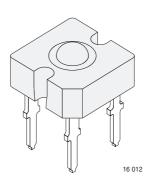


TELUXTM

Description

The TELUX[™] series is a clear, non diffused LED for applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP technology.

The supreme heat dissipation of TELUX[™] allows applications at high ambient temperatures.


All packing units are binned for luminous flux, forward voltage and color to achieve the most homogenous light appearance in application.

SAE and ECE color requirements for automobile application are available for color red.

ESD resistivity 2kV (HBM) according to MIL STD 883D, method 3015.7.

Features

- Utilizing one of the world's brightest (AS) AllnGaP technologies
- · High luminous flux
- Supreme heat dissipation: R_{thJP} is 90 K/W
- High operating temperatur: T_i = + 125 °C
- Meets SAE and ECE color requirements for the automobile industry for color red
- · Packed in tubes for automatic insertion
- Luminous flux, forward voltage and color categorized for each tube
- Small mechanical tolerances allow precise usage of external reflectors or lightguides

Applications

Exterior lighting
Dashboard illumination

Tail-, Stop - and Turn Signals of motor vehicles Replaces small incandescant lamps

Traffic signals and signs

Parts Table

Part	Color, Luminous Intensity	Technology	Package
TLWR86	Red, $\phi_V > 2000 \text{ m/m}$	AllnGaP on GaAs	TELUX (TM), phi = \pm 30 ×
TLWY86	Red, ϕ_V > 2000 mlm	AllnGaP on GaAs	TELUX (TM), phi = \pm 30 ×

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified **TLWR86..**, **TLWY86..**,

Parameter	Test condition	Sub type	Symbol	Value	Unit
Reverse voltage	I _R = 100 μA		V _R	10	V
DC forward current	T _{amb} ≤ 85 °C		I _F	70	mA
Surge forward current	$t_p \le 10 \ \mu s$		I _{FSM}	1	Α
Power dissipation	T _{amb} ≤ 85 °C		P_V	187	mW
Junction temperature			Tj	125	°C
Operating temperature range			T _{amb}	- 40 to + 110	°C
Storage temperature range			T _{stg}	- 55 to + 110	°C

Document Number 83168 www.vishay.com

Rev. A2, 27-Sep-02

Parameter	Test condition	Sub type	Symbol	Value	Unit
Soldering temperature	$t \le 5$ s, 1.5 mm from body preheat temperature 100 °C/ 30 sec.		T _{sd}	260	°C
Thermal resistance junction/ ambient	with cathode heatsink of 70 mm ²		R_{thJA}	200	K/W

Optical and Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Red

TLWR86..

Parameter	Test condition	Sub type	Symbol	Min	Тур.	Max	Unit
Total flux	$I_F = 70$ mA, $R_{thJA} = 200$ °K/W		φV	2000	3000		mlm
Luminous intensity/Total flux	I_F = 70 mA, R_{thJA} = 200 °K/W		I _V /φ _V		0.8		mcd/ mlm
Dominant wavelength	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ °K/W}$		λ_{d}	611	615	634	nm
Peak wavelength	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ °K/W}$		λ_{p}		624		nm
Angle of half intensity	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ °K/W}$		φ		± 30		deg
Total included angle	90 % of Total Flux Captured		Ψ0.9V		75		deg
Forward voltage	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ °K/W}$		V _F	2.0	2.2	2.7	V
Reverse voltage	I _R = 10 μA		V _R	10	20		V
Junction capacitance	V _R = 0, f = 1 MHz		Cj		17		pF

Yellow

TLWY86..

Parameter	Test condition	Sub type	Symbol	Min	Тур.	Max	Unit
Total flux	$I_F = 70$ mA, $R_{thJA} = 200$ °K/W		φV	2000	3000		mlm
Luminous intensity/Total flux	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ °K/W}$		I _V /φ _V		0.8		mcd/ mlm
Dominant wavelength	$I_F = 70$ mA, $R_{thJA} = 200$ °K/W		λ_{d}	585	590	597	nm
Peak wavelength	$I_F = 70$ mA, $R_{thJA} = 200$ °K/W		λ _p		594		nm
Angle of half intensity	$I_F = 70$ mA, $R_{thJA} = 200$ °K/W		φ		± 30		deg
Total included angle	90 % of Total Flux Captured		Φ0.9V		75		deg
Forward voltage	$I_F = 70$ mA, $R_{thJA} = 200$ °K/W		V _F	1.83	2.1	2.7	V
Reverse voltage	I _R = 10 μA		V _R	10	15		V
Junction capacitance	V _R = 0, f = 1 MHz		Cj		17		pF

Document Number 83168 www.vishay.com
Rev. A2, 27-Sep-02 2

Characteristics (T_{amb} = 25°C unless otherwise specified)

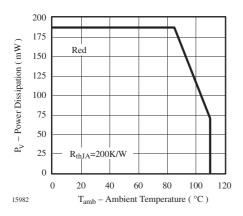


Figure 1. Power Dissipation vs. Ambient Temperature

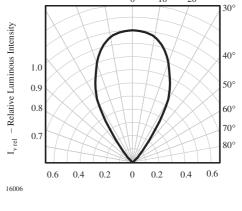


Figure 4. Rel. Luminous Intensity vs. Angular Displacement for 60 $^{\circ}$ emission angle

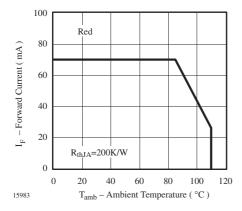


Figure 2. Forward Current vs. Ambient Temperature for AllnGaP

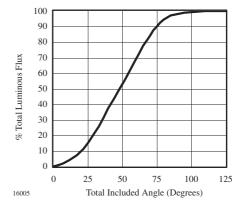


Figure 5. Percentage Total Luminous Flux vs. Total Included Angle for 60 $^{\circ}$ emission angle

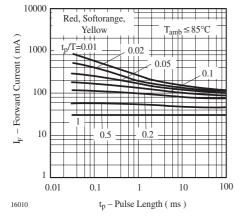


Figure 3. Forward Current vs. Pulse Length

Figure 6. Thermal Resistance Junction Ambient vs. Cathode Padsize

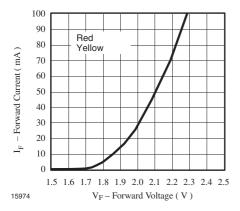


Figure 7. Forward Current vs. Forward Voltage

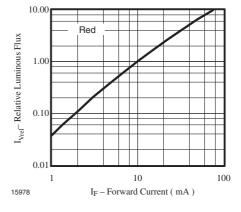


Figure 10. Relative Luminous Flux vs. Forward Current

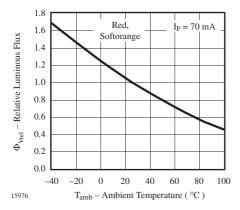


Figure 8. Rel. Luminous Flux vs. Ambient Temperature

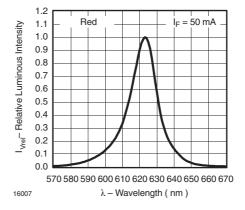


Figure 11. Relative Luminous Intensity vs. Wavelength

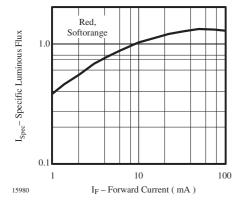


Figure 9. Specific Luminous Flux vs. Forward Current

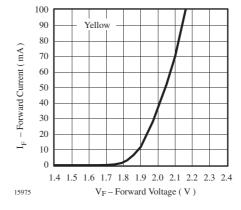


Figure 12. Forward Current vs. Forward Voltage

Document Number 83168 Rev. A2, 27-Sep-02 www.vishay.com

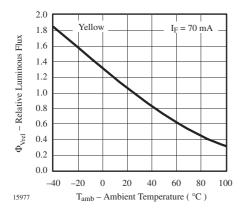


Figure 13. Rel. Luminous Flux vs. Ambient Temperature

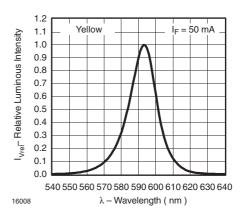


Figure 16. Relative Luminous Intensity vs. Wavelength

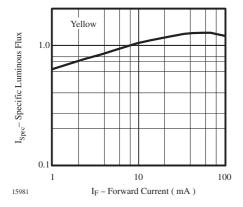


Figure 14. Specific Luminous Flux vs. Forward Current

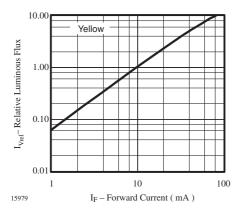
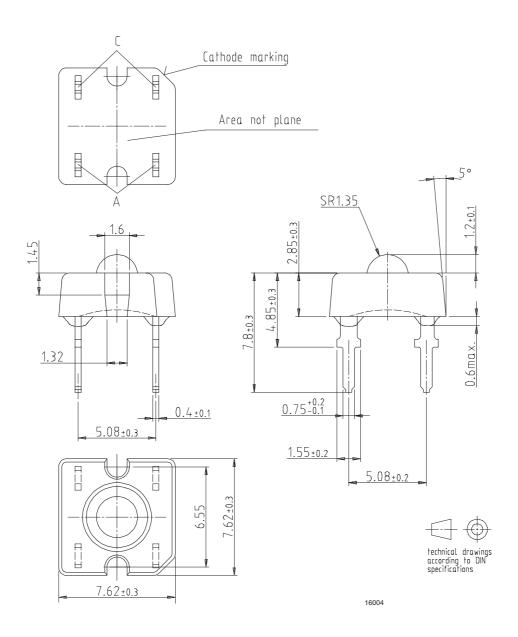



Figure 15. Relative Luminous Flux vs. Forward Current

Package Dimensions in mm

Document Number 83168 www.vishay.com
Rev. A2, 27-Sep-02 6

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Seminconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83168 www.vishay.com

Rev. A2, 27-Sep-02