

High-Speed Drivers with Dual SPDT JFET Switches

FEATURES

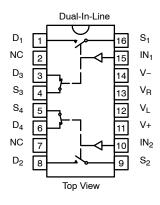
- Constant On-Resistance Over Entire Analog Range
- Low Leakage
- Low Crosstalk
- Rad Hardness

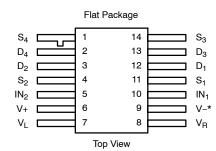
BENEFITS

- Low Distortion
- Eliminates Large Signal Errors
- High Precision
- High Bandwidth Capability
- Fault Protection

APPLICATIONS

- Audio Switching
- Video Switching
- Sample/Hold
- Guidance and Control Systems
- Aerospace


DESCRIPTION


The DG189/190/191 are precision dual single-pole, double-throw (SPDT) analog switches designed to provide accurate switching of video and audio signals. This series is ideally suited for applications requiring a constant on-resistance over the entire analog range.

The major difference in the devices is the on-resistance (DG189—10 Ω , DG190—30 Ω , DG191—75 Ω). Reduced errors are achieved through low leakage current (I_{D(on)} < 2 nA). Applications which benefit from the flat JFET on-resistance include audio switching, video switching, and data acquisition.

To achieve fast and accurate switch performance, each device comprises four n-channel JFET transistors and a TTL compatible bipolar driver. The driver is designed to achieve break-before-make switching action, eliminating the inadvertent shorting between channels and the crosstalk which would result. In the on state, each switch conducts current equally well in either direction. In the off condition, the switches will block up to 20 V peak-to-peak, with feedthrough of less than -60 dB at 10 MHz.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Refer to JAN38510 Information, Military Section

*Common to Substrate and Case

TRUTH TABLE								
Logic $SW_1, SW_2 = SW_3, SW_4$								
0	OFF	ON						
1	ON	OFF						
Logic "0" < 0.8 V								

Logic "1" \ge 2.4 V

Document Number: 70034 S-51140—Rev. D, 20-Jun-05

ORDERING INFORMATION								
Temp Range	Package	Part Number						
		DG189BP						
–25 to 85°C	16-Pin Sidebraze	DG190BP						
		DG191BP						
		DG189AP						
		DG190AP						
		DG191AP						
-55 to 125°C	16-Pin Sidebraze	DG189AP, DG189AP/883, 5962-9068901MEA						
-55 10 125 'C		DG190AP, DG190AP/883, JM38510/11107BEA						
		DG191AP, DG191AP/883, JM38510/11108BEA						
	14-Pin Flat Pack	JM38510/11107BXA						
	14-FIII FIAL PACK	JM38510/11108BXA						

ABSOLUTE MAXIMUM RATINGS

V+ to V
V+ to V_D $\ldots \ldots 33$ V
V_S,V_D to V– \ldots
$V_D \ \text{to} \ V_D$ $\pm 22 \ \text{V}$
V_{L} to V– \ldots .36 V
V_L to V_{IN}
V_L to V_R $\hfill \hfill \hfill$
V_{IN} to V_{R}
V_{R} to V– \ldots . 27 V
V_{R} to V_{IN}
Current (S or D) DG189 200 mA

Current (S or D) DG190, DG191 30 m/	A
Current (All Other Pins)	A
Storage Temperature	С
Power Dissipation ^a	
16-Pin Sidebraze ^b	V
14-Pin Flat Pack ^c	v

- Notes: a. All leads welded or soldered to PC Board. b. Derate 12 mW/°C above 75°C c. Derate 10 mW/°C above 75°C

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

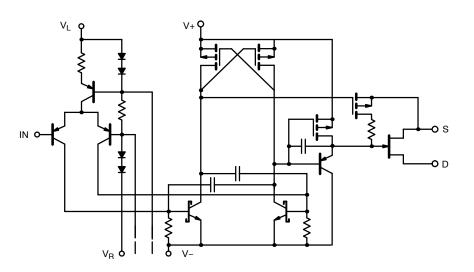


FIGURE 1.

VISHAY.

		Unles	Conditions ss Specified			A Suffix -55 to 125°C		B Suffix -25 to 85°C		
Parameter	Symbol	V+ = 15 V, V _R = 0 V,	$V- = -15 V, V_L = 5 V$ $V_{IN} = 0.8 V or 2 V^{f}$	Temp ^b	Тур ^с	Min ^d	Max ^d	Min ^d	Max ^d	Unit
Analog Switch				•		•			•	-
Analog Signal Range ^e	V _{ANALOG}			Full		-7.5	15	-7.5	15	V
Drain-Source On-Resistance	r _{DS(on)}	I _S = -10) mA, V _D = -7.5 V	Room Full	7.5		10 20		15 25	Ω
Source Off		V _S = ± ⁻ V+ = 1	10 V, V _D = ∓ 10 V 0 V, V– = −20 V	Room Hot	0.05		10 1000		15 300	
Leakage Current	I _{S(off)}	$V_S = \pm 7$	7.5 V, V _D = \mp 7.5 V	Room Hot	0.05		10 1000		15 300	
Drain Off		$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}$ V+ = 10 V, V- = -20 V		Room Hot	0.04		10 1000		15 300	nA
Leakage Current	I _{D(off)}	V_{S} = ±7.5 V, V_{D} = ∓7.5 V		Room Hot	0.03		10 1000		15 300	1
Channel On Leakage Current	I _{D(on)}	$V_D = V_S = \pm 7.5 V$		Room Hot	-0.1	-2 -200		-10 -200		
Saturation Drain Current	I _{DSS}	2 ms Pulse Duration		Room	300					mA
Digital Input				•			<u> </u>			
Input Current with Input Voltage High	I _{INH}	V _{IN} = 5 V		Room Hot	<0.01		10 20		10 20	
Input Current with Input Voltage Low	I _{INL}		V _{IN} = 0 V	Full	-30	-250		-250		μA
Dynamic Characteris	tics									
Turn-On Time	t _{on}			Room	240		400		425	
Turn-Off Time	t _{off}	See Switch	ing Time Test Circuit	Room	140		200		225	ns
Source-Off Capacitance	C _{S(off)}		$V_{S} = -5 V, I_{D} = 0$	Room	21					
Drain-Off Capacitance	C _{D(off)}	f = 1 MHz	$V_{D} = -5 V, I_{S} = 0$	Room	17					pF
Channel-On Capacitance	C _{D(on)}		$V_D = V_S = 0 V$	Room	17					
Off Isolation	OIRR	f = 1 MHz, R _L = 75 Ω		Room	>55					dB
Power Supplies										
Positive Supply Current	I+			Room	0.6		1.5		1.5	
Negative Supply Current	I–	V _{IN} = 0 V, or 5 V		Room	-2.7	-5		-5		· .
Logic Supply Current	١L			Room	3.1		4.5		4.5	- mA
Reference Supply Current	I _B			Room	-1	-2		-2		1

Notes:

a.

b. c.

tes: Refer to PROCESS OPTION FLOWCHART. Room = 25°C, Full = as determined by the operating temperature suffix. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function. d.

e. f.

SPECIFICATIONS	S ^a FOR D	G190								
		$\label{eq:transform} \begin{array}{l} \mbox{Test Conditions} \\ \mbox{Unless Specified} \\ \mbox{V+} = 15 \ \mbox{V}, \mbox{V-} = -15 \ \mbox{V}, \ \mbox{V}_L = 5 \ \mbox{V} \\ \mbox{V}_R = 0 \ \mbox{V}, \ \mbox{V}_{IN} = 0.8 \ \mbox{V or } 2 \ \mbox{V}^f \end{array}$				A Suffix -55 to 125°C		B Suffix –25 to 85°C		
Parameter	Symbol			Temp ^b	Тур ^с	Min ^d	Max ^d	Min ^d	Max ^d	Unit
Analog Switch	•				•	•				
Analog Signal Range ^e	V _{ANALOG}					-7.5	15	-7.5	15	V
Drain-Source On-Resistance	r _{DS(on)}	I _S = -10	$I_{\rm S}$ = -10 mA, $V_{\rm D}$ = -7.5 V		18		30 60		50 75	Ω
Source Off		V _S = ± ⁻ V+ = 1	10 V, V _D = ∓10 V 0 V, V− = −20 V	Room Hot	0.06		1 100		5 100	
Leakage Current	I _{S(off)}	V _S = ±7	.5 V, V _D = ∓7.5 V	Room Hot	0.1		1 100		5 100	
Drain Off		V _S = ± ⁻ V+ = 1	10 V, V _D = ∓10 V 0 V, V- = -20 V	Room Hot	0.05		1 100		5 100	nA
Leakage Current	I _{D(off)}	$V_{\rm S}$ = ±7.5 V, $V_{\rm D}$ = ∓7.5 V		Room Hot	0.06		1 100		5 100	
Channel On Leakage Current	I _{D(on)}	$V_D = V_S = \pm 7.5 \text{ V}$		Room Hot	-0.02	-2 -200		-10 -200		
Digital Input	1			1						
Input Current with Input Voltage High	I _{INH}	V _{IN} = 5 V		Room Hot	<0.01		10 20		10 20	_
Input Current with Input Voltage Low	I _{INL}		V _{IN} = 0 V	Full	-30	-250		-250		μΑ
Dynamic Characteris	tics			•						
Turn-On Time	t _{on}			Room	85		150		180	
Turn-Off Time	t _{off}	See Switch	ing Time Test Circuit	Room	95		130		150	ns
Source-Off Capacitance	C _{S(off)}		$V_{S} = -5 \text{ V}, \text{ I}_{D} = 0$	Room	9					
Drain-Off Capacitance	C _{D(off)}	f = 1 MHz	$V_{\rm D} = -5 \text{ V}, \text{ I}_{\rm S} = 0$	Room	6					pF
Channel-On Capacitance	C _{D(on)}		$V_D = V_S = 0 V$	Room	14					
Off Isolation	OIRR	f = 1 MHz, R _L = 75 Ω		Room	>50	1				dB
Power Supplies										
Positive Supply Current	I+			Room	0.6		1.5		1.5	
Negative Supply Current	I–			Room	-2.7	-5		-5		
Logic Supply Current	١L	V _{IN}	= 0 V, or 5 V	Room	3.1	1	4.5		4.5	mA
Reference Supply Current	I _R			Room	-1	-2		-2		

Notes:

Refer to PROCESS OPTION FLOWCHART. a.

b.

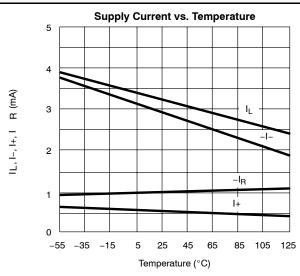
Room = 25°C, Full = as determined by the operating temperature suffix. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function. с. d.

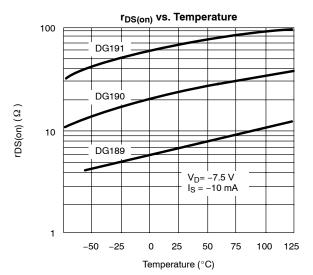
e. f.

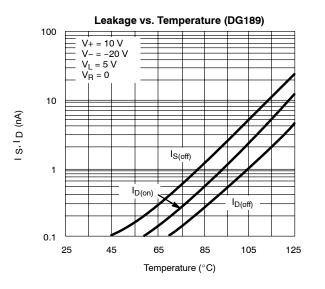
		Unle	Conditions ss Specified			A Suffix -55 to 125°C		B Suffix -25 to 85°C			
Parameter	Symbol	$ \begin{array}{l} V{+} = 15 \; V, V{-} = -15 \; V, V_L = 5 \; V \\ V_R = 0 \; V, V_{IN} = 0.8 \; V \; or \; 2 \; V^f \end{array} $		Temp ^b	Тур ^с	Min ^d	Max ^d	Min ^d	Max ^d	Unit	
Analog Switch	-			-	-						
Analog Signal Range ^e	V _{ANALOG}			Full		-10	15	-10	15	V	
Drain-Source On-Resistance	r _{DS(on)}	I _S = -10) mA, V _D = -7.5 V	Room Full	35		75 150		100 150	Ω	
Source Off		V _S = ± V+ = 1	10 V, V _D = ∓10 V 0 V, V− = −20 V	Room Hot	0.05		1 100		5 100		
Leakage Current	I _{S(off)}	$V_{S} = \pm 1$	10 V, V _D = \mp 10 V	Room Hot	0.07		1 100		5 100		
Drain Off Leakage Current	I _{D(off)}	$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}$ $V+ = 10 \text{ V}, V- = -20 \text{ V}$ $V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}$		Room Hot	0.04		1 100		5 100	nA	
				Room Hot	0.05		1 100		5 100		
Channel On Leakage Current	I _{D(on)}	$V_D = V_S = \pm 10 \text{ V}$		Room Hot	-0.03	-2 -200		-10 -200			
Digital Input				-						-	
Input Current with Input Voltage High	I _{INH}	V _{IN} = 5 V		Room Hot	<0.01		10 20		10 20		
Input Current with Input Voltage Low	I _{INL}		V _{IN} = 0 V	Full	-30	-250		-250		μA	
Dynamic Characteris	tics			-	-					-	
Turn-On Time	t _{on}	00		Room	120		250		300		
Turn-Off Time	t _{off}	See Switch	ing Time Test Circuit	Room	100		130		150	ns	
Source-Off Capacitance	C _{S(off)}		$V_{\rm S} = -5 \text{ V}, \text{ I}_{\rm D} = 0$	Room	9						
Drain-Off Capacitance	C _{D(off)}	f = 1 MHz	$V_{\rm D} = -5 \text{ V}, \text{ I}_{\rm S} = 0$	Room	6					pF	
Channel-On Capacitance	C _{D(on)}	$V_D = V_S = 0 V$		Room	14						
Off Isolation	OIRR	f = 1 l	MHz, $R_L = 75 \Omega$	Room	>50					dB	
Positive Supply Current	I+				0.6		1.5		1.5		
Negative Supply Current	I-	$V_{IN} = 0$ V, or 5 V		Room	-2.7	-5		-5		1	
Logic Supply Current	١L			Room	3.1		4.5		4.5	mA	
Reference Supply Current	I _B			Room	-1	-2	1	-2	1	1	

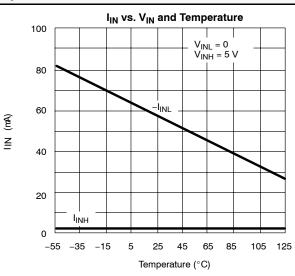
Notes:

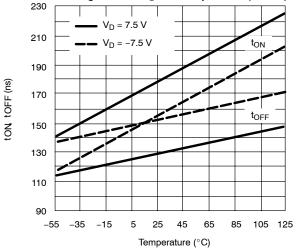
Refer to PROCESS OPTION FLOWCHART. a.

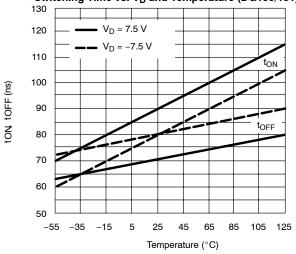

b.


Refer to PROCESS OF INIT PLOWORANT. Room = 25°C, Full = as determined by the operating temperature suffix. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function. c. d.

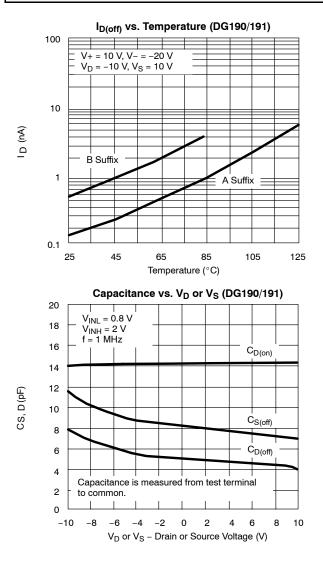

e. f.

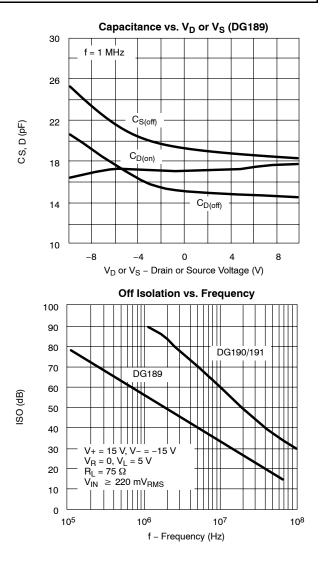

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)




www.vishay.com 6

Switching Time vs. V_D and Temperature (DG189)


Switching Time vs. V_D and Temperature (DG190/191)



DG189/190/191 Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Document Number: 70034 S-51140—Rev. D, 20-Jun-05

TEST CIRCUITS

Feedthrough due to charge injection may result in spikes at the leading and trailing edge of the output waveform.

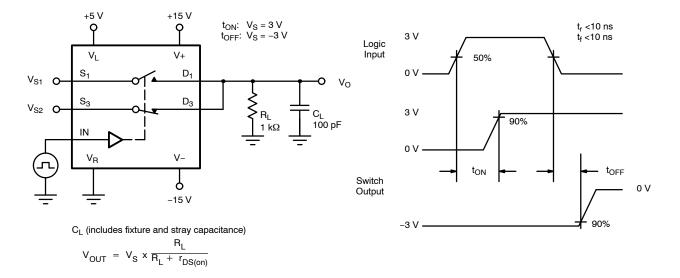


FIGURE 2. Switching Time

APPLICA	APPLICATION HINTS ^a										
Switch	V+ Positive Supply Voltage (V)	V– Negative Supply Voltage (V)	V _L Logic Supply Voltage (V)	V _R Reference Supply Voltage (V)	V _{IN} Logic Input Voltage V _{INH(min)} /V _{INL(max}) (V)	V _S Analog Voltage Range (V)					
	15 ^b	-15	5	GND	2.0/0.8	-7.5 to 15					
DG189 DG190	10	-20	5	GND	2.0/0.8	-12.5 to 10					
Datoo	12	-12	5	GND	2.0/0.8	-4.5 to 12					
	15 ^b	-15	5	GND	2.0/0.8	-10 to 15					
DG191	10	-20	5	GND	2.0/0.8	-15 to 10					
	12	-12	5	GND	2.0/0.8	-7 to 12					

Notes:

Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing. Electrical Parameter Chart based on V+ = 15 V, V_L = 5 V, V_R = GND a.

b.

SHA

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.