

HALOGEN

FREE

## Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers

### **DESCRIPTION**

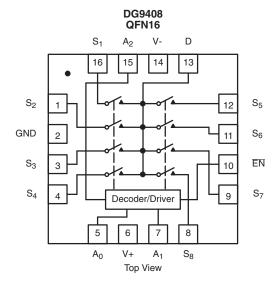
The DG9408, DG9409 uses BiCMOS wafer fabrication technology that allows the DG9408, DG9409 to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with  $\pm$  3 V to  $\pm$  6 V.

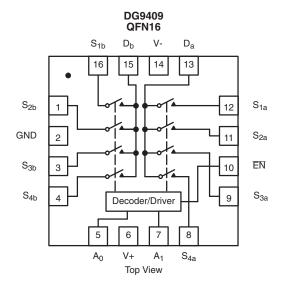
The DG9408 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>). The DG9409 is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A<sub>0</sub>, A<sub>1</sub>). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. The DG9408, DG9409 are offered in a QFN package that has a nickel-palladiumgold device terminations and is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all the JEDEC standards for reflow and MSL ratings.

### **FEATURES**

- 2.7 V to 12 V single supply or  $\pm$  3 V to  $\pm$  6 V dual supply operation
- Low on-resistance  $R_{ON}$ : 3.9  $\Omega$  typ.
- Fast switching: t<sub>ON</sub> 42 ns, t<sub>OFF</sub> 24 ns
- Break-before-make guaranteed
- Low leakage
- TTL, CMOS, LV logic (3 V) compatible
- 2000 V ESD protection (HBM)
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912


### **BENEFITS**


- High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

### **APPLICATIONS**

- Data acquisition systems
- Battery operated equipment
- Portable test equipment
- Sample and hold circuits
- Communication systems
- SDSL. DSLAM
- Audio and video signal routing

### **FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION**





Document Number: 71870 S13-1288-Rev. D, 27-May-13 For technical questions, contact: <a href="mailto:pmostechsupport@vishav.com">pmostechsupport@vishav.com</a>



### TRUTH TABLES AND ORDERING INFORMATION

| TRUTI          | TRUTH TABLE DG9408 |                |    |           |  |  |  |  |  |  |  |
|----------------|--------------------|----------------|----|-----------|--|--|--|--|--|--|--|
| A <sub>2</sub> | A <sub>1</sub>     | A <sub>0</sub> | EN | On Switch |  |  |  |  |  |  |  |
| Х              | Х                  | Х              | 1  | None      |  |  |  |  |  |  |  |
| 0              | 0                  | 0              | 0  | 1         |  |  |  |  |  |  |  |
| 0              | 0                  | 1              | 0  | 2         |  |  |  |  |  |  |  |
| 0              | 1                  | 0              | 0  | 3         |  |  |  |  |  |  |  |
| 0              | 1                  | 1              | 0  | 4         |  |  |  |  |  |  |  |
| 1              | 0                  | 0              | 0  | 5         |  |  |  |  |  |  |  |
| 1              | 0                  | 1              | 0  | 6         |  |  |  |  |  |  |  |
| 1              | 1                  | 0              | 0  | 7         |  |  |  |  |  |  |  |
| 1              | 1                  | 1              | 0  | 8         |  |  |  |  |  |  |  |

| TRUTH TABLE DG9409 |                |                            |      |  |  |  |  |  |  |
|--------------------|----------------|----------------------------|------|--|--|--|--|--|--|
| A <sub>1</sub>     | A <sub>0</sub> | A <sub>0</sub> EN On Switc |      |  |  |  |  |  |  |
| Х                  | Х              | 1                          | None |  |  |  |  |  |  |
| 0                  | 0              | 0                          | 1    |  |  |  |  |  |  |
| 0                  | 1              | 0                          | 2    |  |  |  |  |  |  |
| 1                  | 0              | 0                          | 3    |  |  |  |  |  |  |
| 1                  | 1              | 0                          | 4    |  |  |  |  |  |  |

X = Don't care

For low and high voltage levels for V<sub>AX</sub> and V<sub>EN</sub> consult "Digital Control" Parameters for Specific V+ operation. See Specifications Tables for:

Single Supply 12 V

Dual Supply V+ = 5 V, V- = -5 V

Single Supply 5 V

Single Supply 3 V

| ORDERING INFORMATION |                          |                |  |  |  |  |  |  |  |
|----------------------|--------------------------|----------------|--|--|--|--|--|--|--|
| Temp. Range          | Package                  | Part Number    |  |  |  |  |  |  |  |
| - 40 °C to 85 °C     | 16-pin QFN (4 mm x 4 mm) | DG9408DN-T1-E4 |  |  |  |  |  |  |  |
|                      | (Variation 1)            | DG9409DN-T1-E4 |  |  |  |  |  |  |  |

| Parameter                                                           | Parameter                          |                          |    |  |  |  |  |
|---------------------------------------------------------------------|------------------------------------|--------------------------|----|--|--|--|--|
| Voltage Referenced V+ to V-                                         | 14                                 |                          |    |  |  |  |  |
| GND                                                                 | 7                                  |                          |    |  |  |  |  |
| Digital Inputs <sup>a</sup> , V <sub>S</sub> , V <sub>D</sub>       |                                    | (V-) - 0.3 to (V+) + 0.3 |    |  |  |  |  |
| Current (Any Terminal Except S or D)                                | 30                                 |                          |    |  |  |  |  |
| Continuous Current, S or D                                          |                                    | 100                      | mA |  |  |  |  |
| Peak Current, S or D (Pulsed at 1 ms, 10 % Duty Cycle max.)         |                                    | 200                      | 1  |  |  |  |  |
| Package Solder Reflow Conditions <sup>d</sup>                       | 16-pin (4 x 4 mm) QFN              | 240                      | °C |  |  |  |  |
| Storage Temperature                                                 |                                    | - 65 to 150              | 1  |  |  |  |  |
| Power Dissipation (Package) <sup>b</sup> , (T <sub>A</sub> = 70 °C) | 16-pin (4 x 4 mm) QFN <sup>c</sup> | 1880                     | mW |  |  |  |  |

- a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 23.5 mW/°C above 70 °C.
- d. Manual soldering with soldering iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.



| SPECIFICATIONS (Sin                  | gle Supply                  | / 12 V)                                                                                                                      |                  |              |             |          |          |      |
|--------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|----------|----------|------|
|                                      |                             | Test Conditions Unless Otherwise Specifi V+ = 12 V, ± 10 %, V- = 0                                                           |                  | - 40         |             |          |          |      |
| Parameter                            | Symbol                      | $V_A, V_{\overline{EN}} = 0.8 \text{ V or } 2.4 \text{ V}$                                                                   | f                | Temp.b       | Min.c       | Typ.d    | Max.c    | Unit |
| Analog Switch                        |                             |                                                                                                                              |                  | '            |             |          | '        | L    |
| Analog Signal Range <sup>e</sup>     | V <sub>ANALOG</sub>         |                                                                                                                              |                  | Full         | 0           |          | 12       | V    |
| On-Resistance                        | R <sub>ON</sub>             | $V+ = 10.8 \text{ V}, V_D = 2 \text{ V or } 9 \text{ V}, I_S = $ sequence each switch or                                     |                  | Room<br>Full |             | 4        | 7<br>7.5 |      |
| $R_{ON}$ Match Between Channels $^g$ | $\Delta R_{ON}$             |                                                                                                                              |                  | Room         |             |          | 3.6      | Ω    |
| On-Resistance Flatness <sup>i</sup>  | R <sub>ON</sub><br>Flatness | $V+ = 10.8 \text{ V}, V_D = 2 \text{ V or } 9 \text{ V}, I_S = 10.8 \text{ V}$                                               | = 50 mA          | Room         |             |          | 8        |      |
| Switch Off Leakage Current           | I <sub>S(off)</sub>         | V <sub>EN</sub> = 2.4 V, V <sub>D</sub> = 11 V or 1 V, V <sub>S</sub> =                                                      | 1 V or 11 V      | Room<br>Full | - 2<br>- 15 |          | 2<br>15  |      |
| Omen on Loanage Ganoni               | I <sub>D(off)</sub>         | TEN =, TD, TS                                                                                                                |                  | Room<br>Full | - 2<br>- 15 |          | 2<br>15  | nA   |
| Channel On Leakage Current           | $I_{D(on)}$                 | $V_{\overline{EN}} = 0 \text{ V}, V_S = V_D = 1 \text{ V or } 1$                                                             | 11 V             | Room<br>Full | - 2<br>- 15 |          | 2<br>15  |      |
| Digital Control                      |                             |                                                                                                                              |                  |              |             |          |          |      |
| Logic High Input Voltage             | V <sub>INH</sub>            |                                                                                                                              |                  | Full         | 2.4         |          |          | V    |
| Logic Low Input Voltage              | V <sub>INL</sub>            |                                                                                                                              | Full             |              |             | 8.0      | ٧        |      |
| Input Current                        | I <sub>IN</sub>             | $V_{AX} = V_{\overline{EN}} = 2.4 \text{ V or } 0.8 \text{ V}$                                                               | Full             | - 1          |             | 1        | μΑ       |      |
| Dynamic Characteristics              |                             |                                                                                                                              |                  |              |             |          |          |      |
| Transition Time                      | t <sub>TRANS</sub>          | $V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, (DG94)$<br>$V_{S1b} = 8 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$<br>see fig. 2 |                  | Room<br>Full |             | 42       | 71<br>75 |      |
| Break-Before-Make Time               | t <sub>BBM</sub>            | $V_{S(all)} = V_{DA} = 5 V$<br>see fig. 4                                                                                    |                  | Room<br>Full | 2           | 24       |          | ns   |
| Enable Turn-On Time                  | t <sub>ON(ĒN)</sub>         | V <sub>AX</sub> = 0 V, V <sub>S1</sub> = 5 V (DG94<br>V <sub>AX</sub> = 0 V, V <sub>S1b</sub> = 5 V (DG94                    |                  | Room<br>Full |             | 42       | 70<br>75 |      |
| Enable Turn-Off Time                 | t <sub>OFF(EN)</sub>        | see fig. 3                                                                                                                   |                  | Room<br>Full |             | 24       | 44<br>46 |      |
| Charge Injection <sup>e</sup>        | Q                           | $C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \text{ V}$                                                         | = 0 Ω            | Room         |             | 29       |          | рC   |
| Off Isolation <sup>e, h</sup>        | OIRR                        | $f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$                                                                               |                  | Room         |             | - 80     |          | dB   |
| Crosstalk <sup>e</sup>               | X <sub>TALK</sub>           | 1 = 130 1012, 112 = 1 102                                                                                                    |                  | Room         |             | - 85     |          | UD.  |
| Source Off Capacitance <sup>e</sup>  | C <sub>S(off)</sub>         | $f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 2.4 \text{ V}$                                                    | DG9408<br>DG9409 | Room<br>Room |             | 21<br>23 |          |      |
| Drain Off Capacitance <sup>e</sup>   | C <sub>D(off)</sub>         | f = 1 MHz, V <sub>D</sub> = 0 V, V <sub>EN</sub> = 2.4 V                                                                     | DG9408<br>DG9409 | Room         |             | 211      |          | pF   |
| Drain On Capacitance <sup>e</sup>    | C <sub>D(on)</sub>          | $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$                                                      | DG9408<br>DG9409 | Room         |             | 238      |          |      |
| Power Supplies                       |                             |                                                                                                                              | 1 200,000        | 1 100111     |             | 1 .5,    |          |      |
| Power Supply Current                 | l+                          | $V_{\overline{EN}} = V_A = 0 \text{ V or V} +$                                                                               |                  | Room         |             |          | 1        | μΑ   |

# DG9408, DG9409

# Vishay Siliconix

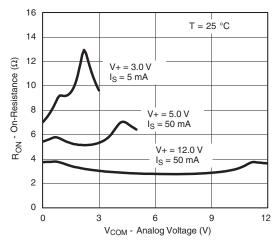


|                                                     |                             | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                  | Limits            |                   |          |          |  |
|-----------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|-------------------|-------------------|----------|----------|--|
|                                                     |                             | Unless Otherwise Specifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | - 40 °C to 85 °C |                   |                   |          |          |  |
|                                                     |                             | V+ = 5 V, V- = - 5 V, ± 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                       |                  |                   |                   |          |          |  |
| Parameter                                           | Symbol                      | $V_A$ , $V_{\overline{EN}} = 0.8 \text{ V or } 2 \text{ V}^f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | Temp.b           | Min. <sup>c</sup> | Typ. <sup>d</sup> | Max.c    | Uni      |  |
| Analog Switch                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | T                |                   | 1                 |          |          |  |
| Analog Signal Range <sup>e</sup>                    | V <sub>ANALOG</sub>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Full             | - 5               |                   | 5        | V        |  |
| On-Resistance                                       | $R_{ON}$                    | $V+ = 4.5 \text{ V}, V- = -4.5 \text{ V}, V_D = \pm 3.5 \text{ V},$ sequence each switch on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O                       | Room<br>Full     |                   | 5                 | 8<br>8.5 |          |  |
| R <sub>ON</sub> Match Between Channels <sup>g</sup> | $\Delta R_{ON}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Room             |                   |                   | 3.6      | Ω        |  |
| On-Resistance Flatness <sup>i</sup>                 | R <sub>ON</sub><br>Flatness | $V+ = 4.5 \text{ V}, V- = -4.5 \text{ V}, V_D = \pm 3.5 \text{ V},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Room                    |                  |                   | 8.2               |          |          |  |
|                                                     | I <sub>S(off)</sub>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Room             | - 2               |                   | 2        |          |  |
| Switch Off Leakage Current <sup>a</sup>             | 3(011)                      | V+ = 5.5, $V- = -5.5$ V<br>$V_{\overline{EN}} = 2.4$ V, $V_D = \pm 4.5$ V, $V_S = 4.5$ V, $V$ | . 45 \/                 | Full             | - 15              |                   | 15       |          |  |
| · ·                                                 | $I_{D(off)}$                | $v_{EN} = 2.4 \text{ v}, v_D = \pm 4.5 \text{ v}, v_S = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Room<br>Full            | - 2<br>- 15      |                   | 2<br>15           | n,       |          |  |
|                                                     |                             | V+ = 5.5 V, V- = - 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V+ = 5.5 V V- = - 5.5 V |                  |                   |                   | 2        | <b> </b> |  |
| Channel On Leakage Current <sup>a</sup>             | I <sub>D(on)</sub>          | $V_{\overline{EN}} = 0 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5 V                   | Room<br>Full     | - 2<br>- 15       |                   | 15       | Ì        |  |
| Digital Control                                     |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                  |                   | l                 |          |          |  |
| Logic High Input Voltage                            | V <sub>INH</sub>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Full             | 2                 |                   |          |          |  |
| Logic Low Input Voltage                             | V <sub>INL</sub>            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | Full             |                   |                   | 0.8      | ١        |  |
| Input Current <sup>a</sup>                          | I <sub>IN</sub>             | V <sub>AX</sub> = V <sub>EN</sub> = 2 V or 0.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | Full             | - 1               |                   | 1        | μ        |  |
| Dynamic Characteristics                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                  |                   | l                 |          |          |  |
|                                                     |                             | $V_{S1} = 3.5 \text{ V}, V_{S8} = -3.5 \text{ V}, (DG)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9408)                   | D                |                   |                   | 00       |          |  |
| Transition Time <sup>e</sup>                        | t <sub>TRANS</sub>          | $V_{S1b} = 3.5 \text{ V}, V_{S4b} = -3.5 \text{ V}, (D0)$<br>see fig. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G9409)                  | Room<br>Full     |                   | 68                | 89<br>94 |          |  |
| Prook Potoro Mako Timo <sup>e</sup>                 | t <sub>BBM</sub>            | $V_{S(all)} = V_{DA} = 3.5 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Room             | 1                 | 16                |          |          |  |
| Break-Before-Make Time <sup>e</sup>                 | BBM                         | see fig. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Full             |                   |                   |          | n        |  |
| Enable Turn-On Time <sup>e</sup>                    | t <sub>ON(EN)</sub>         | V <sub>AX</sub> = 0 V, V <sub>S1</sub> = 3.5 V (DG9 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108)                    | Room             |                   | 68                | 88       |          |  |
|                                                     | ()                          | $V_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V (DG9)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Full<br>Room     |                   | F0                | 94<br>78 | 1        |  |
| Enable Turn-Off Time <sup>e</sup>                   | $t_{OFF(\overline{EN})}$    | see fig. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Full             |                   | 58                | 78<br>81 |          |  |
|                                                     |                             | f 4 MIL- V 0 V V 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DG9408                  | Room             |                   | 23                |          |          |  |
| Source Off Capacitance <sup>e</sup>                 | $C_{S(off)}$                | $f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DG9409                  | Room             |                   | 23                |          |          |  |
| Durin Off Organitary of                             | C                           | f = 1 MHz, V <sub>D</sub> = 0 V, V <sub>FN</sub> = 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DG9408                  | Room             |                   | 223               |          | _        |  |
| Drain Off Capacitance <sup>e</sup>                  | C <sub>D(off)</sub>         | 1 - 1 Williz, VD = 0 V, VEN = 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DG9409                  | Room             |                   | 113               |          | pF       |  |
| Drain On Capacitance <sup>e</sup>                   | C <sub>D(on)</sub>          | f = 1 MHz, V <sub>D</sub> = 0 V, V <sub>FN</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DG9408                  | Room             |                   | 246               |          |          |  |
| ·                                                   | - D(ou)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DG9409                  | Room             |                   | 137               |          |          |  |
| Power Supplies                                      |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                  |                   | 1                 |          |          |  |
| Power Supply Current                                | !+<br>                      | $V_{\overline{EN}} = V_A = 0 \text{ V or V} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Room             |                   |                   | 1        | μ        |  |
| ,                                                   | l-                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Room             | - 1               |                   |          |          |  |

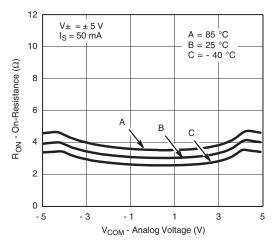


| SPECIFICATIONS (S                                      | ingle Supp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oly 5 V)                                                                                                        |                                            |              |             |           |            |      |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|-------------|-----------|------------|------|
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Conditions Unless Otherwise Specifie $V+=5 V, \pm 10 \%, V-=0 V$                                           |                                            | - 4(         |             |           |            |      |
| Parameter                                              | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_A$ , $V_{\overline{EN}} = 0.8 \text{ V or } 2 \text{ V}^f$                                                   |                                            | Temp.b       | Min.c       | Typ.d     | Max.c      | Unit |
| Analog Switch                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                            | -            |             |           |            | ı    |
| Analog Signal Range <sup>e</sup>                       | V <sub>ANALOG</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                            | Full         | 0           |           | 5          | V    |
| On-Resistance                                          | R <sub>ON</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V+ = 4.5 \text{ V}, V_D \text{ or } V_S = 1 \text{ V or } 3.5 \text{ V}, I_S$                                  | <sub>S</sub> = 50 mA                       | Room<br>Full |             | 7         | 10.5<br>11 |      |
| R <sub>ON</sub> Match Between<br>Channels <sup>g</sup> | ΔR <sub>ON</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V+ = 4.5 V, V <sub>D</sub> = 1 V or 3.5 V, I <sub>S</sub> =                                                     | 50 mA                                      | Room         |             |           | 3.6        | Ω    |
| On-Resistance Flatness <sup>i</sup>                    | R <sub>ON</sub><br>Flatness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v+=4.5 v, v <sub>D</sub> =1 v 01 5.5 v, 1 <sub>S</sub> =                                                        | 30 IIIA                                    | Room         |             |           | 9          |      |
| Switch Off Leakage Current <sup>a</sup>                | I <sub>S(off)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V+ = 5.5 V                                                                                                      |                                            | Room<br>Full | - 2<br>- 15 |           | 2<br>15    |      |
|                                                        | Flatness   Room   Property   Flatness   Fla | 2<br>15                                                                                                         | nA                                         |              |             |           |            |      |
| Channel On Leakage<br>Current <sup>a</sup>             | I <sub>D(on)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0.0 1                                                                                                         | switch on                                  |              |             |           | 2<br>15    |      |
| Digital Control                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                            |              |             |           |            |      |
| Logic High Input Voltage                               | V <sub>INH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V+ - 5 V                                                                                                        |                                            | Full         | 2           |           |            | V    |
| Logic Low Input Voltage                                | V <sub>INL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | Full                                       |              |             | 0.8       | ,<br>      |      |
| Input Current <sup>a</sup>                             | I <sub>IN</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{AX} = V_{\overline{EN}} = 2 \text{ V or } 0.8 \text{ V}$                                                    |                                            | Full         | - 1         |           | 1          | μΑ   |
| Dynamic Characteristics                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                            |              |             |           |            |      |
| Transition Time <sup>e</sup>                           | t <sub>TRANS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{S1b} = 3.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$                                                        |                                            |              |             | 73        | 94<br>104  |      |
| Break-Before-Make Time <sup>e</sup>                    | t <sub>OPEN</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{S(all)} = V_{DA} = 3.5 \text{ V}$<br>see fig. 4                                                             |                                            | Room<br>Full | 2           | 29        |            | ns   |
| Enable Turn-On Time <sup>e</sup>                       | t <sub>ON(ĒN)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>AX</sub> = 0 V, V <sub>S1</sub> = 3.5 V (DG94)<br>V <sub>AX</sub> = 0 V, V <sub>S1b</sub> = 3.5 V (DG94) |                                            | Room<br>Full |             | 74        | 94<br>104  |      |
| Enable Turn-Off Time <sup>e</sup>                      | t <sub>OFF(EN)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | see fig. 3                                                                                                      |                                            | Room<br>Full |             | 38        | 57<br>61   |      |
| Charge Injection <sup>e</sup>                          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>L</sub> = 1 nF, R <sub>GEN</sub> = 0 , V <sub>GEN</sub> = 0                                              | 0 V                                        | Room         |             | 20        |            | рC   |
| Off Isolation <sup>e, h</sup>                          | OIRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_1 = 1 \text{ k}\Omega, f = 100 \text{ kHz}$                                                                  |                                            | Room         |             | - 81      |            | dB   |
| Crosstalk <sup>e</sup>                                 | X <sub>TALK</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | $m_L = 1 \text{ ks2}, 1 = 100 \text{ kmz}$ |              |             | - 85      |            | 3.5  |
| Source Off Capacitance <sup>e</sup>                    | C <sub>S(off)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$                                         | DG9408                                     | Room         |             | 22        |            |      |
| •                                                      | ` ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | DG9409<br>DG9408                           | Room         |             | 24<br>223 |            |      |
| Drain Off Capacitance <sup>e</sup>                     | C <sub>D(off)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$                                         | DG9408<br>DG9409                           | Room         |             | 113       |            | pF   |
| Drain On Capacitance <sup>e</sup>                      | C <sub>D(on)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$                                         | DG9408<br>DG9409                           | Room         |             | 244       |            |      |
| Power Supplies                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                            |              |             |           |            | 1    |
| Power Supply Current                                   | l+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{\overline{EN}} = V_A = 0 \text{ V or V} +$                                                                  |                                            | Room         |             |           | 1          | μΑ   |

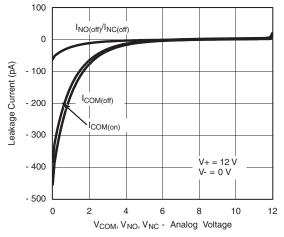



| SPECIFICATIONS (Sir                                    | ngle Suppl                  | y 3 V)                                                                                                                                |                     |              |                                   |            |                   |      |
|--------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-----------------------------------|------------|-------------------|------|
|                                                        |                             | Test Conditions Unless Otherwise Specifi V+ = 3 V, ± 10 %, V- = 0 V                                                                   |                     |              | <b>Limits</b><br>- 40 °C to 85 °C |            |                   |      |
| Parameter                                              | Symbol                      | $V_{\overline{EN}} = 0.4 \text{ V or } 1.8 \text{ V}^{f}$                                                                             | ,                   | Temp.b       | Min.c                             | Typ.d      | Max. <sup>c</sup> | Unit |
| Analog Switch                                          | •                           |                                                                                                                                       |                     | •            |                                   |            |                   |      |
| Analog Signal Range <sup>e</sup>                       | V <sub>ANALOG</sub>         |                                                                                                                                       |                     | Full         | 0                                 |            | 3                 | V    |
| On-Resistance                                          | R <sub>ON</sub>             | $V+ = 2.7 \text{ V}, V_D = 0.5 \text{ V or } 2.2 \text{ V}, I_{\xi}$                                                                  | <sub>S</sub> = 5 mA | Room<br>Full |                                   | 12         | 25.5<br>26.5      |      |
| R <sub>ON</sub> Match Between<br>Channels <sup>g</sup> | $\Delta R_{ON}$             | V+ = 2.7 V, V <sub>D</sub> = 0.5 V or 2.2 V, I <sub>I</sub>                                                                           | o – 5 m∆            | Room         |                                   |            | 3.6               | Ω    |
| On- Resistance Flatness <sup>i</sup>                   | R <sub>ON</sub><br>Flatness | V = 2.7 V, V <sub>D</sub> = 0.0 V 0. 2.2 V,                                                                                           | 5 - 0 1111 (        | Room         |                                   |            | 13                |      |
| Switch Off Leakage Current <sup>a</sup>                | I <sub>S(off)</sub>         | V+ = 3.3 V                                                                                                                            |                     | Room<br>Full | - 2<br>- 15                       |            | 2<br>15           |      |
| Switch Off Leakage Current                             | I <sub>D(off)</sub>         | $V_S = 2 \text{ V or 1 V, } V_D = 1 \text{ or 2}$                                                                                     | 2 V                 | Room<br>Full | - 2<br>- 15                       |            | 2<br>15           | nA   |
| Channel On Leakage Current <sup>a</sup>                | I <sub>D(on)</sub>          | $V_D = V_S = 1 V \text{ or } 2 V, \text{ sequence eac}$                                                                               | h switch on         | Room<br>Full | - 2<br>- 15                       |            | 2<br>15           |      |
| Digital Control                                        |                             |                                                                                                                                       |                     |              |                                   |            |                   |      |
| Logic High Input Voltage                               | $V_{INH}$                   |                                                                                                                                       |                     | Full         | 1.8                               |            |                   | V    |
| Logic Low Input Voltage                                | $V_{INL}$                   |                                                                                                                                       |                     | Full         |                                   |            | 0.4               | ·    |
| Input Current <sup>a</sup>                             | I <sub>IN</sub>             | $V_{AX} = V_{\overline{EN}} = 1.8 \text{ V or } 0.4 \text{ V}$                                                                        | V                   | Full         | - 1                               |            | 1                 | μΑ   |
| Dynamic Characteristics                                |                             |                                                                                                                                       |                     |              |                                   |            |                   |      |
| Transition Time                                        | t <sub>TRANS</sub>          | $V_{S1} = 1.5 \text{ V}, V_{S8} = 0 \text{ V}, \text{ (DG9-V}_{S1b} = 1.5 \text{ V}, V_{S4b} = 0 \text{ V}, \text{ (DG9-See fig. 2)}$ | 408)<br>9409)       | Room<br>Full |                                   | 140        | 165<br>182        |      |
| Break-Before-Make Time                                 | t <sub>BBM</sub>            | V <sub>S(all)</sub> = V <sub>DA</sub> = 1.5 V<br>see fig. 4                                                                           |                     | Room<br>Full | 2                                 | 63         |                   | ns   |
| Enable Turn-On Time                                    | t <sub>ON(ĒN)</sub>         | V <sub>AX</sub> = 0 V, V <sub>S1</sub> = 1.5 V (DG9-<br>V <sub>AX</sub> = 0 V, V <sub>S1b</sub> = 1.5 V (DG9                          | 408)<br>409)        | Room<br>Full |                                   | 140        | 162<br>178        |      |
| Enable Turn-Off Time                                   | $t_{OFF(\overline{EN})}$    | see fig. 3                                                                                                                            | 409)                | Room<br>Full |                                   | 76         | 97<br>104         |      |
| Charge Injection <sup>e</sup>                          | Q                           | C <sub>L</sub> = 1 nF, R <sub>GEN</sub> = 0 , V <sub>GEN</sub> =                                                                      | : 0 V               | Room         |                                   | 7          |                   | рC   |
| Off Isolation <sup>e, h</sup>                          | OIRR                        | $f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$                                                                                        |                     | Room         |                                   | - 81       |                   | ٩D   |
| Crosstalk <sup>e</sup>                                 | X <sub>TALK</sub>           | 1 = 100 KHZ, HE = 1 KSZ                                                                                                               |                     | Room         |                                   | - 85       |                   | dB   |
| Source Off Capacitance <sup>e</sup>                    | C <sub>S(off)</sub>         | f = 1 MHz, V <sub>S</sub> = 0 V, V <sub>EN</sub> = 1.8 V                                                                              | DG9408              | Room         |                                   | 23         |                   |      |
| Source On Capacitance                                  | 93(011)                     |                                                                                                                                       | DG9409              | Room         |                                   | 25         |                   |      |
| Drain Off Capacitance <sup>e</sup>                     | C <sub>D(off)</sub>         | $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 1.8 \text{ V}$                                                             | DG9408              | Room         |                                   | 230        |                   | pF   |
| ,                                                      | 2(011)                      |                                                                                                                                       | DG9409<br>DG9408    | Room<br>Room |                                   | 120<br>256 |                   |      |
| Drain On Capacitance <sup>e</sup>                      | $C_{D(on)}$                 | $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$                                                               | DG9408<br>DG9409    | Room         |                                   | 147        |                   |      |
| Power Supplies                                         |                             |                                                                                                                                       |                     | 1            |                                   | 1          |                   |      |
| Power Supply Current                                   | l+                          | $V_{\overline{EN}} = V_A = 0 \text{ V or V} +$                                                                                        |                     | Room         |                                   |            | 1                 | μΑ   |

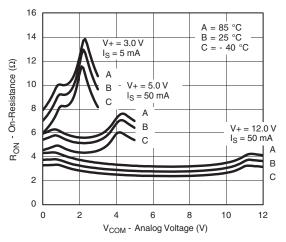
- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V<sub>IN</sub> = input voltage to perform proper function.
- g.  $\Delta R_{DON} = R_{DON} Max R_{DON} Min.$
- h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
- i. R<sub>DON</sub> flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

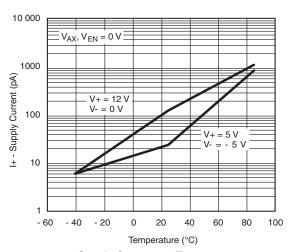



### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

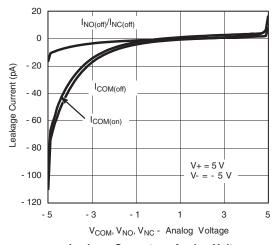



 $\rm R_{ON}$  vs.  $\rm V_{COM}$  and Single Supply Voltage




R<sub>ON</sub> vs. Analog Voltage and Temperature

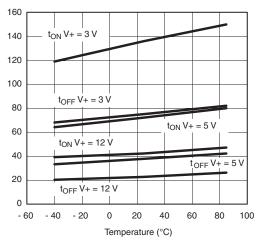



Leakage Current vs. Analog Voltage

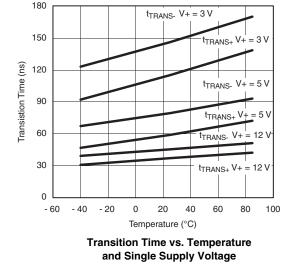


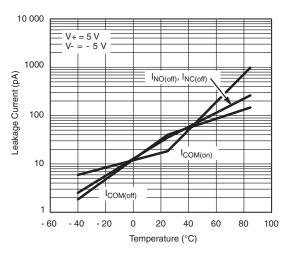
R<sub>ON</sub> vs. Analog Voltage and Temperature



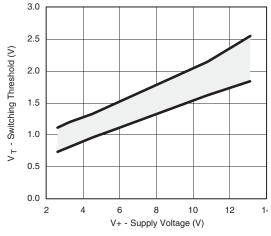

**Supply Current vs. Temperature** 



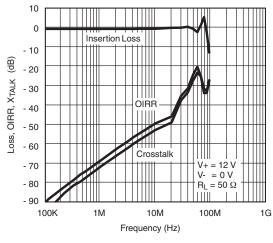

Leakage Current vs. Analog Voltage


# VISHAY

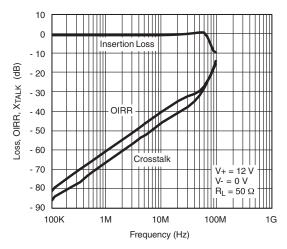
### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)




Switching Time vs. Temperature and Single Supply Voltage



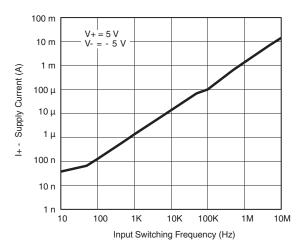




Leakage Current vs. Temperature



Switching Threshold vs. Supply Voltage




Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9408)



Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9409)



### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Supply Current vs. Input Switching Frequency

### **SCHEMATIC DIAGRAM** (Typical Channel)

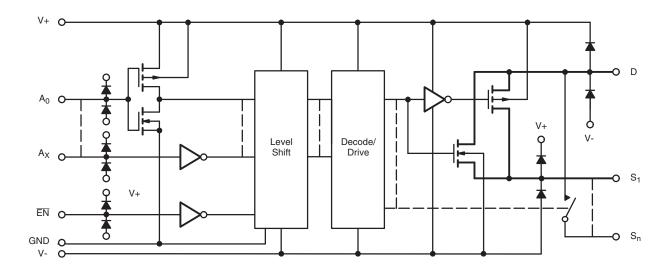



Figure 1.

### **TEST CIRCUITS**



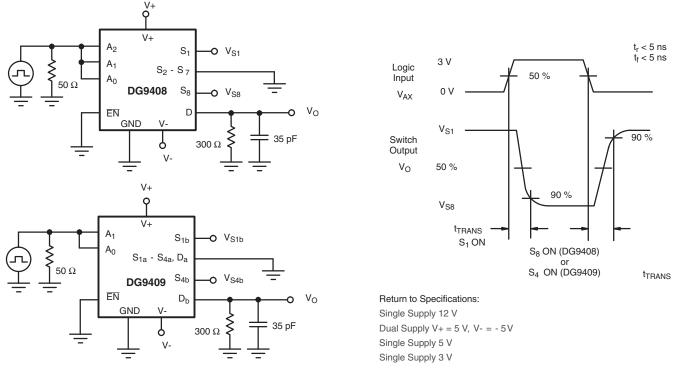



Figure 2. Transition Time

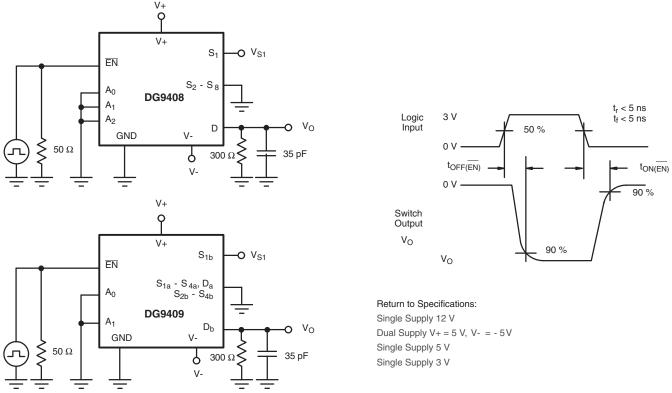
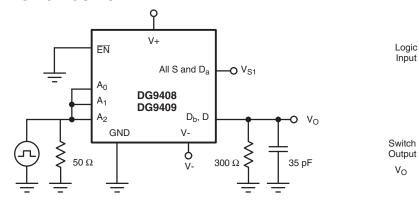
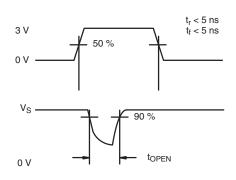





Figure 3. Enable Switching Time

### **TEST CIRCUITS**





Return to Specifications:

Single Supply 12 V

Dual Supply V+ = 5 V, V- = -5 V

Single Supply 5 V

Single Supply 3 V

Figure 4. Break-Before-Make Interval

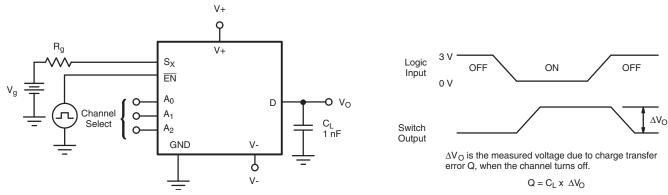



Figure 5. Charge Injection

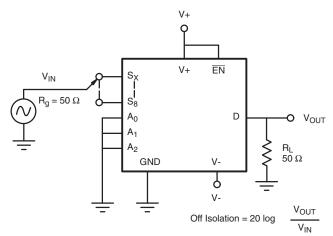



Figure 6. Off Isolation

### **TEST CIRCUITS**



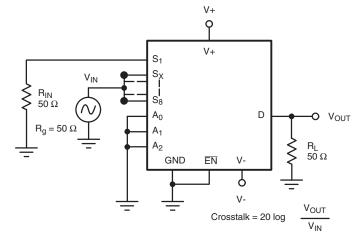



Figure 7. Crosstalk

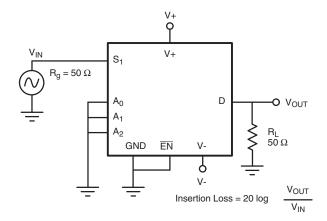
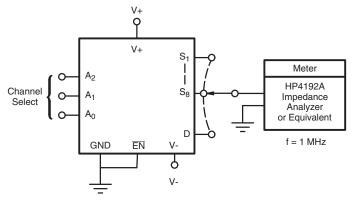
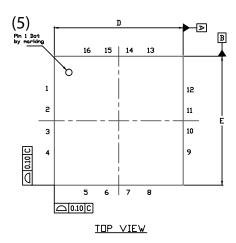
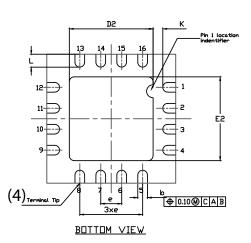
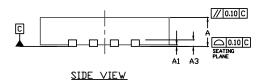



Figure 8. Insertion Loss



Figure 9. Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71870.

## QFN 4x4-16L Case Outline







|                   |         | VARIATION 1                |      |            |            | VARIATION 2 |           |           |                  |            |           |       |
|-------------------|---------|----------------------------|------|------------|------------|-------------|-----------|-----------|------------------|------------|-----------|-------|
| DIM               | МІ      | MILLIMETERS <sup>(1)</sup> |      |            | INCHES     |             | MILLIMETE |           | S <sup>(1)</sup> | INCHES     |           |       |
|                   | MIN.    | NOM.                       | MAX. | MIN.       | NOM.       | MAX.        | MIN.      | NOM.      | MAX.             | MIN.       | NOM.      | MAX.  |
| Α                 | 0.75    | 0.85                       | 0.95 | 0.029      | 0.033      | 0.037       | 0.75      | 0.85      | 0.95             | 0.029      | 0.033     | 0.037 |
| A1                | 0       | -                          | 0.05 | 0          | -          | 0.002       | 0         | -         | 0.05             | 0          | -         | 0.002 |
| A3                |         | 0.20 ref.                  |      |            | 0.008 ref. |             |           | 0.20 ref. |                  |            |           |       |
| b                 | 0.25    | 0.30                       | 0.35 | 0.010      | 0.012      | 0.014       | 0.25      | 0.30      | 0.35             | 0.010      | 0.012     | 0.014 |
| D                 |         | 4.00 BSC                   |      | 0.157 BSC  |            | 4.00 BSC    |           |           | 0.157 BSC        |            |           |       |
| D2                | 2.0     | 2.1                        | 2.2  | 0.079      | 0.083      | 0.087       | 2.5       | 2.6       | 2.7              | 0.098      | 0.102     | 0.106 |
| е                 | 0.65 BS |                            |      |            | 0.026 BSC  |             | 0.65 BSC  |           |                  |            | 0.026 BSC |       |
| Е                 |         | 4.00 BSC                   |      | 0.157 BSC  |            |             | 4.00 BSC  |           |                  | 0.157 BSC  |           |       |
| E2                | 2.0     | 2.1                        | 2.2  | 0.079      | 0.083      | 0.087       | 2.5       | 2.6       | 2.7              | 0.098      | 0.102     | 0.106 |
| K                 |         | 0.20 min.                  |      | 0.008 min. |            | 0.20 min.   |           |           |                  | 0.008 min. |           |       |
| L                 | 0.5     | 0.6                        | 0.7  | 0.020      | 0.024      | 0.028       | 0.3       | 0.4       | 0.5              | 0.012      | 0.016     | 0.020 |
| N <sup>(3)</sup>  |         | 16                         |      |            | 16         |             | 16 16     |           |                  |            |           |       |
| Nd <sup>(3)</sup> |         | 4                          |      |            | 4          |             |           | 4 4       |                  |            |           |       |
| Ne <sup>(3)</sup> |         | 4                          |      |            | 4          |             |           | 4         |                  |            | 4         |       |

### **Notes**

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: S13-0893-Rev. B, 22-Apr-13

DWG: 5890

Revision: 22-Apr-13

Document Number: 71921

## **Legal Disclaimer Notice**



Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.