Low-Voltage Dual SPST Analog Switch

FEATURES

- Low Voltage Operation (1.8 V to 5.5 V)
- Low On-Resistance - r $\mathrm{DS}(o n)$: 1.2Ω
- Fast Switching - 14 ns
- Low Charge Injection - QinJ: 1 pC
- Low Power Consumption
- TTL/CMOS Compatible
- MSOP-8 Package

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space

APPLICATIONS

- Cellular Phones
- Communication Systems
- Portable Test Equipment
- Battery Operated Systems
- Sample and Hold Circuits

DESCRIPTION

The DG2003/2004/2005 are dual single-pole/single-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, fast switching, low on-resistance ($\mathrm{r}_{\mathrm{DS}(\mathrm{on})}: 1.2 \Omega$) and small physical size (MSOP-8), the DG2003/2004/2005 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2003/2004/2005 are built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

Top View

Top View

TRUTH TABLE - DG2003	
Logic	NO
0	Off
1	On

TRUTH TABLE - DG2004	
Logic	NC
0	On
1	Off

TRUTH TABLE - DG2005		
Logic	$\mathbf{N O}_{\mathbf{1}}$	$\mathbf{N C}_{\mathbf{2}}$
0	Off	On
1	On	Off

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$		DG2003DQ
		DG2004DQ
		DG2005DQ

ABSOLUTE MAXIMUM RATINGS

Reference to GND	
V+	-0.3 to +6 V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$	-0.3 to (V++0.3 V)
Continuous Current (Any terminal)	$\pm 50 \mathrm{~mA}$
Peak Current	$\pm 200 \mathrm{~mA}$
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	
Storage Temperature (D Suffix)	-65 to $150^{\circ} \mathrm{C}$

Reference to GND

IN, COM, NC, NO ${ }^{\text {a }}$, 0.3 to ($\mathrm{V}++0.3 \mathrm{~V}$)
Continuous Current (Any terminal) $\pm 50 \mathrm{~mA}$
Peak Current ... $\pm 200 \mathrm{~mA}$
Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)
Storage Temperature (D Suffix) . 65 to $150^{\circ} \mathrm{C}$

Power Dissipation (Packages) ${ }^{\text {b }}$
MSOP-8c . 320 mW
Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC Board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

SPECIFICATIONS (V+ = 2.0 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=2.0 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 1.6 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $V_{\text {COM }}$		Full	0		V+	V
On-Resistance	ron	$\mathrm{V}_{+}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=1 \mathrm{~mA}$	$\begin{aligned} & \text { Room } \\ & \text { Fulld } \end{aligned}$		$\begin{gathered} \hline 7.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & \hline 10.0 \\ & 16.0 \end{aligned}$	Ω
ron Flatness ${ }^{\text {d }}$	ron Flatness	$\mathrm{V}_{+}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0$ to $\mathrm{V}+\mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=1 \mathrm{~mA}$	Room		5		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ ${ }^{1} \mathrm{NC}$ (off)	$\begin{gathered} \mathrm{V}_{+}=2.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} / 0.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Room } \\ & \text { Fulld } \end{aligned}$	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{array}{r} 500 \\ 4.0 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	ICOM(off)		$\begin{aligned} & \text { Room } \\ & \text { Fulld } \end{aligned}$	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{array}{r} \hline 500 \\ 4.0 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{\dagger}$	ICOM(on)	$\mathrm{V}_{+}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}$	Room Fulld	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{array}{r} \hline 500 \\ 4.0 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$

Digital Control

Input High Voltage	VINH		Full	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		5		pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures 1 and 2	Room Fulld		30	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	ns
Turn-Off Time	toff		Room Fulld		22	$\begin{aligned} & 37 \\ & 48 \end{aligned}$	
Charge Injection ${ }^{\text {d }}$	Q ${ }_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room		2		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-61		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-67		
NO, NC Off Capacitance ${ }^{\text {d }}$	C_{NO} (off), $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{+}, \mathrm{f}=1 \mathrm{MHz}$	Room		53		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {a }}$		Room		110		
Power Supply							
Power Supply Range	V+			1.8		2.2	V
Power Supply Current ${ }^{\text {d }}$	$1+$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.02	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					2.2	$\mu \mathrm{W}$

SPECIFICATIONS (V+ = 3.0 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 2.0 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	Limits -40 to $85^{\circ} \mathrm{C}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\text {COM }}$		Full	0		V+	V
On-Resistance	ron	$\mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	
ron Flatness ${ }^{\text {d }}$	Fhen Flatness	$\mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0$ to $\mathrm{V}_{+}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		0.5		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ ${ }^{1} \mathrm{NC}$ (off)	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO},} \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & \hline-500 \\ & -6.0 \end{aligned}$		$\begin{aligned} & 500 \\ & 6.0 \end{aligned}$	pA
	Icom(off)		Room Full	$\begin{aligned} & \hline-500 \\ & -6.0 \end{aligned}$		$\begin{aligned} & 500 \\ & 6.0 \end{aligned}$	pA
Channel-On Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\text {com(on) }}$	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 3 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	$\begin{aligned} & \hline-500 \\ & -6.0 \end{aligned}$		$\begin{aligned} & 500 \\ & 6.0 \end{aligned}$	pA
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		5		pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	ton	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\underset{\text { Figure } 1 \text { and 2 }}{2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}}$	Room Full		19	$\begin{aligned} & 35 \\ & 36 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	toff		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		17	$\begin{aligned} & 31 \\ & 34 \end{aligned}$	
Charge Injection ${ }^{\text {d }}$	$\mathrm{Qinj}^{\text {I }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room		1		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-61		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-67		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		53		pF
Channel-On Capacitance ${ }^{\text {d }}$	Con		Room		110		
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current	${ }^{+}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.02	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					3.3	$\mu \mathrm{W}$

SPECIFICATIONS (V+ = 5.0 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.8 \text { or } 2.4 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	ron	$\mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & \hline 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.7 \end{aligned}$	Ω
ron Flatness ${ }^{\text {d }}$	ron Flatness	$\mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0$ to $\mathrm{V}_{+}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		0.2		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & \hline-1.0 \\ & -8.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 8.0 \end{aligned}$	nA
	ICOM(off)		Room Full	$\begin{aligned} & \hline-1.0 \\ & -8.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 8.0 \end{aligned}$	
Channel-On Leakage Current	ICOM(on)	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & \hline-1.0 \\ & -8.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 8.0 \end{aligned}$	

Digital Control

Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		5		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time ${ }^{\text {d }}$	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figure 1 and 2	Room Full	13	$\begin{aligned} & 28 \\ & 31 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	toff		Room Full	19	$\begin{aligned} & 22 \\ & 31 \end{aligned}$	
Charge Injection ${ }^{\text {d }}$	$Q_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room	1		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-61		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room	-67		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{+}, \mathrm{f}=1 \mathrm{MHz}$	Room	51		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {a }}$		Room	110		

Power Supply

Power Supply Range	V+		4.5		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}		0.02	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}				5.5	$\mu \mathrm{W}$

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5-V leakage testing, not production tested.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

Supply Current vs. Temperature

Leakage Current vs. Temperature

ron vs. Analog Voltage and Temperature

Leakage vs. Analog Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Charge Injection vs. Analog Voltage

New Product

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

$$
v_{\text {OUT }}=v_{\text {COM }}\left(\frac{R_{L}}{R_{L}+R_{\mathrm{ON}}}\right)
$$

FIGURE 1. Switching Time

IN depends on switch configuration: input polarity determined by sense of switch.

FIGURE 2. Charge Injection

FIGURE 3. Off-Isolation

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

