DG2519E

Vishay Siliconix

High-Bandwidth, Low Voltage, Dual SPDT Analog Switches

DESCRIPTION

The DG2519E is monolithic CMOS dual single-pole / double-throw (SPDT) analog switches. It is specifically designed for low-voltage, high bandwidth applications.

The DG2519E on-resistance, matching and flatness are guaranteed over the entire analog voltage range. Wide dynamic performance is achieved with typical at -61 dB for both cross-talk and off-isolation at 1 MHz.

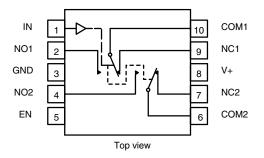
Both SPDT's operate with independent control logic, conduct equally well in both directions and block signals up to the power supply level when off. Break-before-make is guaranteed.

With fast switching speeds, low on-resistance, high bandwidth, and low charge injection, the DG2519E are ideally suited for audio and video switching with high linearity.

Built on Vishay Siliconix's low voltage CMOS technology, the DG2519E contain an epitaxial layer which prevents latch-up

FEATURES

- Single supply (1.8 V to 5.5 V)
- Low on-resistance R_{ON} : 2.5 Ω
- Crosstalk and off isolation: -61 dB at 1 MHz
- MSOP-10 and DFN-10 package
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


BENEFITS

- Reduced power consumption
- High accuracy
- Reduce board space
- · Low-voltage logic compatible
- High bandwidth

APPLICATIONS

- Cellular phones
- · Speaker headset switching
- Audio and video signal routing
- PCMCIA cards
- · Low-voltage data acquisition
- ATE

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE							
LOGIC	EN	NC1 and NC2	NO1 and NO2				
0	1	ON	OFF				
1	1	OFF	ON				
0	0	OFF	OFF				
1	0	OFF	OFF				

ORDERING INFORMATION					
TEMP. RANGE	PACKAGE	PART NUMBER			
-40 °C to +85 °C	MSOP-10	DG2519EDQ-T1-GE3			
	DFN-10	DG2519EDN-T1-GE4			

ABSOLUTE MAXIMUM RATINGS							
PARAMETER		LIMIT	UNIT				
Reference V+ to GND		-0.3 to +6	V				
IN, COM, NC, NO ^a		-0.3 to (V+ + 0.3)	Ň				
Continuous current (any terminal)		± 50	mA				
Peak current (pulsed at 1 ms, 10 % duty	y cycle)	± 200					
Storage temperature (D suffix)		-65 to +150	۵°				
Power dissipation (packages) ^b	MSOP-10 °	320	mW				
Fower dissipation (packages)	DFN-10 ^d	1191	11100				
ESD / HBM EIA / JESD22-A114-A		7.5k	V				
ESD / CDM	EIA / JESD22-C101-A	1.5k] ř				
Latch up	JESD78	300	mA				

Notes

a. Signals on NC, NO, COM, IN, or EN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings

b. All leads welded or soldered to PC board

c. Derate 4 mW/°C above 70 °C

d. Derate 14.9 mW/°C above 70 °C

S17-0461-Rev. A, 03-Apr-17

1

For technical questions, contact: analogswitchtechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

ROHS COMPLIANT

HALOGEN

www.vishay.com

DG2519E

Vishay Siliconix

SPECIFICATIONS (V+	= 3 V)							
PARAMETER	SYMBOL	SYMBOL OTHERWISE UNLESS SPECIFIED		TEMP.	LIMITS -40 °C to +85 °C			UNIT
	$V_{\pm} = 3 V_{\pm} \pm 10 \%$, $V_{IN/ENL} = 0.4 V_{\pm} V_{IN/ENH} = 1.5 V_{\pm}^{\circ}$		_{ENH} = 1.5 V ^e	а	MIN. ^c	TYP. ^b	MAX. ^c	
Analog Switch						-		
Analog signal range ^d	V _{ANALOG}				0	-	V+	V
		V+ = 1.8 V, V _{NC/NO} = 0.4 V / V+, I _{NC}	- 9 m/	Room	-	7	11	
Drain-source on-resistance	R _{DS(on)}	$v_{+} = 1.0 v, v_{NC/NO} = 0.4 v / v_{+}, i_{NC}$	/NO – 0 MA	Full	-	-	13	
Drain-source on-resistance	DS(on)	$V_{+} = 2.7 V, V_{COM} = 0.8 V / 1.8 V, I_{CO}$	– 10 mA	Room	-	4.6	5.5	
		$v = 2.7 v, v_{COM} = 0.0 v / 1.0 v, 100$		Full	-	-	6.5	Ω
On-resistance matching	$\Delta R_{DS(on)}$			Room	-	0.02	0.3	22
On-resistance matching	DS(on)	V+ = 2.7 V, V _{COM} = 0.8 V / 1.4 V	/ 1.8 V,	Full	-	-	0.6	
On-resistance flatness ^{d, f}	D	$I_{COM} = 10 \text{ mA}$		Room	-	0.62	1.1	
On-resistance natiless -, -	R _{flat(on)}			Full	-	-	1.5	
Off leakage current ^g				Room	-1	0.01	1	
On leakage current 9	I _{NC/NO(off)}	$V + = 3.6 V, V_{NC/NO} = 1 V / 3.2$	2 V,	Full	-5	-	5	
COM off leakage current ^g	I	$V_{COM} = 3.2 \text{ V} / 1 \text{ V}, V_{EN} = 0$	V	Room	-1	0.01	1	nA
CON ON leakage current s	I _{COM(off)}			Full	-5	-	5	ΠA
Channel-on leakage	1		1/201	Room	-1	0.01	1	
current ^g	I _{COM(on)}	V+ = 3.3 V, $V_{COM} = V_{NC/NO} = 1 V / 3.2 V$		Full	-5	-	5	
Digital Control		·						
Input current ^d	$I_{\rm INL}$ or $I_{\rm INH}$			Full	-1	-	1	μA
Input high voltage ^d	V _{INH}			Full	1.5	-	-	V
Input low voltage ^d	V _{INL}			Full	-	-	0.4	v
Digital input capacitance ^d	CIN			Room	-	3	-	pF
Dynamic Characteristics								
Turn on time				Room	-	21	45	
Turn-on time	t _{ON}			Full	-	-	50	
Turne off times	1		000 0	Room	-	11	35	
Turn-off time	t _{OFF}	$V_{NC/NO} = 3 V, C_L = 35 pf, R_L = 35$	300 12	Full	-	-	45	ns
Duash, hafara mala tima d	1	-		Room	3	13	-	
Break-before-make time ^d	t _{BBM}			Full	2	-	-	
Charge injection ^d	Q _{INJ}	C _L = 1 nF, V _{gen} = 1.5 V, R _{gen} =	= 0 Ω	Room	-	-10.2	-	рС
Bandwidth ^d	BW	C _L = 5 pF (set up capacitan	ice)	Room	-	222	-	MHz
orright d	0100		f = 1 MHz	Room	-	-58	-	
Off-isolation ^d	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	f = 10 MHz	Room	-	-47	-	
			f = 1 MHz	Room	-	-57	-	dB
Channel-to-channel crosstalk ^d	X _{TALK}	$R_L = 50 \Omega, C_L = 5 pF$ f	f = 10 MHz	Room	-	-47	-	1
	C _{NO(off)}			Room	-	7	-	
NO, NC Off capacitance d	C _{NC(off)}	1 ,			-	7	-	. –
O L I	C _{NO(on)}	- V+ = 2.7 V, f = 1 MHz		Room	-	24	-	pF
Channel-on capacitance d	C _{NC(on)}			Room	-	24	-	
Power Supply	- \- /	• 						
Power supply range	V+				2.7	-	3.3	V
Power supply current d	I+	V+ = 2.7 V, V _{IN} = 0 V or 2.7	' V	Full	-	-	1	μA

Notes

a. Room = 25 °C, Full = as determined by the operating suffix

b. Typical values are for design aid only, not guaranteed nor subject to production testing

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet

d. Guarantee by design, not subjected to production test

e. $V_{IN} = V + voltage to perform proper function$

f. Crosstalk measured between channels

g. Guarantee by 5 V testing

S17-0461-Rev. A, 03-Apr-17

2

Document Number: 78595

For technical questions, contact: analogswitchtechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

DG2519E

Vishay Siliconix

SPECIFICATIONS (V+ =	= 5 V)							
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED T V+ = 5 V, \pm 10 %, V _{IN/ENL} = 0.5 V, V _{IN/ENH} = 2 V $^{\rm e}$		TEMP.	LIMITS -40 °C to +85 °C			UNIT
	01			а	MIN. °	TYP. ^b	MAX. °	•••••
Analog Switch								
Analog signal ranged	V _{ANALOG}			Full	0	-	V+	V
Drain-source on-resistance	P	$V_{+} = 4.5 V, V_{COM} = 0.8 V / 3.5 V; I_{COM} = 0.8 V / 3.5 V; I_{C$	- 10 mA	Room	-	2.5	3.1	
	R _{DS(on)}	$v + = 4.3 v$, $v_{COM} = 0.8 v / 3.3 v$, ic		Full	-	-	4	
On-resistance matching	$\Delta R_{DS(on)}$				-	0.01	0.4	Ω
on resistance materning	DS(on)	V+ = 4.5 V, V_{COM} = 0.8 V / 2.5	V / 3.5 V,	Full	-	-	0.5	22
On-resistance flatness ^{d, f}	R _{flat(on)}	$I_{COM} = 10 \text{ mA}$		Room	-	0.61	1	
	• tiat(on)			Full	-	-	1.5	
Off leakage current ^g	I _{NC/NO(off)}			Room	-2	0.16	2	
en loanage carloin a	·NC/NO(01)	$V+ = 5.5 V, V_{NC/NO} = 1 V /$	4.5 V,	Full	-10	-	10	
COM off leakage current ^g	I _{COM(off)}	$V_{COM} = 4.5 \text{ V} / 1 \text{ V}, V_{EN} =$	= 0 V	Room	-2	0.20	2	nA
Com on leakage carrent a				Full	-10	-	10	103
Channel-on leakage current ^g	I _{COM(on)}	$V_{+} = 5.5 V, V_{COM} = V_{NC/NO} = 1$	V/45V	Room	-2	0.20	2	
Channel of leakage current	COIVI(on)			Full	-10	-	10	
		V+ = 0 V, V _{COM} = 5.5 V, NC/N		Full	-	0.01	5	μA
Power down leakage ^d	I _{PD}	$V+=0 V, V_{NC/NO}=5.5 COM, open$	$V+ = 0 V, V_{NC/NO} = 5.5 V,$ COM, open		-	0.01	3	mA
Digital Control								
Input current ^d	$I_{\rm INL}$ or $I_{\rm INH}$			Full	-1	-	1	μA
Input high voltage ^d	V _{INH}			Full	2	-	-	v
Input low voltage ^d	V _{INL}			Full	-	-	0.5	v
Digital input capacitance ^d	C _{IN}			Room	-	3	-	pF
Dynamic Characteristics						-	-	
Turn-on time	t _{ON}			Room	-	14	40	
	UN			Full	-	-	43	
Turn-off time	t _{OFF}	$V_{NC/NO} = 3 V, C_{L} = 35 pf, R_{L}$	- 300 0	Room	-	7	33	ns
	UFF	$V_{\rm NC/NO} = 3 V, O_{\rm L} = 33 pl, H_{\rm L}$	- 500 32	Full	-	-	35	115
Break-before-make time ^d	toout			Room	3	8	-	
	t _{BBM}			Full	2	-	-	
Propagation delay ^d	tpd	V+ = 5 V, no R _L		Room	-	325	-	ps
Charge injection ^d	Q _{INJ}	$C_L = 1 \text{ nF}, V_{gen} = 2.5 \text{ V}, \text{ R}_{gen}$		Room	-	-14	-	рС
Bandwidth ^d	BW	C _L = 5 pF (set up capacita	ance)	Room	-	217	-	MHz
Off-isolation d	OIRR	$R_1 = 50 \Omega, C_1 = 5 pF$	f = 1 MHz	Room	-	-61	-	
	Onin	$M_{\rm L} = 30.32, 0 = 3.01$	f = 10 MHz	Room	-	-48	-	dB
Channel-to-channel	X _{TALK}	$R_{I} = 50 \Omega, C_{I} = 5 pF$	f = 1 MHz	Room	-	-61	-	uр
crosstalk ^d	ATALK	$R_L = 50.02, C_L = 5.000$ f = 10 MHz		Room	-	-48	-	
NO, NC Off capacitance d	C _{NO(off)}				-	7	-	
	C _{NC(off)}			Room	-	7	-	ъF
Channel-On capacitance ^d	C _{NO(on)}	$v = 5 v, i = i W \square Z$	V+ = 5 V, f = 1 MHz		-	24	-	pF
•	C _{NC(on)}			Room	-	24	-	
Power Supply								
Power supply range	V+				4.5	-	5.5	V
Power supply current ^d	l+	V+ = 5.5 V, V _{IN} = 0 V or 5.5 V		Full	-	-	1	μA

Notes

a. Room = 25 °C, Full = as determined by the operating suffix

b. Typical values are for design aid only, not guaranteed nor subject to production testing

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet

d. Guarantee by design, not subjected to production test

e. V_{IN} = input voltage to perform proper function

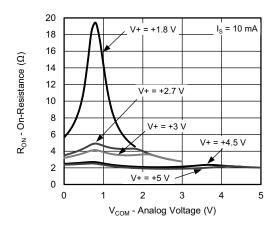
f. Difference of min and max values

g. Guaranteed by 5 V testing.

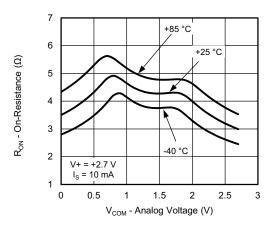
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

S17-0461-Rev. A, 03-Apr-17

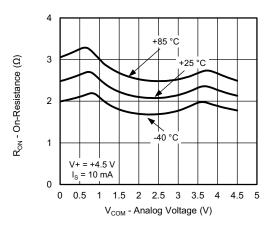
3


For technical questions, contact: analogswitchtechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

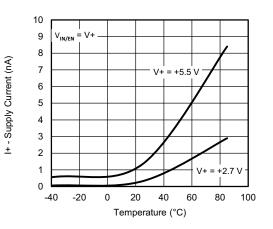


Vishay Siliconix

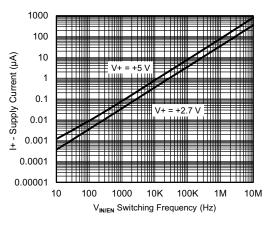

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

RON vs. VCOM and Single Supply Voltage

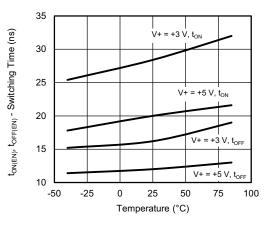
Ron vs. Analog Voltage and Temperature


Ron vs. Analog Voltage and Temperature

S17-0461-Rev. A, 03-Apr-17

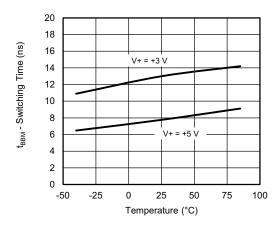

Document Number: 78595

For technical questions, contact: analogswitchte

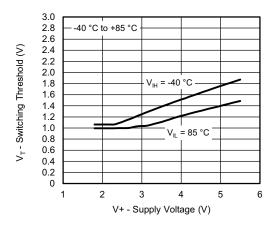

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Supply Current vs. Temperature

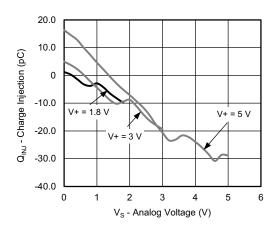
Positive Supply Current vs. Switching Frequency

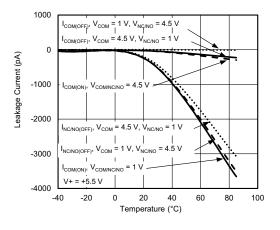


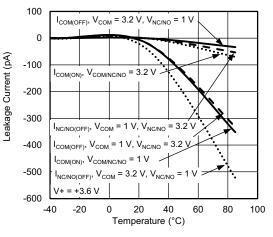
Switching Time vs. Temperature

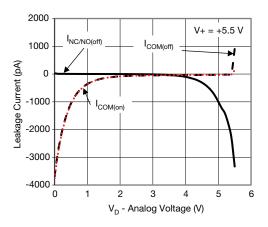


Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Switching Time vs. Temperature


Switching Threshold vs. Supply Voltage


Charge Injection vs. Source Voltage

Leakage Current vs. Temperature

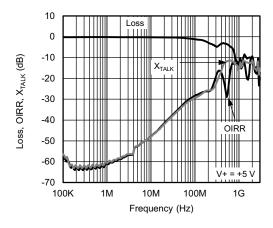
Leakage Current vs. Temperature

Leakage Current vs. Analog Voltage

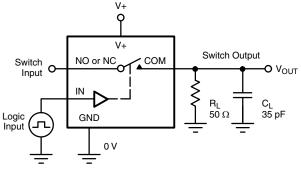
S17-0461-Rev. A, 03-Apr-17

5

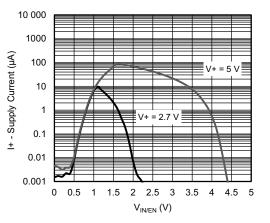
Document Number: 78595


For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

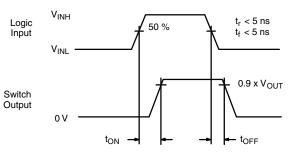
DG2519E


Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Loss, OIRR, X_{TALK} vs. Frequency

TEST CIRCUITS



 C_{L} (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Positive Supply Current vs. Logic Voltage

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

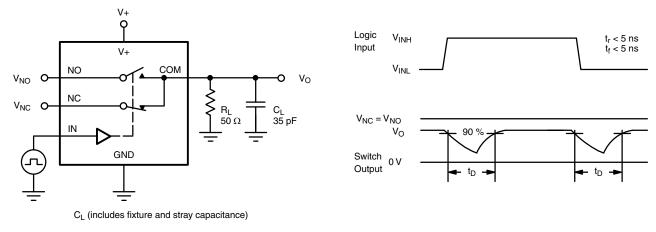
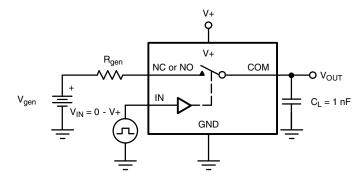
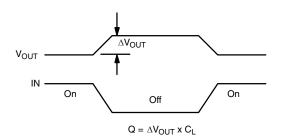


Fig. 2 - Break-Before-Make Interval

S17-0461-Rev. A, 03-Apr-17

6


Document Number: 78595


For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

TEST CIRCUITS

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

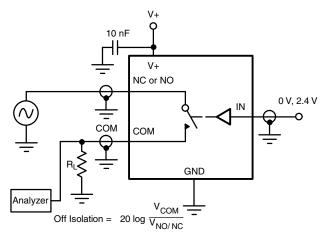


Fig. 4 - Off-Isolation

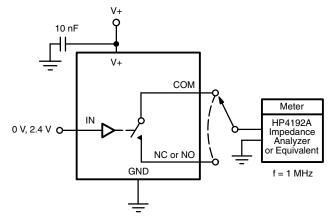


Fig. 5 - Channel Off/On Capacitance

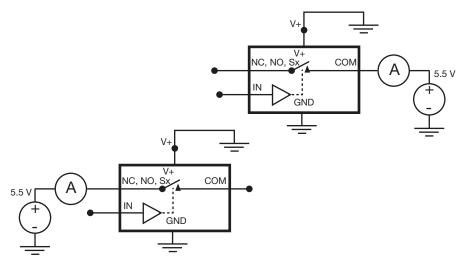
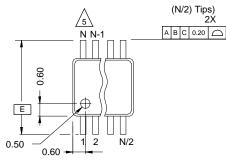
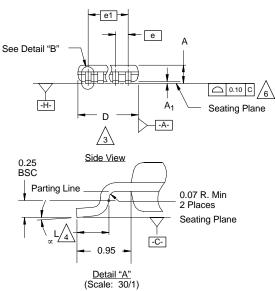


Fig. 6 - Source / Drain Power Down Leakage

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg278595.

S17-0461-Rev. A, 03-Apr-17	7	Document Number: 78595
	For technical questions, contact: analogswitchtechsupport@vishav.com	


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

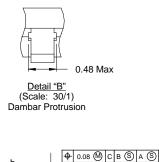

Package Information Vishay Siliconix

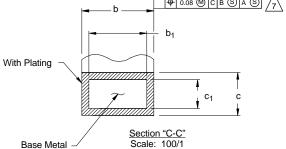
MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

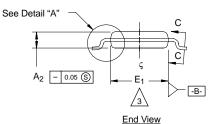
/4.\


/5.\

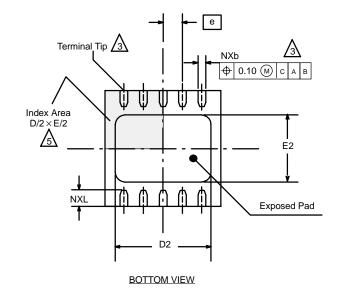

1. Die thickness allowable is 0.203 ± 0.0127 .

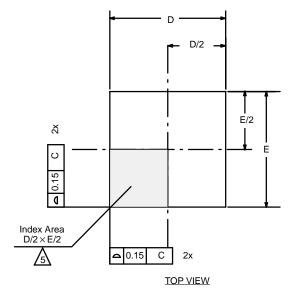
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.

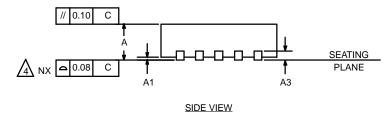
- /3. Dimensions "D" and "E₁" do not include mold flash or protrusions, and are measured at Datum plane _-H- , mold flash or protrusions shall not exceed 0.15 mm per side.
 - Dimension is the length of terminal for soldering to a substrate.
 - Terminal positions are shown for reference only.
- A Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.
- The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".
- 8. Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.
- 9. Controlling dimension: millimeters.
- 10. This part is compliant with JEDEC registration MO-187, variation AA and BA.
- 11. Datums -A- and -B- to be determined Datum plane -H-.


12 Exposed pad area in bottom side is the same as teh leadframe pad size.

(See Note 8)




N = 10L


	M				
Dim	Min	Nom	Max	Note	
Α	-	-	1.10		
A ₁	0.05	0.10	0.15		
A ₂	0.75	0.85	0.95		
b	0.17	-	0.27	8	
b ₁	0.17	0.20	0.23	8	
С	0.13				
с ₁	0.13	0.15	0.18		
D		3			
Е					
E ₁	2.90	3.00	3.10	3	
е					
e ₁		2.00 BSC			
L	0.40	0.55	0.70	4	
Ν		10		5	
x	0°	4°	6°		
ECN: T-02 DWG: 58	2080—Rev. (67	C, 15-Jul-02		·	

DFN-10 LEAD (3 X 3)

		MILLIMETERS				INCHES		
	Dim	Min	Nom	Max	Min	Nom	Max	
	Α	0.80	0.90	1.00	0.031	0.035	0.039	
are in millimeters and inches.	A1	0.00	0.02	0.05	0.000	0.001	0.002	
umber of terminals.	A3	0.20 BSC			0.008 BSC			
pplies to metallized terminal and is measured and 0.30 mm from terminal tip.	b	0.18	0.23	0.30	0.007	0.009	0.012	
plies to the exposed heat sink slug as well as the	D	3.00 BSC			0.118 BSC			
	D2	2.20	2.38	2.48	0.087	0.094	0.098	
ntifier may be either a mold or marked feature, it diverse within the zone iindicated.	E	3.00 BSC			0.118 BSC			
	E2	1.49	1.64	1.74	0.059	0.065	0.069	
	е		0.50 BSC			0.020 BSC		
	L	0.30	0.40	0.50	0.012	0.016	0.020	
	*Use millin	neters as the	primary meas	surement.	•	•		

ECN: S-42134—Rev. A, 29-Nov-04 DWG: 5943

NOTES:

- 1. All dimensions a
- 2. N is the total nur

Dimension b app between 0.15 ar

Coplanarity appl terminal.

The pin #1 ident must be located <u></u>

Document Number:	73181	
29-Nov-04		

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.