8-Ch/Dual 4-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG408 is an 8 channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address ($\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$). The DG409 is a dual 4 channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address $\left(A_{0}, A_{1}\right)$. Break-before-make switching action protects against momentary crosstalk between adjacent channels.
An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_{x}) and enable (EN) are TTL compatible over the full specified operating temperature range.
Applications for the DG408, DG409 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.
Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V . Additionally, single supply operation is also allowed. An epitaxial layer prevents latchup.
For additional information please see Technical Article TA201.

FEATURES

- Low on-resistance - $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$: 100Ω
- Low charge injection - Q: 20 pC
- Fast transition time - $\mathrm{t}_{\text {TRans }}: 160 \mathrm{~ns}$
- Low power - I SUPPLY: $10 \mu \mathrm{~A}$
- Single supply capability
- 44 V supply max. rating
- TTL compatible logic
- Compliant to RoHS directive 2002/95/EC

BENEFITS

- Reduced switching errors
- Reduced glitching
- Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$)

APPLICATIONS

- Data acquisition systems
- Audio signal routing
- ATE systems
- Battery powered systems
- High rel systems
- Single supply systems
- Medical instrumentation

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG409

Dual-In-Line, SOIC and TSSOP

* Pb containing terminations are not RoHS compliant, exemptions may apply

TRUTH TABLES AND ORDERING INFORMATION

TRUTH TABLE DG408

$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{E N}$	On Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

TRUTH TABLE DG409

$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	EN	On Switch
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Logic " 0 " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$
Logic "1" $=\mathrm{V}_{\text {AH }} \geq 2.4 \mathrm{~V}$
X = Don't Care

ORDERING INFORMATION DG408				
Temp. Range	Package	Part Number		
	16-Pin Plastic DIP	$\begin{gathered} \hline \text { DG408DJ } \\ \text { DG408DJ-E3 } \end{gathered}$		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-Pin SOIC	DG408DYDG408DY-E3DG408DY-T1DG408DY-T1-E3		
	16-Pin TSSOP	$\begin{gathered} \text { DG408DQ } \\ \text { DG408DQ-E3 } \\ \text { DG408DQ-T1 } \\ \text { DG408DQ-T1-E3 } \end{gathered}$		
Temp. Range	Package	Generic \#	DSCC \#	Ordering Part Number
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	16-Pin CerDIP	$\begin{gathered} \text { DG408AK } \\ \text { DG408AK-E3 } \\ \text { DG408AK/883 } \end{gathered}$	5962-9204201MEA	DG408AK DG408AK-E3 9204201EA
	LCC-20	DG408AZ/883	$\begin{aligned} & 5962-9204201 \mathrm{M} 2 \mathrm{~A} \\ & 5962-9204201 \mathrm{M} 2 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 92042012A } \\ & 92042012 \mathrm{C} \end{aligned}$
	Flat-Pack $16^{\text {a }}$	DG408AL/883	5962-9204201MXA 5962-9204201MXC	$\begin{aligned} & \text { 9204201XA } \\ & 9204201 X C \end{aligned}$

ORDERING INFORMATION DG409		Part Number
Temp. Range	Package	DG409DJ
	16-Pin Plastic DIP	DG409DJ-E3
		DG409DY
	$16-$ Pin SOIC	DG409DY-E3
		DG409DY-T1
		DG409DY-T1-E3
		DG409DQ
	16-Pin TSSOP	DG409DQ-E3
		DG409DQ-T1
		DG409DQ-T1-E3

ORDERING INFORMATION DG409

Temp. Range	Package	Generic \#	DSCC \#	Ordering Part Number
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	16-Pin CerDIP	$\begin{gathered} \text { DG409AK } \\ \text { DG409AK-E3 } \\ \text { DG409AK/883 } \end{gathered}$	5962-9204202MEA	DG409AK DG409AK-E3 9204202EA
	LCC-20	DG409AZ/883	$\begin{aligned} & \hline 5962-9204202 \mathrm{M} 2 \mathrm{~A} \\ & 5962-9204202 \mathrm{M} 2 \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 92042022 \mathrm{~A} \\ & 92042022 \mathrm{C} \end{aligned}$
	Flat-Pack $16^{\text {a }}$	DG409AL/883	$\begin{aligned} & \text { 5962-9204202MXA } \\ & \text { 5962-9204202MXC } \end{aligned}$	$\begin{aligned} & \text { 9204202XA } \\ & \text { 9204202XC } \end{aligned}$

Note:
a. Block diagram and pin configuration not shown.

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Voltages Referenced to V-	V+	44	V
	GND	25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 20 mA , whichever occurs first	
Current (Any Terminal)		30	mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10$ \% Duty Cycle Max.)		100	
Storage Temperature	(A Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY Suffix)	-65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	450	mW
	16-Pin Narrow SOIC and TSSOP ${ }^{\text {d }}$	600	
	16-Pin CerDIP ${ }^{\text {e }}$	900	
	LCC-20 ${ }^{\text {f }}$	750	

Notes:

a. Signals on S_{X}, D_{X} or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
f. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\mathbf{a}}$ for Single Supply

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}^{f} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
$\begin{aligned} & \text { Drain-Source } \\ & \text { On-Resistance }{ }^{\mathrm{e}, ~ f} \end{aligned}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$	Room	90					Ω
Dynamic Characteristics									
Switching Time of Multiplexer ${ }^{\text {e }}$	$\mathrm{t}_{\text {trans }}$	$\mathrm{V}_{\mathrm{S} 1}=8 \mathrm{~V}, \mathrm{~V}_{\text {S }}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$	Room	180					
Enable Turn-On Time ${ }^{\text {e }}$	ton(EN)	$\mathrm{V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0 \mathrm{~V}$	Room	180					ns
Enable Turn-Off Time ${ }^{\text {e }}$	toff(EN)	$\mathrm{V}_{\mathrm{S} 1}=5 \mathrm{~V}$	Room	120					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0$	Room	5					pC

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
g. $\Delta \mathrm{R}_{\mathrm{DS}(\text { on) }}=\mathrm{R}_{\mathrm{DS}(\text { on) }}$ max. $-\mathrm{R}_{\mathrm{DS}(\text { on })} \mathrm{min}$.
h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Source/Drain Capacitance vs. Analog Voltage

Input Switching Threshold vs. Supply Voltage

Drain Leakage Current vs. Source/Drain Voltage (Single 12 V Supply)

Source Leakage Current vs. Source Voltage

Negative Supply Current vs. Switching Frequency

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Positive Supply Current vs. Switching Frequency

Positive Supply Current vs. Temperature (DG408)

$I_{\text {SUPPLY }}$ vs. Temperature

Charge Injection vs. Analog Voltage

$\mathbf{R}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Supply (Single Supply)

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Temperature

Off Isolation and Crosstalk vs. Frequency

$\mathrm{V}_{\text {SUPPLY }}(\mathrm{V})$
Switching Time vs. Bipolar Supply

$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Temperature (Single Supply)

Insertion Loss vs. Frequency

Switching Time vs. Single Supply

Figure 1.

TEST CIRCUITS

Figure 2. Transition Time

TEST CIRCUITS

Figure 3. Enable Switching Time

Figure 4. Break-Before-Make Interval

TEST CIRCUITS

$\Delta \mathrm{V}_{\mathrm{O}}$ is the measured voltage due to charge transfer error Q, when the channel turns off.

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}
$$

Figure 5. Charge Injection

Figure 6. Off Isolation

Figure 8. Insertion Loss

Figure 7. Crosstalk

Figure 9. Source Drain Capacitance

APPLICATIONS HINTS

Overvoltage Protection

A very convenient form of overvoltage protection consists of adding two small signal diodes (1N4148, 1N914 type) in series with the supply pins (see figure 10). This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal V+ or V- value. In this case the overvoltage signal actually becomes the power
supply of the IC. From the point of view of the chip, nothing has changed, as long as the difference V_{S} - (V-) doesn't exceed +44 V . The addition of these diodes will reduce the analog signal range to 1 V below $\mathrm{V}+$ and 1 V above V -, but it preserves the low channel resistance and low leakage characteristics.

Figure 10. Overvoltage Protection Using Blocking Diodes

8-Channel Sequential Multiplexer/Demultiplexer
Differential 4-Channel Sequential Multiplexer/Demultiplexer

Figure 11.

[^0]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70062.

