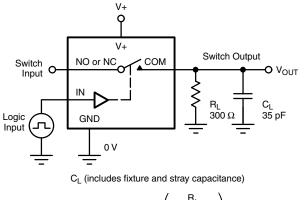
Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

Insertion Loss, Off-Isolation Crosstalk vs. Frequency



Charge Injection vs. Analog Voltage

Vishay Siliconix

TEST CIRCUITS

 V_{INH} $\begin{array}{l} t_r < \ 5 \ \text{ns} \\ t_f < \ 5 \ \text{ns} \end{array}$ Logic Input 50 % V_{INL} $0.9 \times V_{OUT}$ Switch Output 0 V t_{ON}

Logic "1" = Switch On

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

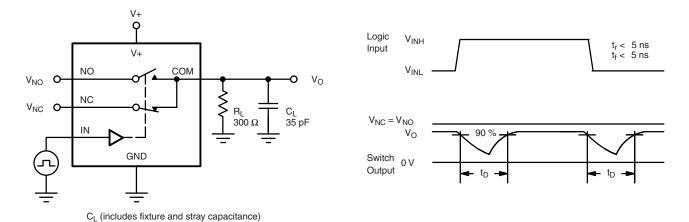
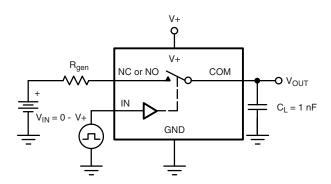
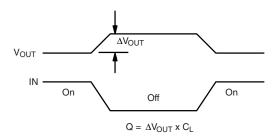




Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

Vishay Siliconix

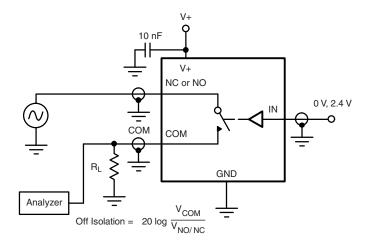
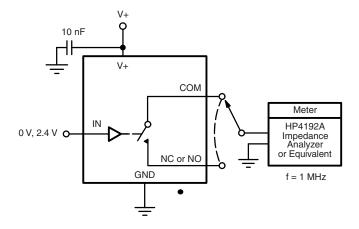
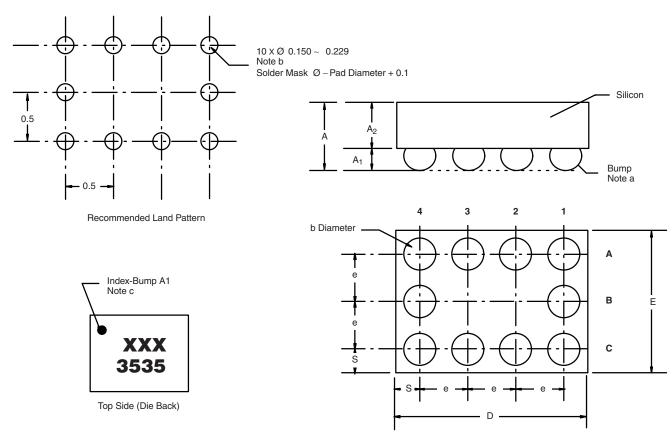


Figure 4. Off-Isolation




Figure 5. Channel Off/On Capacitance

Vishay Siliconix

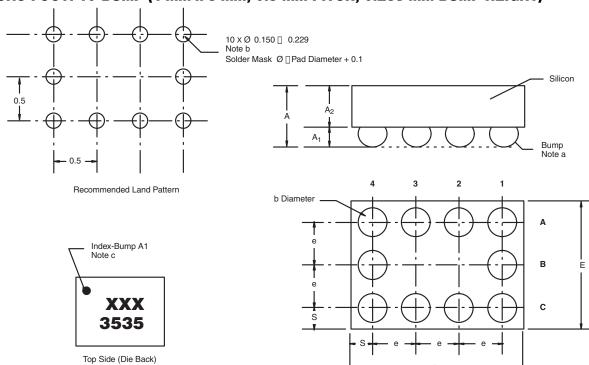
PACKAGE OUTLINE

MICRO FOOT: 10 BUMP (4 x 3, 0.5 mm PITCH, 0.238 mm BUMP HEIGHT)

Notes (Unless Otherwise Specified):

- a. Bump is Lead Free Sn/Ag/Cu.
- b. Non-solder mask defined copper landing pad.
- c. Laser Mark on silicon die back; back-lapped, no coating. Shown is not actual marking; sample only.

	Millimeters ^a		Inc	hes
Dim.	Min.	Max.	Min.	Max.
Α	0.688	0.753	0.0271	0.0296
A ₁	0.218	0.258	0.0086	0.0102
A ₂	0.470	0.495	0.0185	0.0195
b	0.306	0.346	0.0120	0.0136
D	1.980	2.020	0.0780	0.0795
E	1.480	1.520	0.0583	0.0598
е	0.5 BASIC 0.0197 BASIC		BASIC	
S	0.230	0.270	0.0091	0.0106


Notes:

a. Use millimeters as the primary measurement.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72961.

MICRO FOOT: 10-BUMP (4 mm x 3 mm, 0.5 mm PITCH, 0.238 mm BUMP HEIGHT)

Notes

(unless otherwise specified)

- a. Bump is lead (Pb)-free Sn/Ag/Cu.
- b. Non-solder mask defined copper landing pad.
- c. Laser mark on silicon die back; back-lapped, no coating. Shown is not actual marking; sample only.

DIM.	MILLIMETERS ^a		INCHES	
DIIVI.	MIN.	MAX.	MIN.	MAX.
Α	0.688	0.753	0.0271	0.0296
A ₁	0.218	0.258	0.0086	0.0102
A ₂	0.470	0.495	0.0185	0.0195
b	0.306	0.346	0.0120	0.0136
D	1.980	2.020	0.0780	0.0795
Е	1.480	1.520	0.0583	0.0598
е	0.5 BASIC 0.0°		0.0197	BASIC
S	0.230	0.270	0.0091	0.0106

a. Use millimeters as the primary measurement.

ECN: S11-1065-Rev. A, 13-Jun-11 DWG: 6001

Document Number: 63272 Revision:13-Jun-11

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.